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Abstract: According to finite-time thermodynamics, an irreversible high temperature proton ex-
change membrane fuel cell (HT-PEMFC) model is established, and the mathematical expressions
of the output power, energy efficiency, exergy efficiency and ecological coefficient of performance
(ECOP) of HT-PEMFC are deduced. The ECOP is a step forward in optimizing the relationship
between power and power dissipation, which is more in line with the principle of ecology. Based
on the established HT-PEMFC model, the maximum power density is obtained under different
parameters that include operating temperature, operating pressure, phosphoric acid doping level and
relative humidity. At the same time, the energy efficiency, exergy efficiency and ECOP corresponding
to the maximum power density are acquired so as to determine the optimal value of each index
under the maximum power density. The results show that the higher the operating temperature and
the doping level, the better the performance of HT-PEMFC is. However, the increase of operating
pressure and relative humidity has little effect on HT-PEMFC performance.

Keywords: high temperature proton exchange membrane fuel cell; exergy analysis; ecological
analysis; ecological coefficient of performance

1. Introduction

In recent years, proton exchange membrane fuel cells (PEMFCs) have been considered
efficient and clean energy conversion devices. PEMFCs have been widely used in home
equipment and automobiles [1] due to the advantage of higher power density, lower
emission and noise. According to the operating temperature, PEMFC can be divided into
low temperature proton exchange membrane fuel cell (70–95 ◦C) and high temperature
proton exchange membrane fuel cell (120–200 ◦C). HT-PEMFC has the superiority of the
accelerated kinetics of electrode reaction [2], higher CO tolerance [3], and simpler water
and heat management systems [4,5].

At present, the research on HT-PEMFC mainly includes materials [6–8] and prepara-
tion methods [9,10]. Few people have used the first and second laws of thermodynamics to
analyze and optimize the performance of HT-PEMFC. However, thermodynamic analysis
and optimization of LT-PEMFC have been mature. Miansari et al. [11], Ozen et al. [12] and
Esfeh et al. [13] verified that the operating temperature has a significant effect on the perfor-
mance improvement of PEMFC. Li et al. [14,15] established the finite-time thermodynamic
model of irreversible PEMFC, which considered polarization loss and leakage current. The
effects of operating temperature, operating pressure and proton exchange membrane water
content on the optimal performance of the irreversible proton exchange membrane fuel cell
were numerically studied. Wei et al. [16] took the entropy production rate and ecological
coefficient of performance of PEMFC as the objective function for numerical analysis,
while optimal current density ranges were determined by different optimization objectives.
Midilli et al. [17] found that higher current density and proton film thickness leads to a
decrease in exergy efficiency of PEMFC. If the film thickness was the same, the exergy
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efficiency of PEMFC is improved with the increase of operating pressure and the decrease
of current density. Xu et al. [18] investigated exergetic sustainability indicators (ESI) of
PEMFC under different parameters. Increasing the operating temperature and pressure
decreases the irreversibility of PEMFC and increases exergetic sustainability indicators.

Therefore, the study of parameters based on thermodynamics is very important to
boost the performance of PEMFC [11–23], thus, it has been applied to the irreversibility
analysis and optimization of HT-PEMFC. Barati et al. [24] studied the influence of air
and hydrogen flow rate, operating temperature and doping level of phosphoric acid on
HT-PEMFC performance. The doping level has a significant effect on the performance
improvement, mainly because the doping level of the membrane affected the proton
conductivity of the membrane.

Lu et al. [25] established a mathematical model of HT-PEMFC and analyzed the exergy
performance of the HT-PEMFC power generation system. Consequently, an improved
farmland fertility optimization design method was put forward for optimizing the exergy,
irreversibility and output power. Compared with the original design method and genetic
algorithm, the number of iterations in the improved method was less, optimization speed
was faster, and the output power density increased by 5.2 and 2.9%, respectively.

Xia et al. [26] investigated the effects of catalyst layer thickness, operating temperature,
and proton exchange membrane thickness on HT-PEMFC performance. The results showed
that the operating temperature has a significant effect on the performance. Operating
temperature at 160–180 ◦C not only ensured the fuel cell performance, but also reduced
maintenance costs at high temperatures. The thinner thickness of the catalyst layer and
proton exchange membrane had a positive influence on the performance of HT-PEMFC,
but it was easily damaged.

