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Abstract: The manufacturing industry has a great impact on the economic growth of countries. It
is, therefore, crucial to master the skills of the production system by mathematical tools that enable
the evaluation of the production systems’ performance measures. Four mathematical approaches
toward the modeling of steady-state behavior of serial Bernoulli production lines were considered
in this study, namely, the analytical approach, the finite state method, the aggregation procedure,
and numerical modeling. The accuracy of the performance measures determined using the semi-
analytical methods and the numerical approach was validated using numerous theoretical examples
and the results obtained using the analytical model. All of the considered methods demonstrated
relevant reliability, regardless of the different theoretical backgrounds.

Keywords: production system engineering; serial Bernoulli production line; finite state method;
aggregation procedure; analytical solution; performance measures

1. Introduction

Manufacturing is a process of material transformation to partly finished or finished
products. Besides material, its indispensable inputs are information, energy, production
equipment, human labor, and money, while generating outputs, such as the product,
waste, information, and a financial result [1]. The manufacturing industry is of significant
importance for the economic growth of countries. More specifically, the economy of a
country depends on its competitive industries and well-planned and controlled facilities
that ensure quality and profitability [2], with serial production lines playing a major role in
the modern manufacturing industry.

The serial production line is a combination of machines and buffers that are mutually
connected in a serial arrangement by transportation devices. The main purpose of such a
line is to ensure a smooth and effective manufacturing process, resulting in a gained profit.
Production lines can be run by fully automated, semi-automated, or manually operated
machines depending on the volume of the entire production. The layout of a production
line and the combination of machines and buffer capacities have a deep impact on the
profit that can be generated. Consequently, aspects such as improvability and the design of
production lines are of great interest.

The improvement of production lines can be achieved using two different approaches.
The first one is the heuristic approach, which is based on the modification of the actual
parameters of a production line to increase its benefit. Unfortunately, such an approach
does not offer possibilities to check the impact of modifications on the line’s output, which
means that the modifications will not necessarily yield better results. This is the reason
why the systematic approach, called production system engineering (PSE), should be
introduced. PSE consists of different methods that enable the evaluation of stochastic
systems’ various performance parameters. Until now, it was successfully applied across
different manufacturing industries; however, it was predominantly used in the case of the
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automobile industry. The main goals of PSE are to design new processes or to improve the
already established production processes [3] by analyzing their performance measures and
associated production costs, by evaluating its energy consumption [4], or by measuring
and analyzing the impact of the production on the environment [5].

To achieve these goals, several PSE models can be applied, namely, numerical, semi-
analytical, and analytical models. Today, numerical modeling is the common way to
describe production processes. However, it requires a significant database and well-
trained staff preparing and running simulations for 1–3 months before achieving some
improvements [6]. The semi-analytical approach employs simplified models, such as the
decomposition, aggregation, and finite-state methods, which evaluate production lines
much faster as compared to numerical models. The decomposition method employs a line
decomposition into two-machine–single-buffer lines to enable efficient evaluation of the
line properties [7]. On the other hand, the aggregation approach lumps a complete serial
production line into a single machine using iterative forward and backward aggregation [8].
The recently developed finite-state method (FSM) discretizes the system’s state space using
an analytical solution of a well-known two-machine–single-buffer problem at the level
of finite-state elements [9]. Finally, a closed-form analytical solution of the Chapman–
Kolmogorov equation yields an exact solution to the problem using a concept of the
generalized transition matrix. However, to date, the analytical approach remains extremely
time-consuming and not applicable in the case of the everyday factory-floor practice [10].

Some of these mathematical models, such as the numerical or decomposition and
aggregation models, were presented in the PSE literature more than a decade ago, while
the FSM approach and the analytical solution were introduced relatively recently. How-
ever, according to the authors’ best knowledge, a thorough validation and comparison
of the results obtained using different approaches were never systematically presented,
except in some limited cases. Such cases include only several theoretical production lines
composed of up to five machines with predefined reliabilities and buffers of even capacity.
Unfortunately, such an approach does not sufficiently justify the accuracy validation since
it omits, to a great extent, the context of real industrial surroundings. Therefore, the main
goal of the present study was to provide a systematic and comprehensive validation of
semi-analytical and numerical models of the Bernoulli serial production systems using a
closed-form analytical solution. Such a comparison will provide critical insight into the
validity and computational burden of each method. From this, we expected to retrieve
crucial feedback on the applicability range of the semi-analytical methods, particularly
regarding the evaluation of the production systems’ performance measures.

The remainder of the paper is structured as follows. A brief literature review is
presented in Section 1.1. Mathematical models are outlined in Section 2, including the
analytical solution, the finite state method, the aggregation procedure, and the numerical
modeling approach. The main results of the research are presented in Section 3 based on
the extensive data provided in the Supplementary Materials. Finally, the main conclusions
and the prospect of future research are summarized in Section 4.

