ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem
Abstract
:1. Introduction
2. Short Remark on Intuitionistic Fuzzy Logic
3. Multiple-Constraint Knapsack Problem
4. ACO Algorithm with Intuitionistic Fuzzy Pheromone
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Goldberg, D.E.; Korb, B.; Deb, K. Messi Genetic Algorithms: Motivation Analysis and First Results. Complex Syst. 1989, 5, 493–530. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Beckington, UK, 2008. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 13, 671–680. [Google Scholar] [CrossRef]
- Mosavi, M.R.; Khishe, M.; Parvizi, G.R.; Naseri, M.J.; Ayat, M. Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset. Arch. Acoust. 2019, 44, 137–151. [Google Scholar]
- Ravakhah, S.; Khishe, M.; Aghababaee, M.; Hashemzadeh, E. Sonar false alarm rate suppression using classification methods based on interior search algorithm. Comput. Sci. Netw. Secur. 2017, 17, 58–65. [Google Scholar]
- Osman, I.H. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann. Oper. Res. 1993, 41, 421–451. [Google Scholar] [CrossRef]
- Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing; Springer: Haidelberg, Germany, 2007; pp. 789–798. [Google Scholar]
- Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; pp. 261–265. [Google Scholar]
- Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization; Studies in Computational Intelligence, 284; Springer: Haidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks IV, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Harifi, S.; Khalilian, M.; Mohammadzadeh, J. Emperor Penguins Colony: A new metaheuristic algorithm for optimization. Evol. Intell. 2019, 12, 211–226. [Google Scholar] [CrossRef]
- Dorigo, M.; Gambardella, L. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1996, 1, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Fidanova, S.; Lirkov, I. 3d protein structure prediction. Analele Univ. Vest Timis. 2009, XLVII, 33–46. [Google Scholar]
- Fidanova, S. An improvement of the grid-based hydrophobic-hydrophilic model. Bioautomation 2010, 14, 147–156. [Google Scholar]
- Stutzle, T.; Hoos, H. Max min ant system. Future Gener. Comput. Syst. 2000, 16, 889–914. [Google Scholar] [CrossRef]
- Dorigo, M.; Stutzle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Fidanova, S. ACO algorithm with additional reinforcement. In Proceedings of the From Ant Colonies to Artificial Ants Conference, Brussels, Belgium, 12–14 September 2003; pp. 292–293. [Google Scholar]
- Atanassov, K. Two Variants of Intuitionistic Fuzzy Propositional Calculus. Bioautomation 2016, 20, 17–26. [Google Scholar]
- Zadeh, L. Fuzzy Sets. Inf. Control. 1968, 12, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic Fuzzy Sets; Studies in Fuzziness and Soft Computing, 123; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Logics; Studies in Fuzziness and Soft Computing, 351; Springer: Heidelberg, Germany, 2017. [Google Scholar]
- Zhen, L.; Wang, K.; Wang, S.; Qu, X. Tug scheduling for hinterland barge transport: A branch-and-price approach. Eur. J. Oper. Res. 2018, 265, 119–132. [Google Scholar] [CrossRef]
- Dimitrov, N.B.; Solow, D.; Szmerekovsky, J.; Guo, J. Emergency relocation of items using single trips: Special cases of the multiple knapsack assignment problem. Eur. J. Oper. Res. 2017, 258, 938–942. [Google Scholar] [CrossRef]
- Dawande, M.; Kalagnanam, J.; Keskinocak, P.; Salman, F.S.; Ravi, R. Approximation algorithms for the multiple knapsack problem with assignment restrictions. Comb. Optim. 2000, 4, 171–186. [Google Scholar] [CrossRef]
- Dahl, G.; Foldnes, N. LP based heuristics for the multiple knapsack problem with assignment restrictions. Ann. Oper. Res. 2006, 146, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.E.; Handl, J.; Xu, D.L. Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system. Eur. J. Oper. Res. 2018, 266, 976–989. [Google Scholar] [CrossRef] [Green Version]