Guo et al. [19] analyzed the energetic, exergetic and ecological performance of HT-
PEMFC and mathematical models of power density, entropy production rate and ecological
coefficient of performance were established based on finite time thermodynamics theory.
The results showed that the operating temperature and doping level have significant effects
on the performance of HT-PEMFC. According to the optimization criterion of maximum
power density, the optimization interval of current density is found to be the left of the
current density corresponding to the maximum power density.

Lin et al. [27] investigated the exergy efficiency of HT-PEMFC using the meta-heuristic
technique, and an improved collective animal behavior algorithm was utilized to evalu-
ate and optimize the thermodynamic irreversibility, exergy efficiency and output power.
Compared with the standard collective animal behavior algorithm and genetic algorithm,
the proposed improved collective animal behavior algorithm increased the output power
density by 1.2 and 12.1% and the exergy efficiency increased by 22.9%.

In this paper, firstly, a finite-time thermodynamic was introduced to analyze the
irreversibility of HT-PEMFC, and a mathematical model which took irreversible losses and
leakage current into consideration was established. Secondly, according to the maximum
power density criterion, the optimization interval of current density was obtained and
the optimal output efficiency, exergy efficiency and ecological coefficient of performance
corresponding to the maximum power density were achieved. At the same time, the effects
of operating temperature, operating pressure, relative humidity and doping level on the
performance of HT-PEMFC were studied.

2. Thermodynamic Model
2.1. Working Principle of HT-PEMFC

As shown in Figure 1, HT-PEMFC can directly convert the chemical energy containing
hydrogen and oxygen into electrical energy and heat energy. The whole system mainly includes
a cathode, an anode and electrolyte. The reaction of anode and cathode show as follows:

Anode reaction : H2 → 2H+ + 2e− (1)
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Cathodic reaction : 2H+ +
1
2

O2 + 2e− → H2O + heat (2)

Total reaction : H2 +
1
2

O2 → H2O + heat + electricity (3)
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2.2. Reversible Potential of HT-PEMFC

For HT-PEMFC, reversible potential [28,29] shows as follows:

Er = E0
r +

∆S
nF

(T − 298.15) +
RT
nF

ln(
pH2 p0.5

O2

pH2O
) (4)

in Equation (4), E0
r is the ideal standard potential which value is 1.185 V, ∆S is the change

of standard molar entropy, T is the operating temperature of HT-PEMFC, R is the gas
constant, pH2 , pO2 and pH2O are partial pressures of H2, O2 and H2O, respectively.

∆S
n

= −18.449− 0.01283·T (5)

where ∆S is related to the operating temperature.

2.3. Overpotential of HT-PEMFC

For HT-PEMFC, due to three types of overpotential containing activation overpotential,
concentration overpotential and ohmic overpotential, its actual output voltage is generally
less than the reversible potential.

• Activation overpotential [29,30];

Eact =
RT
nαF

ln(
j + jleak

j0
) (6)

ln jleak =

(
−2342.9

1
T
+ 9.0877

)
(7)

where α is charge transfer coefficient, jleak is leakage current density, j0 is exchange
current density.
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• Concentration overpotential [28];

Econ =

(
1 +

1
α

)
RT
nF

ln(
jL

jL − j
) (8)

where j is operating current density, jL is limiting current density [29].
• Ohmic overpotential [31];

Eohm = j
tmem

σmem
(9)

where tmem is the thickness of the electrolyte, σmem is the proton conductivity of the
electrolyte [31].

σmem =
A0B

T
e
−bact

RT (10)

A0 = 68DL3 − 6324DL2 + 65750DL + 8460 (11)

B =


1 + (0.01704T − 4.767)RH 373.15K ≤ T ≤ 413.15
1 + (0.1432T − 56.89)RH 413.15K < T ≤ 453.15
1 + (0.7T − 309.2)RH 453.15 < T ≤ 473.15

(12)

bact = −619.6DL + 21750 (13)

|noindent where DL is the doping level of the electrolyte, RH is the relative humidity
of the electrolyte [29].