1.1. Brief Literature Review

As already stressed earlier in the Introduction, the mathematical modeling of stochastic
systems was the focus of the present study. Various stochastic systems can be character-
ized as dynamic or static, stationary or non-stationary, linear or non-linear, discrete or
time-continuous, and time-event-driven or time-driven [11]. To model them, one can apply
the theory of Markov chains as a powerful mathematical tool that is capable of capturing
the trajectories of a stochastic system within a pertaining state space. Presently, the wide
application of Markov chains ranges from the financial sector and credit risks [12] to com-
puting networks, biology [13], and manufacturing processes. Concerning the time domain,
Markov chains can be classified into discrete-time and continuous-time models [14]. Here
we consider only discrete-time problems. More specifically, we consider only a problem of
the performance evaluation of serial Bernoulli production lines.



Mathematics 2021, 9, 1461 3 of 25

The fundamental research on Bernoulli production lines was published in 1962 by
Sevast’yanov [15], where the problem of the steady-state response of a two-machine single
buffer line was solved analytically using Markov chains and integral equations [16]. Due
to the complexity of such an approach, an analytical solution was reserved for a quite
long time only for the case of a line composed of two or three machines under specific
circumstances [8]. Therefore, semi-analytical approaches, namely, the aggregation and
decomposition methods, were developed to enable the evaluation of the performance
measures in the case of longer serial lines, [17].

The decomposition method models a serial production line using a set of two-machine–
single-buffer lines and solves the systems’ equations via a decomposition algorithm pub-
lished by Gershwin in 1986 [7]. The decomposition algorithm was improved twice. In
1988 and 1989, the authors provided new algorithms that resulted in higher computational
efficiency [18,19]. In 1999, the algorithm was further developed by Dallery and Bihan,
including an assumption of the exponential distribution of the time to repair that yielded
results that were comparable to real production lines [20]. The aggregation method is
based on a backward–forward aggregation of the whole production line conditioned to
the convergence of the results [8]. The classical aggregation method can evaluate large
state spaces of the Bernoulli serial lines very quickly. It was, therefore, used extensively
throughout the literature.

The aggregation procedure was introduced as an asymptotic analysis technique for
simplified models of serial production lines in [21], where it was applied successfully in
the case of the problem of an automobile paint shop facility. The problem of bottleneck
identification concerning the serial Bernoulli production lines was evaluated using the
same approach in [22], where an ‘arrow-based rule’ was introduced as a simplified bot-
tleneck indicator, depending on the probabilities of blockage and starvation. A similar
approach was extended later on to problems involving improvability issues [23], lean
design, maintenance policy, exponential production lines, production lines with rework,
and quality inspection [24]. In addition to serial lines, the production systems involving
splitting or merging (assembly) operations were evaluated using a similar, recursive, ap-
proach [25]. A problem of multiple bottlenecks prediction using the aggregation method
was addressed recently and an improved aggregation algorithm was presented. This
algorithm is based on small-scale and large-scale units that represent segments between
two bottleneck machines [26].

In 2019, the analytical solution for a Bernoulli serial line composed of an arbitrary
number of machines and buffers of arbitrary capacities was formulated using constitutive
matrices, the generalized transition matrix, and an eigenvalue problem [10]. Unfortunately,
such an approach requires significant processing time, particularly if more complex state
spaces are considered. Finally, a new semi-analytical method called the finite state method
(FSM) was presented recently in [9]. The FSM performs a discretization of the system’s state
space using finite-state elements and an analytical solution of the two-machines–single-
buffer problem. As compared to the analytical solution, the FSM enables a CPU effective
evaluation of the performance measures using a CPU, along with recovery of the system’s
state probability distribution.

Although proven to be quite effective, the semi-analytical approaches were never
validated thoroughly using extensive sampling, simulations, or benchmarks, except in
some selected cases. The main reason for this was an absence of an analytical solution
to the problem for a long time. It was, therefore, the purpose of this study to create a
set of benchmark examples that enable a systematic, thorough, and analytically based
validation method for semi-analytical approaches to retrieve the range of their applicability
and accuracy.

2. Mathematical Models

Mathematical models are the backbone of every approach exploited within the PSE
framework. In this study, different approaches to the mathematical modeling of serial
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Bernoulli lines were considered and compared. To do this, it is convenient to depict a
production line using circles, rectangles, and arrows representing machines, buffers, and
material flow direction, respectively (Figure 1). Each machine mi, where i = 1, 2, . . . , M and
M is the total number of machines, has Bernoulli reliability, i.e., it is in the state {up} with
the associated probability pi and in the state {down} with probability 1-pi. Every buffer bi,
where i = 1, 2, . . . , M − 1, is placed between two adjacent machines and is of the capacity
Ni, where Ni ∈
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0. In addition to this, a usual set of assumptions applied in each of the
models considered are as follows [8]:

1. The status of each machine is determined independently from the status of other
machines;

2. The status of each machine is determined at the beginning and the state of the buffer
at the end of each time slot;

3. Failures are time-dependent;
4. The first machine is never starved, the last machine is never blocked.
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Such a mathematical model can be considered using an analytical, semi-analytical,
or numerical approach, while the main outputs of the evaluation usually focus on the
Bernoulli serial line’s performance measures, namely, the production rate, PR; the work-in-
process at the ith buffer, WIPi; the probability of blockage of the ith machine, BLi; and the
probability of starvation of the ith machine, STi [8,10]. The production rate, PR, stands for
the expected number of pieces per cycle time produced by the last machine and is defined
as the intersection of events:

PR = P[{machine mM is up} ∩ {buffer NM−1 is not empty}] (1)

The work-in-process, WIPi, as the average number of semi-products at the ith buffer,
is determined using the following relation:

WIPi =
N1

∑
h1=0

N2

∑
h2=0

. . .
NM−1

∑
hM−1=0

h1Ph1h2h3 ...hM−1 (2)

where hi (i = 1, 2, . . . , M − 1) is the number of semi-products at the ith buffer and
Ph1h2h3 ...hM−1 is the steady-state probability of the system being in the state h1h2h3 . . . hM−1.
The average number of semi-products at the level of the complete line can be expressed
using Equation (2):

WIP =
M−1

∑
i=1

WIPi (3)

Given the assumption that the last machine can never be blocked, the probability of
blockage of the ith machine BLi is defined separately for the penultimate machine as the
intersection of events:

BLM−1 = P[{mM−1 is up} ∩ {bM−1 is full} ∩ {mM is down}] (4)

while in the case of machines m1, m2, . . . , mM−2, it is equal to

BLi = P[{mi up} ∩ {bi full} ∩ {mi+1 down} ∪ {mi up} ∩ {bi full} ∩ {bi+1 blocked}] (5)
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Finally, by taking into account the assumption that the first machine can never be
starved, the probability of starvation of the ith machine, STi, is equal to the intersection of
events that the i-1 buffer is empty and that the subsequent machine is in the up state, i.e.,

STi = P[{bi−1 is empty} ∩ {mi is up}], i = 2, 3, . . . , M (6)

2.1. The Analytical Approach

According to Equations (1)–(6), the key parameter yielding the performance measures
is the steady-state probability Ph1h2h3 ...hM−1 of a system being in the state h1h2h3 . . . hM−1.
Therefore, it is of great importance to enable its formulation. The first possibility is to
use the analytical approach by solving the Chapman–Kolmogorov equations using an
eigenvalue problem [27]:

([P]−Ω1[I]){P1} = {0} (7)

where [P] and [I] are the system’s transition matrix and the identity matrix, respectively; Ω1
is the first eigenvalue of the transition matrix; and {P1} is the eigenvector associated with
the first eigenvalue composed of the steady-state probabilities Ph1h2h3 ...hM−1 . This problem
can be solved by using the definition of a transition matrix via the multiplication of the
constitutive matrices defined for each machine in the line, i.e.,

[P] = [P1(p1)][P2(p2)][P3(p3)] . . . [PM(pM)] (8)

A detailed algorithm for the formulation of the constitutive matrices is available
in [10]. Unfortunately, the analytical approach quickly becomes rather cumbersome and
CPU demanding, particularly as the system’s state space grows in the number of possible
states. Therefore it is not applicable in cases such as when daily or weekly factory-floor
analysis is required. However, it is extremely valuable in the case when the validation of
semi-analytical or numerical approaches is required.

2.2. The Semi-Analytical Approach
2.2.1. The Finite-State Method

The finite state method is a recently developed method that bypasses the demanding
CPU problem of the analytical solution by discretizing the system’s state space using the
two-machine–one-buffer finite-state elements and the associated analytical solution. Here,
we provide only a brief outline of the method as it is presented in detail in [9].

The main idea of the finite state method is to discretize the system’s state space using
the finite state elements that are defined concerning the weakest machine in the production
line, mm (Figure 2). In such a way, a set of m − 1 upstream and M − m downstream
elements can be defined, depending on the properties of the serial production line. The
total number of finite-state elements modeling the steady-state behavior of the Bernoulli
serial line amounts to M − 1. Each upstream element e, where e < m, is composed of
the machine me, the weakest machine in the line mm, and the buffer be placed in between
them. Similarly, each downstream element e, where m < e < M − 1, is formulated using the
weakest machine in the line mm, the machine me, and the buffer be placed in between them.
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Once defined, a distribution of the steady-state probabilities can be expressed at the
level of each finite-state element using a well-known analytical solution of the two-machine–
one-buffer problem [8] depending on the upstream and downstream arrangement. Such a
distribution in the case of the upstream elements is equal to

P(e)
0 =

(1− pe)(1− αe)

1− pe
pm

αNe
e

, P(e)
ie =

αie
e

1− pm
P(e)

0 , ie = 1, 2, . . . , Ne (9)

where e < m − 1; pe and pm are the probabilities that machines e and m are in the state {up},
respectively; Ne is the capacity of the buffer be; and ae = pe (1 − pm)/pm(1 − pe). In the same
way, the steady-state distribution in the case of the downstream elements is equal to

P(e)
0 =

(1− pm)(1− αe)

1− pm
pe+1

αNe
e

, P(e)
ie =

αie
e

1− pe+1
P(e)

0 , ie = 1, 2, . . . , Ne (10)

where, m < e < M − 1, pe+1 is the probability that the machine e + 1 is in the state {up}, and
ae = pm (1 – pe + 1)/pe + 1 (1 − pm). Finally, the distribution of the steady-state probabilities
for a complete system can be approximated using the intersection of independent events at
each buffer [9], i.e.,

Pi1i2i3 ...iM−1 = P[{i1 = h1} ∩ {i2 = h2} ∩ . . . ∩ {iM−1 = hM−1}] =
M−1

∏
e=1

P(e)
ie (11)

Once the distribution Pi1i2i3 ...iM−1 is known, all of the considered performance measures
can be determined using Equations (1)–(6).