- Laalaoui, Y.; M’Hallah, R. A binary multiple knapsack model for single machine scheduling with machine unavailability. Comput. Oper. Res. 2016, 72, 71–82. [Google Scholar] [CrossRef]
- Martello, S.; Monaci, M. Algorithmic approaches to the multiple knapsack assignment problem. Omega 2020, 90, 102004. [Google Scholar] [CrossRef]
- Leguizamon, G.; Michalevich, Z. A new version of ant system for subset problems. In Proceeding of the Evolutionary Computations Conference, Washington, DC, USA, 6–9 July 1999; pp. 1459–1464. [Google Scholar]
- Kellerer, H.; Pferschy, U.; Pisinger, D. Multiple Knapsack Problems. In Knapsack Problems; Springer: Heidelberg, Germany, 2004. [Google Scholar]
- Arsik, I.; Keskinocak, P.; Coppola, J.; Hampapur, K.; He, Y.; Jiang, H.; Regala, D.; Tailhardat, N.; Goin, K. Effective and equitable appointment scheduling rehabilitation centers. In Proceedings of the INFORMS Annual Meeting, Huston, TX, USA, 22–25 October 2017. [Google Scholar]
- Murgolo, F.D. An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput. 2017, 16, 149–161. [Google Scholar] [CrossRef]
- Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Shmoys, D.B. Sequencing and scheduling: Algorithms and complexity. In Handbooks in OR and MS, 4; Graves, S.C., Kan, R., Zipkin, P.H., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 445–522. [Google Scholar]
- Feuerman, M.; Weiss, H. A Mathematical Programming Model for Test Construction and Scoring. Manag. Sci. 1973, 19, 961–966. [Google Scholar] [CrossRef]
- Martello, S.; Toth, P. A heuristic algorithm for the multiple knapsack problem. Computing 1981, 27, 93–112. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, S. A scalable parallel genetic algorithm for the generalized assignment problem. Parallel Comput. 2015, 46, 98–119. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, A.J.; Wilson, J.M. A hybrid tabu search/branch & bound approach to solving the generalized assignment problem. Eur. J. Oper. Res. 2010, 207, 566–578. [Google Scholar]
- Fidanova, S.; Atanassov, K. Flying Ant Colony Optimization Algorithm for Combinatorial Optimization. Studia Inform. 2017, 38, 31–40. [Google Scholar]
- Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A survey of swarm algorithms applied to discrete optimization problems. In Swarm Intelligence and Bio-Inspired Computation; Elsevier Science Publishers: Amsterdam, The Netherlands, 2013; pp. 169–191. [Google Scholar]
- Posta, M.; Ferland, J.A.; Michelon, P. An exact method with variable fixingfor solving the generalized assignment problem. Comput. Optim. Appl. 2012, 52, 629–644. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of iterations | 300 |
Number of ants | 20 |
0.5 | |
0.5 | |
a | 1 |
b | 1 |
Instance | Traditional ACO | Int Fuzzy Beginning | Int. Fuzzy Every |
---|---|---|---|
MKP 100 × 10−1 | 21989.43 | 22061.00 | 21992.92 |
MKP 100 × 10−2 | 22059.90 | 22055.76 | 22096.00 |
MKP 100 × 10−3 | 20989.00 | 21020.56 | 20997.00 |
MKP 100 × 10−4 | 21625.56 | 21656.03 | 21666.66 |
MKP 100 × 10−5 | 21718.33 | 21754.00 | 21761.63 |
MKP 100 × 10−6 | 21869.73 | 21891.20 | 21867.16 |
MKP 100 × 10−7 | 21477.30 | 21509.53 | 21502.2 |
MKP 100 × 10−8 | 21573.03 | 21668.06 | 21596.16 |
MKP 100 × 10−9 | 22248.43 | 22229.46 | 22221.00 |
MKP 100 × 10−10 | 40581.51 | 40556.50 | 40578.10 |
average | 23613.22 | 23640.23 | 23627.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidanova, S.; Atanassov, K.T. ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem. Mathematics 2021, 9, 1456. https://doi.org/10.3390/math9131456
Fidanova S, Atanassov KT. ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem. Mathematics. 2021; 9(13):1456. https://doi.org/10.3390/math9131456
Chicago/Turabian StyleFidanova, Stefka, and Krassimir Todorov Atanassov. 2021. "ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem" Mathematics 9, no. 13: 1456. https://doi.org/10.3390/math9131456
APA StyleFidanova, S., & Atanassov, K. T. (2021). ACO with Intuitionistic Fuzzy Pheromone Updating Applied on Multiple-Constraint Knapsack Problem. Mathematics, 9(13), 1456. https://doi.org/10.3390/math9131456