• Output voltage;

According to Equations (1)–(13), the output voltage [32] of the HT-PEMFC can be
derived as follows:

U = Erev − Econ − Eact − Eohm= Erev −
(

1 +
1
α

)
RT
nF

ln(
jL

jL − j
)− RT

nαF
ln(

j + jleak
j0

)− j
tmem

σmem
(14)

2.4. Finite-Time Thermodynamic Performance Analysis of HT-PEMFC

All analyses are based on the following assumptions:

1. With the HT-PEMFC system operating in a quasi-steady state, provided that the oper-
ating temperature and operating pressure are continuously changing, it is assumed
that the operating pressure and operating temperature are constant at a fixed time;

2. The enthalpy of hydrogen entering the HT-PEMFC determines the maximum working
capacity of the HT-PEMFC;

3. The exergy [33] mainly contains chemical exergy εchem and physical exergy εphy, the
kinetic and potential exergy of the hydrogen are neglected

ε = εchem + εphy (15)

4. The energy required for compressing reactants is ignored.

• Output power density [34];

The output power density of the HT-PEMFC can be expressed as follows:

P = jU (16)

• Output efficiency [35];

For any energy conversion device, the thermal efficiency is the energy output divided
by the total energy input. Therefore, the output efficiency of HT-PEMFC can be shown as
Equation (16):

η =
P

−∆
.

H
(17)
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where ∆
.

H is the total energy absorbed from hydrogen and oxygen.

∆
.

H = − jA∆h
nF

(18)

where ∆h is the change of molar enthalpy.

• Exergy efficiency [36,37];

Exergy is an indicator used to evaluate energy quality. Exergy efficiency of HT-PEMFC,
ϕ, is defined as the utilization degree of exergy, can be represented by:

ϕ =
PA
.
εin

(19)

.
εin =

jA
nF
(
εH2 + 0.5εO2

)
(20)

where
.
εin is the total input exergy rate of H2 and O2; A is the electrode effective surface

area; εH2 and εO2 are the standard chemical exergy of H2 and O2.

• Ecological coefficient of performance [14,23];

In addition to energetic and exergetic analyses, the energy conversion performance
of HT-PEMFC can also be analyzed by ecological standards. Angulo [38] proposed the
ecological criterion function E = P−TL

.
δ based on the heat engine, where P is output power,

TL
.
δ reflects the power dissipation of the engine. The objective function not only optimizes

the output power, but also takes the power dissipation into account, which makes the
objective conform to the principle of long-term ecology. On this basis, Ust [39,40] presented
a new ecological objective function, known as the ecological coefficient of performance
(ECOP), which is the ratio of output power to power dissipation. Compared with the
previous ecological objective function, the relationship between output power and power
dissipation is improved. Its expression is as follows:

ECOP =
PA

T0
.
δ

(21)

.
δ =
−∆

.
H − P
T

(22)

2.5. Finite-Time Thermodynamic Optimization of HT-PEMFC

Since the output power and output efficiency of HT-PEMFC cannot reach the maxi-
mum at the same time, in order to minimize the power consumption of HT-PEMFC, the
maximum output power is taken as the optimization objective. The power density of
HT-PEMFC first increases and then decreases with the continuous increase of current
density. Therefore, within a certain minimum range of current density, the power density
of HT-PEMFC is bound to reach the maximum.

The power density of HT-PEMFC is related to current density j, operating temperature
T, operating pressure p, relative humidity RH and phosphoric acid doping level DL, which
can be written as

P = f (j, T, p, RH, DL) (23)

When p, RH and DL are constant, the power density is only related to current density
and operating temperature, which can be presented as

P1 = h(j, T) (24)

When the operating temperature of HT-PEMFC is T1, the power is only related to
current density j, and the maximum power density is obtained, and the corresponding
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current density is j1. Therefore, the maximum output power density at the operating
temperature T1 can be shown as

P∗1 ,max = maxg(j) (25)

By analogy, when the operating temperature of HT-PEMFC is Tn, the maximum power
density is P∗n, max, and the corresponding current density is jn. Thus, the relationship between
the maximum output power density P∗n, max of HT-PEMFC and operating temperature Tn
is deduced. In addition, similar methods can be used to study the influence of operating
pressure, doping level and relative humidity on the maximum output power density of
HT-PEMFC. The relationship between these parameters and the maximum output power
density can also be acquired, which can further boost the power density of HT-PEMFC.