The main advantage of the finite state method as compared to the analytical approach
is the significantly lower CPU requirement. To be more precise, the CPU requirement
in the case of the analytical formulation of long lines can reach up to weeks or months,
depending on the number of machines involved and the capacities of buffers. However,
the same problem can be solved using the FSM approach in a matter of seconds, which is a
considerable advantage. In addition to that, the FSM is the only available semi-analytical
method that enables the recovery of the distribution of the steady-state probabilities,
Pi1i2i3 ...iM−1 , along with the formulation of the performance measures.

2.2.2. The Aggregation Procedure

The aggregation procedure is based on the application of the backward–forward
aggregation algorithm lumping in a stepwise fashion to aggregate a complete production
line into a single machine. As the first step, the machines mM and mM−1 and the buffer
bM−1 are aggregated into a new (virtual) machine mb

M−1, where the superfix b stands
for ‘backward’. The reliability of the newly aggregated machine pb

M−1 is equal to the
production rate (PR) determined using analytical expressions available in the two-machine–
one-buffer case. In the next step, the machine mb

M−1 is used, along with the machine mM−2

and buffer bM−2, to create the new aggregated machine mb
M−2 with a reliability that is

determined using the same analytical expressions as in the previous step. This procedure
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is repeated until the complete line is aggregated into a single machine mb
1 of the reliability

pb
1 (Figure 3).
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Figure 3. Backward aggregation, recreated according to [8].

In the next stage, the algorithm aggregates the line from the beginning, starting with
machine m1, the machine of the backward aggregated rest of the line mb

2, and the buffer

b1. Again, a new machine m f
2 , where f stands for forward, is created with the associated

reliability p f
2 . The same steps are thus repeated until the complete line is aggregated into a

single machine m f
M with reliability p f

M (Figure 4). Such a backward–forward algorithm is

then iterated until the reliabilities pb
1 and p f

M converge to the same value [8].
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Figure 4. Forward aggregation, recreated according to [8].

Since the aggregation procedure does not provide complete information on the steady-
state probability distribution Pi1i2i3 ...iM−1 , the performance measures cannot be determined
using Equations (1)–(6). However, the equivalent representation of the Bernoulli produc-
tion line using a backward–forward algorithm enables the formulation of mathematical
expressions used to estimate the performance measures. Here we provide only their
summary, while their detailed derivation can be found in [8].
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The production rate (PR) of the serial Bernoulli production line can, therefore, be
determined as follows:

PR = p f
i [1−Q(pb

i+1, p f
i , Ni)], i = 1, 2, . . . , M− 1 (12)

where

Q(pb
i+1, p f

i , Ni) =


(1−pb

i+1)(1−α)

1−
pb

i+1

p f
i

αNi

, if pb
i+1 6= p f

i

1−pb
i+1

Ni+1−pb
i+1

, if pb
i+1 = p f

i

(13)

and

α =
pb

i+1

(
1− p f

i

)
p f

i

(
1− pb

i+1

) (14)

Similarly, the work in process contained at the ith buffer is equal to

WIPi =


p f

i

pb
i+1−p f

i αNi

[
1−αNi
1−α − Niα

Ni
]
, if pb

i+1 6= p f
i

Ni(Ni+1)

2(Ni+1−p f
i )

, if pb
i+1 = p f

i

(15)

where i = 1, 2, . . . , M − 1. Finally, the probabilities of blockage and starvation associated
with a particular machine can be determined using

BLi = piQ(pb
i+1, p f

i , Ni), i = 1, 2, . . . , M− 1,
STi = piQ(pb

i+1, p f
i , Ni), i = 2, 3, . . . , M,

(16)

where piQ(pb
i+1, p f

i , Ni) is given in Equation (13).
Again, the governing advantage of the aggregation procedure as compared with the

analytical solution is the significantly lower CPU requirement. In such a way, the procedure
enables a fast evaluation of the performance measures associated with the considered
production line. Therefore, it is applicable in cases of daily or weekly analyses of production
systems using the factory floor data. However, validation of both approximation methods
(the finite state method and the aggregation procedure) is presently available in only several
selected cases. Therefore, validation of their accuracy was the focus of the present study.

2.3. The Numerical Modeling

The numerical modeling of production systems usually relies on the application
of discrete event simulation. Therefore, a similar approach will be used here to enable
additional comparison and validation of the results. In this way, an additional data set
obtained using the numerical approach will be provided, while the analytical approach
remains the referent model used to validate all other approaches.

For modeling purposes, the simulation program Enterprise Dynamics 10.3 was used.
The software deals with standard elements that represent devices and equipment in a
production plant, such as machines, conveyors, cranes, forklifts, and warehouses. In the
case of each production line, the simulation model is built up of the standard atoms: source,
server, queue, and sink [28]. The source atom is used to generate a piece per unit time
entering the production line composed of server atoms representing the action of machines
and requiring a cycle time set up (Figure 5a). Additionally, the probability of a server being
in the state {up}, respectively {down}, can be specified using features such as the mean time
to failure (MTTF) and mean time to repair (MTTR) (Figure 5b), where the MTTF represents
the time when the machine is available, and MTTR represents the time when the machine
is not available due to its failure. Since we are dealing with the Bernoulli production lines,
the MTTF equals pT, while the MTTR amounts to (1 − p)T, where T is the cycle time that
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takes a unit value. Each buffer of the considered serial production line is modeled using a
queue atom. Therefore, the feature capacity is set up to the maximum number of pieces
for each buffer. Finally, the sink atom is used to count the number of products passing
through the production line and, consequently, to determine the throughput of the line.
An example of the numerical model of the serial Bernoulli production line composed of
four machines is presented in Figure 6, while the connection between atoms can be seen in
Figure 7.
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3. Theoretical Examples and Results

The main goal of the present study was to validate the accuracy of the performance
measures determined using the semi-analytical approaches, namely, the finite state method
and the aggregation procedure, as well as the numerical method, against those obtained
using the analytical approach in the case of the serial Bernoulli production line. To do that,
a set of theoretical examples was created in the case of lines composed of 3–9 machines. In
each case, 200 lines were generated to retrieve a reliable estimate of the accuracy of each
method considered. Therefore, a total of 1400 different lines were taken into account. On
the other hand, lines involving more than nine machines were not considered here as the
CPU requirements for the analytical evaluation of the problem surpassed, in most cases,
the possibilities of standard personal computers. Therefore, the largest number of possible
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system states, i.e., the unknown steady-state probabilities, constituting the considered
system state space was limited to 100,000 per line.

The scale of the system state space was determined as a product
M−1
∏
i=1

(Ni + 1) and is a

function of both the total number of buffers M − 1 and their capacity Ni. Consequently,
the same state space scale can be associated with the short line of the significant buffering
capacity, as well as with the long line of the relatively small buffering capacity. Therefore,
the scale of the system state space was considered relevant in the course of the accuracy val-
idation. Furthermore, since we were dealing with the steady-state probability distributions,
all of the conclusions drawn from the considered theoretical examples can be extended to
longer serial Bernoulli production lines.

The properties of each line, namely, the reliability of machines and the capacity of
buffers, were determined using a random number generator assigning a reliability pi =
rand (0.5, 1) to each machine and capacity Ni = rand (1, 10) to each buffer. The total capacity

of buffers was conditioned to
M−1
∏
i=1

(Ni + 1) ≤ 100, 000. All of the formulated lines were

subsequently analyzed using an in-house Fortran-based program ProLab [29] and data on
the performance measures was generated using the analytical solution (Equations (1)–(6)
and (8)), FSM (Equations (1)–(6) and (11)), and the aggregation procedure (Equations
(12)–(16)). Extensive data, including the properties of the considered lines and performance
measures obtained using three different methods, is provided in Supplementary Materials
S1. Here, only a summary of the obtained results is presented in Tables 1 and 2 in a form
of the mean value µ, standard deviation σ, and variance σ2 of the relative error, which
were determined for the analytical solution in the case of each performance measure. For
example, a mean value µAGG

PR of the relative error obtained in the case of the production
rate (PR) determined using the aggregation procedure (AGG) is equal to

µAGG
PR =

NL
∑

i=1
(PRA,i − PRAGG,i)

NL
, (17)

where PRA and PRAGG are the production rates determined using the analytical approach
(A) and the aggregation procedure (AGG), respectively, and NL is the total number of the
randomly generated lines per each case considered (lines composed of 3–9 machines). In
each case, NL is equal to 200. Similarly, the standard deviation and the variance of the
relative error are equal to

σAGG
PR =

√
NL
∑

i=1
[(PRA,i−PRAGG,i)−µAGG

PR ]
2

NL ,

(
σAGG

PR
)2

=

NL
∑

i=1
[(PRA,i−PRAGG,i)−µAGG

PR ]
2

NL .

(18)
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Table 1. Aggregation procedure: mean value, standard deviation, and variance of the relative error concerning the analytical solution.