2.6. Output Efficiency, Exergy Efficiency and ECOP Based on Maximum Output Power Density

During the operation of HT-PEMFC, the output efficiency η decreases with the increase
of current density j. Therefore, the output efficiency reaches the maximum value in the low
current density region, but the power density is low. In order to ensure the lowest power
dissipation of HT-PEMFC, the current density jn, corresponding to the maximum power
density, is obtained according to the optimization criterion of the maximum power density.
Thus, the output efficiency of HT-PEMFC corresponding to jn is the most efficient. In order
to further improve the performance of HT-PEMFC, the effects of operating temperature,
operating pressure, relative humidity and doping level on the output efficiency of HT-PEMFC
are studied, and the relationship between these parameters and output efficiency is obtained.

As can be seen from the curve of exergy efficiency ϕ and ecological coefficient of
performance coefficient ECOP of HT-PEMFC, with the continuous work of HT-PEMFC,
ϕ and ECOP decrease with the increase of current density. Therefore, the method of
obtaining the relationship between ϕ and ECOP and different parameters is similar to that
of obtaining the relationship between output efficiency and different parameters.

2.7. Comparsion of Optimization Analysis of Different Objective Functions

Different objective functions include the maximum output power density P, the
optimal output efficiency η at the maximum output power density, the optimal exergy effi-
ciency φ at the maximum output power density and ecological coefficient of performance
ECOP at the maximum output power density, where P, η, φ and ECOP are dimensionless
functions [41]. The dimensionless maximum output power density of HT-PEMFC can be
expressed as follows:

P =
Pmax

P2,max
(26)

where Pmax is the maximum output power density of HT-PEMFC at different operating
temperature, and P2,max is the maximum output power density of HT-PEMFC at the
operating pressure p = 2 atm. The dimensionless method of output efficiency, exergy
efficiency and ecological coefficient of performance corresponding to the maximum power
density is similar to that of the dimensionless maximum power density.

3. Results and Discussion
3.1. Model Verification

Figure 2 compares the predicted model voltage and the experimental data [42] of HT-
PEMFC at 423 K and 448 K (p = 1 atm; DL = 5.6; RH = 0.38%), the experimental data are in
good agreement with the predicted data. Figure 3 shows the relationship between reversible
potential (Erev), concentration overpotential (Econ), activation overpotential (Eact), ohmic
overpotential (Eohm), and output voltage (U) with current density. The reversible potential
is a constant independent of current density. The three kinds of over-potential increase
with the increase of current density, the concentration overpotential increases exponentially,
the activation overpotential grows logarithmically, and the ohmic overpotential grows less.
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In the low current density region, the rapid decline of output voltage is mainly due to the
rapid increase of activation overpotential. In the region of high current density, the output
voltage drops rapidly, mainly because the concentration overpotential increases rapidly.
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3.2. Influences of the Operating Temperature