PR WIP BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9

Number of
machines

3
µ −0.001 −0.016 0.000 0.000 0.000 0.001
σ 0.003 0.304 0.003 0.012 0.011 0.003
σ2 0.000 0.093 0.000 0.000 0.000 0.000

4
µ −0.001 −0.026 0.000 −0.001 −0.001 0.000 0.001 0.001
σ 0.003 0.583 0.004 0.014 0.013 0.014 0.013 0.003
σ2 0.000 0.341 0.000 0.000 0.000 0.000 0.000 0.000

5
µ 0.000 0.030 0.001 0.000 −0.001 0.001 0.000 0.001 −0.002 0.000
σ 0.005 0.709 0.005 0.014 0.016 0.015 0.012 0.016 0.018 0.005
σ2 0.000 0.505 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6
µ 0.000 0.022 0.000 −0.003 −0.003 0.000 0.003 0.001 0.002 −0.001 −0.003 0.000
σ 0.011 1.379 0.006 0.026 0.024 0.016 0.022 0.021 0.026 0.019 0.027 0.011
σ2 0.000 1.912 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000

7
µ −0.004 −0.014 0.033 0.002 −0.001 −0.001 −0.001 0.001 0.001 0.000 0.001 −0.001 0.000 0.000
σ 0.007 0.061 0.503 0.007 0.013 0.025 0.023 0.017 0.017 0.010 0.008 0.020 0.024 0.023
σ2 0.000 0.004 0.254 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001

8
µ −0.004 −0.074 0.002 −0.002 −0.004 −0.003 −0.002 −0.002 −0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
σ 0.007 0.463 0.007 0.019 0.025 0.024 0.018 0.015 0.009 0.009 0.020 0.025 0.020 0.019 0.014 0.007
σ2 0.000 0.216 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

9
µ −0.004 −0.025 0.002 −0.002 −0.005 −0.004 −0.003 −0.001 0.000 −0.001 0.000 0.002 0.003 0.001 0.001 0.001 0.003 0.004
σ 0.007 0.323 0.008 0.013 0.024 0.019 0.018 0.014 0.012 0.004 0.005 0.014 0.022 0.022 0.022 0.019 0.010 0.007
σ2 0.000 0.105 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2. FSM: mean value, standard deviation, and variance of the relative error concerning the analytical solution.

PR WIP BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9

Number of
machines

3
µ −0.008 0.014 0.004 −0.004 −0.004 0.008
σ 0.024 0.630 0.020 0.031 0.026 0.024
σ2 0.001 0.398 0.000 0.001 0.001 0.001

4
µ −0.017 −0.163 0.001 −0.008 −0.006 −0.004 0.007 0.017
σ 0.040 1.576 0.034 0.053 0.031 0.037 0.044 0.040
σ2 0.002 2.498 0.001 0.003 0.001 0.001 0.002 0.002

5
µ −0.015 −0.120 0.009 −0.003 −0.003 −0.007 −0.002 −0.001 0.003 0.015
σ 0.040 1.859 0.037 0.049 0.040 0.034 0.027 0.039 0.056 0.040
σ2 0.002 3.472 0.001 0.002 0.002 0.001 0.001 0.002 0.003 0.002

6
µ −0.018 0.264 0.005 −0.006 −0.001 0.001 0.000 −0.007 −0.002 0.001 0.002 0.018
σ 0.047 2.696 0.039 0.057 0.056 0.060 0.040 0.040 0.051 0.063 0.069 0.047
σ2 0.002 7.303 0.002 0.003 0.003 0.004 0.002 0.002 0.003 0.004 0.005 0.002

7
µ −0.039 0.105 0.019 0.008 0.003 0.003 −0.004 −0.006 −0.015 −0.005 0.000 0.009 0.014 0.039
σ 0.058 2.224 0.051 0.089 0.097 0.083 0.081 0.034 0.049 0.070 0.091 0.100 0.085 0.058
σ2 0.003 4.969 0.003 0.008 0.009 0.007 0.007 0.001 0.002 0.005 0.008 0.010 0.007 0.003

8
µ −0.055 0.157 0.024 0.011 0.006 0.008 0.001 −0.001 −0.006 −0.017 −0.006 −0.003 −0.003 0.005 0.020 0.055
σ 0.058 2.046 0.055 0.090 0.096 0.088 0.088 0.070 0.028 0.054 0.074 0.087 0.098 0.093 0.076 0.058
σ2 0.003 4.208 0.003 0.008 0.009 0.008 0.008 0.005 0.001 0.003 0.006 0.008 0.010 0.009 0.006 0.003

9
µ −0.074 0.026 0.031 0.012 0.012 0.006 −0.003 −0.006 −0.011 −0.016 −0.021 −0.009 −0.004 −0.001 0.008 0.017 0.042 0.074
σ 0.061 1.698 0.051 0.072 0.099 0.112 0.107 0.089 0.056 0.039 0.046 0.070 0.094 0.103 0.107 0.090 0.081 0.061
σ2 0.004 2.899 0.003 0.005 0.010 0.013 0.011 0.008 0.003 0.002 0.002 0.005 0.009 0.011 0.011 0.008 0.007 0.004
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The mean value, the standard deviation, and the variance of the relative error are
presented in Tables 1 and 2 and Figures 8–11 in the case of the semi-analytical methods,
along with all of the considered performance measures, namely, the production rate (PR),
the total work-in-process (WIP), the probability of blockage of the ith machine (BLi), and
the probability of starvation of the machine i (STi). Furthermore, the relative error obtained
using the aggregation procedure and the finite state method in the case of production rate
and the total work in process concerning the state space scale of each line is presented in
Figures 12–18.
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The numerical method was validated in the same way. However, the number of
considered cases had to be reduced as the recovery of the results turned out to be quite
demanding, particularly regarding the work in process. Therefore, 12 production lines
were sampled out of the previously generated 200 different possibilities for each case
considered. The sampling criteria were based on the performance measures obtained using
the analytical approach. In this way, the following lines were identified:

Line 1: line with the smallest PR;
Line 2: line with the largest PR;
Line 3: line with the PR in between the production rates of lines 1 and 2;
Line 4: line with the smallest WIP;
Line 5: line with the largest WIP;
Line 6: line with the WIP in between the work in process of lines 4 and 5;
Line 7: line with the smallest BLM−1;
Line 8: line with the largest BLM−1;
Line 9: line with the BLM−1 in between the probabilities of blockage of lines 7 and 8;
Line 10: line with the smallest STM;
Line 11: line with the largest STM;
Line 12: line with the STM in between the probabilities of starvation of lines 10 and 11.
Consequently, a total of 84 lines were modeled using the discrete event simulation

software Enterprise Dynamic 10.3 [30]. The reliability data, as well as the capacity of the
buffers, were set to values corresponding to the properties of the selected lines. Additionally,
to model the selected theoretical examples, the cycle time of each machine was set to a
unit value. Similarly, the capacity of the source atom was equal to one unit per cycle
time. The simulation running time was set to 36,000 s and each simulation was carried out
once for each production line, as the machine reliability data did not change during the
simulation. Transient effects of the considered production systems diminished quite soon
after simulation initialization as the cycle time took a unit value. Therefore, the warm-up
period of each simulation could be neglected as its share in the total simulation running
time was below 0.02%. An example of the simulation output results in the case of one
selected machine is given in Figure 19. In this way, a validation of the numerical method
was enabled as an evaluation of the relative error determined concerning the analytical
solution for each serial Bernoulli production line. A summary of the obtained results is
presented in Table 3 and Figures 20 and 21, while extensive data, including properties of
the considered lines and performance measures obtained using the numerical method, are
provided in Supplementary Materials S1. In addition, the relative error obtained using
the numerical method in the case of the production rate and the total work in process
concerning the state space scale of each line is presented in Figures 22–28.
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Table 3. Numerical method: mean value, standard deviation, and variance of the relative error concerning the analytical solution.

PR WIP BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9

Number of
machines

3
µ −0.036 0.686 0.036 0.033 0.007 0.036
σ 0.063 1.819 0.066 0.056 0.042 0.063
σ2 0.004 3.609 0.005 0.003 0.002 0.004

4
µ −0.043 0.013 0.043 0.008 −0.001 0.039 0.011 0.043
σ 0.066 2.100 0.067 0.030 0.002 0.055 0.138 0.066
σ2 0.005 4.812 0.005 0.001 0.000 0.003 0.021 0.005

5
µ −0.060 0.274 0.064 0.055 0.027 0.023 0.008 0.041 0.038 0.060
σ 0.059 2.386 0.061 0.056 0.043 0.044 0.037 0.059 0.056 0.059
σ2 0.004 6.212 0.004 0.003 0.002 0.002 0.001 0.004 0.003 0.004

6
µ −0.047 2.699 0.048 0.034 0.014 0.011 0.019 0.015 0.035 0.037 0.029 0.047
σ 0.061 6.409 0.063 0.060 0.054 0.054 0.071 0.032 0.060 0.070 0.096 0.061
σ2 0.004 44.810 0.004 0.004 0.003 0.003 0.005 0.001 0.004 0.005 0.010 0.004

7
µ −0.085 0.542 0.084 0.089 0.029 0.040 0.040 0.006 0.002 0.062 0.053 0.053 0.087 0.085
σ 0.072 3.477 0.078 0.086 0.054 0.062 0.082 0.042 0.056 0.066 0.090 0.104 0.075 0.072
σ2 0.006 13.186 0.007 0.008 0.003 0.004 0.007 0.002 0.003 0.005 0.009 0.012 0.006 0.006

8
µ −0.092 0.654 0.086 0.017 −0.020 0.015 0.050 0.046 0.014 0.081 0.115 0.082 0.048 0.053 0.087 0.092
σ 0.080 4.465 0.089 0.112 0.156 0.108 0.089 0.100 0.054 0.065 0.153 0.114 0.108 0.118 0.080 0.080
σ2 0.007 21.750 0.009 0.014 0.026 0.013 0.009 0.011 0.003 0.005 0.025 0.014 0.013 0.015 0.007 0.007

9
µ −0.007 0.070 0.007 0.072 0.072 0.078 0.090 0.064 0.064 0.064 0.055 0.050 0.051 0.037 0.060 0.066 0.077 0.113
σ 0.052 4.043 0.057 0.067 0.050 0.111 0.123 0.068 0.113 0.100 0.048 0.060 0.089 0.115 0.077 0.119 0.112 0.052
σ2 0.003 17.829 0.003 0.005 0.003 0.013 0.016 0.005 0.014 0.011 0.003 0.004 0.009 0.014 0.006 0.016 0.014 0.003
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Discussion

The obtained results demonstrate that all of the considered methods, i.e., the aggre-
gation procedure, FSM, and the numerical modeling, quite accurately represented the
steady-state behavior of the serial Bernoulli production lines, particularly regarding the
production rate and the probabilities of blockage and starvation. In these cases, all of
the discrepancies could be considered negligible in terms of the mean value, standard
deviation, and variance. This was also valid for the relative error distribution concerning
the number of system states obtained in the case of PR, where most of the considered cases
yielded almost the exact solution.