Figure 4a shows the variation of the dimensionless maximum power density of HT-
PEMFC with operating temperature under different pressure. It can be seen that the
maximum power density of the irreversible HT-PEMFC improves continuously with the in-
crease of operating temperature. This is mainly because, as the operating temperature rises,
the exchange current density grows, so the activation overpotential decreases. At the same
time, the increase of operating temperature will enhance the proton conductivity, which
will reduce the ohmic overpotential of HT-PEMFC. Therefore, the power loss produced
by ohmic overpotential and activation overpotential will be cut down. Therefore, as the
growth of operating temperature, the maximum power density of HT-PEMFC will increase
constantly. When the operating pressure is 1 atm and the operating temperature is 403 K,
the corresponding maximum power density is 3071.58 W m−2. When the operating tem-
perature rises up to 473 K, the corresponding maximum power density is 5291.60 W m−2.
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This indicates that the maximum power density of HT-PEMFC increases by 72%, when the
operating temperature of HT-PEMFC increases from 403 K to 473 K. The maximum power
density increases by 70% and 73%, respectively, at 2 atm and 3 atm. The result shows that
HT-PEMFC can significantly increase its maximum power density in a suitable operating
temperature range.
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Figure 4b–d reflect the η, φ and ECOP corresponding to the maximum power density
of HT-PEMFC. It is obvious that the increase of operating temperature can improve the
output efficiency, exergy efficiency and ECOP of the irreversible process of HT-PEMFC.
When the operating pressure is 1 atm and the operating temperature is 403 K, the corre-
sponding output efficiency is 22.3%, exergy efficiency is 25.93% and ECOP is 37.23%. When
the operating temperature is 473 K, the corresponding output efficiency is 26.46%, exergy
efficiency is 31.3%, and ECOP is 55.97%. This shows that when the operating temperature
of HT-PEMFC increased from 130 ◦C to 200 ◦C, its output efficiency, exergy efficiency and
ECOP increased by 19, 21 and 50%, respectively. The increase of HT-PEMFC temperature
accelerates the passage rate of protons and increases the conductivity of the proton ex-
change membrane, so the power generation of HT-PEMFC boosts, as well as the output
efficiency and exergy efficiency. As the power consumption lessens, the entropy generated
decreases and the output power increases, so the ratio of output power to power consump-
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tion increases, that is, the ecological coefficient of performance ECOP improves. However,
though raising the operating temperature can improve the performance of HT-PEMFC, it
can also cause many problems, such as high cost, poor stability, and long start-up time.

3.3. Influences of the Operating Pressure

Figure 5a shows that P of HT-PEMFC changes with operating pressure at different
operating temperatures. Obviously, with the increase of operating pressure, the maxi-
mum power density of irreversible HT-PEMFC is continuously increasing. Owing that as
the exchange current density rises with the rise of the operating pressure, the activation
overpotential will decrease and the reversible potential will boost. Therefore, with the in-
crease of operating pressure, the irreversibility of HT-PEMFC decreases and the maximum
power density of HT-PEMFC increases continuously. When the operating temperature is
453 K and the operating pressure is 1 atm, the corresponding maximum power density
is 4515.13 W m−2. When the operating pressure rises up to 3 atm, the corresponding
maximum power density is 4919.07 W m−2. From the numerical point of view, when the
operating temperature is 453 K and the operating temperature of HT-PEMFC increases
from 1 atm to 3 atm, the maximum power density of HT-PEMFC only increases by 9%.
This shows that operating pressure has little influence on HT-PEMFC.
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It can be seen from Figure 5b–d that η, φ and ECOP correspond to the maximum power
density of HT-PEMFC. The increase of operating pressure can slightly improve the output
efficiency, exergy efficiency and ECOP of the irreversible process of HT-PEMFC. When the
operating temperature of HT-PEMFC increased from 1 atm to 3 atm, its output efficiency,
exergy efficiency and ECOP increased by 5, 6 and 9%, respectively. According to the
numerical analysis, the increase of operating pressure does not improve the performance
of HT-PEMFC as significantly as the increase of operating temperature. In addition,
increasing the operating pressure consumes extra power to compress the reactants in the
inlet, resulting in higher costs.

3.4. Influences of the Doping Level

As shown in Figure 6, with the increase of current density, ohmic overpotential will
improve. When doping level rises, the proton conductivity of HT-PEMFC increases, which
reduces the ohmic overpotential. According to the relationship between P and DL in
Figure 7a, it can be observed that the maximum power density raises endlessly with the
increase of doping level. This is mainly because, as the rise of doping level, the ohmic
overpotential decreases and the reversible potential improves. Hence, if the doping level
of HT-PEMFC is raised appropriately, the maximum power density will become larger.
When the doping level is 2, the corresponding maximum power density is 1868.52 W m−2.
When the doping level is 10, the corresponding maximum power is 4694.53 W m−2. It is
clear that when the doping level increases from 2 to 10 and relative humidity is 3.8%, the
maximum power density of HT-PEMFC increases by 150%. This indicates that DL has a
significant effect on the performance of HT-PEMFC.
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Figure 7b–d show the η, φ and ECOP corresponding to the maximum power density
of HT-PEMFC varying with doping level at different relative humidity. It can be seen
that when the doping level increases, the output efficiency, exergy efficiency and ECOP of
HT-PEMFC all showed a trend of decreasing at first and then increasing. This is mainly
because the current density of the maximum is different under different doping levels.
When the doping level is small, the current density is low and the gap of current density
of the maximum power density at different doping levels is bigger, thus causing ohmic
potential increases with the increase of DL. When the doping level is high, the current
density corresponding to the maximum power density is in the region of high current
density, and the difference of the current density of the maximum power density is small
at different doping level, so the ohmic overpotential decreases with the increase of DL,
leading to the increase of reversible potential. When the relative humidity of HT-PEMFC is
3.8% and the doping level increases from 2 to 10, its output efficiency, exergy efficiency and
ECOP increases by 5, 5 and 6%, respectively. This indicates that doping level significantly
improved the maximum power density, but has little impact on output efficiency, exergy
efficiency and ECOP.
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3.5. Influences of the Relative Humidity

Figure 8a shows the change of P with relative humidity at different temperatures. It
can be seen that with the increase of relative humidity, the maximum power density of
irreversible HT-PEMFC rises. The main reason is that with the increase of relative humidity,
the conductivity of the proton exchange membrane at high temperature will boost, resulting
in the decrease of ohmic overpotential. When RH is 0, the corresponding maximum power
density is 4064.78 W m−2. When RH rises up to 7.6%, the corresponding maximum power
density is 4168.1 W m−2. This indicates that the maximum power density of HT-PEMFC
increases by only 2% when the operating temperature is 453 K and the relative humidity
increases from 0 to 7.6%. As shown in Figure 9, although relative humidity can improve
proton conductivity, increasing relative humidity has less effect on the ohmic overpotential
than the doping level. Therefore, relative humidity has little effect on the maximum power
density of HT-PEMFC.
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Figure 8b–d reflect η, φ and ECOP corresponding to the maximum power density of
HT-PEMFC varying with relative humidity at different temperatures. It can be seen from
the figures that the three indexes all show a monotonically increasing trend. When the
relative humidity is 0 and the operating temperature is 453 K, the corresponding output
efficiency is 24.5%, exergy efficiency was 25.1%, and ECOP is 48.16%. When the relative
humidity was 7.6%, the corresponding output efficiency was 24.68%, exergy efficiency was
26%, and ECOP was 48.667%. It reflects that when the relative humidity of HT-PEMFC
increased from 0 to 7.6%, its output efficiency, exergy efficiency and ECOP increased by 0.7,
4 and 1%, respectively. Compared with the consequences of doping levels, the numerical
results of relative humidity are significantly lower. Therefore, relative humidity has little
effect on the performance improvement of HT-PEMFC.

4. Conclusions

In this paper, the irreversibility caused by polarization and leakage current is considered,
and the finite-time thermodynamic model of HT-PEMFC is established. The influence of
operating temperature, operating pressure, doping level of phosphoric acid and relative
humidity on the maximum output power density is studied. In addition, according to the
maximum power density criterion, the influence of different parameters on output efficiency,
exergy efficiency and ecological coefficient of performance is obtained. Among them, ECOP
compromises the relationship between power and efficiency performance of HT-PEMFC.

Through numerical analysis and calculation, when the operating temperature in-
creases from 403 K to 473 K, the maximum output power density increases by 72%, the
output efficiency rises by 19%, the exergy efficiency rises by 21%, and the ecological perfor-
mance coefficient boosts by 50%. When the doping level of phosphoric acid increases from
2 to 10, the maximum power density increases by 150%. However, the operating pressure
and relative humidity have little influence on the maximum power density and the output
efficiency, exergy efficiency and ECOP.

In the future, the extended irreversible thermodynamics [43,44] that expands the scope
of classical irreversible thermodynamics into a new field could be considered to analyze
the HT-PEMFC system.
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