Some discrepancies related to the work-in-process performance measures could be
detected in all cases as a direct consequence of the amplification of the error at the level of
the steady-state probability through Equations (2) and (3). Furthermore, it can be seen that
the relative error concerning the WIP was slightly higher in the case of FSM as compared to
the aggregation procedure. This issue is a consequence of a relatively rough discretization
of the state spaces related to the lines of rather small buffering capacities. The most
significant discrepancies were related to the WIP determined using the numerical model.
These discrepancies, both in terms of the mean value and data variation, were a direct
consequence of the round-off procedure of the simulation program when determining the
number of pieces contained at each buffer.

Concerning the CPU requirements, the semi-analytical methods required the least
processing time (less than one second, regardless of the number of system states) and
are therefore suitable for further development and implementation within more complex
data structures dealing with lean design or improvability issues. On the other hand,
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the analytical method, although accurate and robust, required substantial amounts of
processing time, which in some cases, reached up to several weeks. The order of magnitude
of the CPU requirements in the case of the analytical method could be estimated as CPU ≈

3 · 10−7
[

M−1
∏
i=1

(Ni + 1)
]2.5

, quickly taking quite significant values that are highly impractical

for further considerations dealing with the design of the production systems. Finally, the
numerical method, although requiring a low CPU time, requires a dedicated and educated
operator skilled in result interpretation and quick adjustments of the existing numerical
models.

The considered examples, although theoretical, represent an excellent and valuable
collection of the benchmark Bernoulli serial production lines, which can be employed in
future research and development of the PSE tools. Unfortunately, a set of the considered
lines could not be consistently extended to production lines involving more than six
machines, as the analytical solution of the problem would become elusive in some, if not
most, of the cases. However, this does not diminish the main findings of this research and
their extension to the modeling of real production lines. Finally, both of the considered
semi-analytical methods can be employed without limitation for the evaluation of the
performance measures across various serial production systems employing machines with
Bernoulli reliability.

4. Conclusions

The manufacturing industry has a significant impact on the economic growth of
countries. Therefore, it is of crucial importance to make it more competitive and prof-
itable. One possibility in that sense is to apply the systematic approach developed by the
PSE research community and based on the mathematical modeling of real-life production
systems. This study has considered three possible approaches to the mathematical mod-
eling of a Bernoulli serial production line’s steady-state behavior, namely, the analytical,
semi-analytical, and numerical approaches, where the semi-analytical approach focused
on the application of the aggregation procedure and the recently developed FSM. A brief
outline of the considered models was provided to enable accuracy validation against the
performance measures obtained using the analytical model.

All of the considered models proved to be sufficiently accurate, particularly regarding
the production rate, the probability of blockage, and the probability of starvation. Some
discrepancies were detected in the case of the work-in-process data, mainly due to round-
off errors in the case of the numerical model or due to relatively rough discretization
of small state spaces in the case of FSM. Concerning the CPU requirements, all of the
methods, except the analytical approach, were shown to be rapid methods that yielded
the evaluation results in a matter of seconds, while the analytical approach required a
substantial evaluation time, sometimes reaching up to several weeks. Therefore, the
semi-analytical and numerical methods can be recommended for further application, while
substantial effort has to be made to reduce the CPU requirements of the analytical approach.

Further research concerning the mathematical modeling of the production systems
should focus on the development, validation, and application of the analytical and semi-
analytical models of more complex systems, including splitting lines, assembly systems,
systems with quality check, and rework stations, where both models concern synchronous
and asynchronous cases. Such a demanding task can only be accomplished if a systematic
approach to the PSE is applied.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/math9131461/s1, Supplement S1: Extensive data on the properties of the serial Bernoulli
production lines and the associated performance measures.

Author Contributions: Conceptualization, V.L. and N.H.; methodology, V.L.; software, V.L.; valida-
tion, V.L., T.O., and N.H.; formal analysis, V.L.; investigation, V.L. and N.H.; resources, N.H. and
V.S.; data curation, V.L., T.O., and N.H.; writing—original draft preparation, V.L. and N.H.; writing—

https://www.mdpi.com/article/10.3390/math9131461/s1
https://www.mdpi.com/article/10.3390/math9131461/s1


Mathematics 2021, 9, 1461 24 of 25

review and editing, V.L., T.O., and V.S.; visualization, V.L.; supervision, N.H.; project administration,
N.H.; funding acquisition, N.H. All authors have read and agreed to the published version of the
manuscript.

Funding: The research was supported by the Croatian Science Foundation, project UIP-2019-04-6573
ANTYARD (Advanced Methodologies for Cost-Effective, Energy-Efficient, and Environmentally
Friendly Ship Production Process Design) and by the University of Zagreb, project Multicriterial
Mathematical Models for Design and Construction of Ships.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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