Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study
Abstract
:1. Introduction
2. Proposed Methodology of Combined SD/DS Modeling
2.1. Dynamic Hypothesis
2.2. Stock-Flow Diagram
2.3. Hydroelectricity Variability Modeling
2.4. Block Diagrams of Simulink
3. Modeling the V/P Scenarios
3.1. Model Validation
3.2. Model Assumptions and Limitations
4. Simulation Results: A Bifurcation Perspective
4.1. V/P Installed Capacity Scenarios
4.2. Confidence Limits and Their Occurrence
5. Simulation Results: A Control Theory Perspective
5.1. Detailed Rationing Events
5.2. Leverage Points
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENSO | El Niño-Southern Oscillation |
SD | System Dynamics |
DS | Dynamic Systems |
FRM | Frequency of rationing months |
V/P | Variable and permanent generation |
Appendix A
Appendix A.1. Simulink Block Diagrams
Appendix A.2. System Equations
Appendix A.3. Parameter Values
Parameter | Value |
---|---|
Construction time () | 5 yr |
Lifetime () | 30 yr |
Growth rate of demand () | 0.039 |
Variable cost () | 150 COP/kWh |
Incentives (I) | 0 COP/kWh |
Variability fixed cost () | 60 COP/kWh |
15,521 MW | |
9320 MW | |
0 MW | |
Minimum price () | 35 COP/kWh |
Maximum increase of price () | 350 COP/kWh |
Elasticity of demand () | −0.3 |
References
- Teufel, F.; Miller, M.; Genoese, M.; Fichtner, W. Review of System Dynamics Models for Electricity Market Simulations; Working Paper Series in Production and Energy; KIT: Karlsruhe Germany, 2013; Volume 2. [Google Scholar]
- Papachristos, G.; Struben, J. System dynamics methodology and research. In Modelling Transitions: Virtues, Vices, Visions of the Future; Routledge: London, UK, 2019; p. 119. [Google Scholar]
- Zapata, S.; Castaneda, M.; Franco, C.J.; Dyner, I. Clean and secure power supply: A system dynamics based appraisal. Energy Policy 2019, 131, 9–21. [Google Scholar] [CrossRef]
- Kosai, S. Dynamic vulnerability in standalone hybrid renewable energy system. Energy Convers. Manag. 2019, 180, 258–268. [Google Scholar] [CrossRef]
- Asere, L.; Blumberga, A. Government and municipality owned building energy efficiency system dynamics modelling. Energy Procedia 2015, 72, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- York, R.; Bell, S.E. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Res. Soc. Sci. 2019, 51, 40–43. [Google Scholar] [CrossRef]
- Zapata, S.; Castaneda, M.; Jimenez, M.; Aristizabal, A.J.; Franco, C.J.; Dyner, I. Long-term effects of 100% renewable generation on the Colombian power market. Sustain. Energy Technol. Assess. 2018, 30, 183–191. [Google Scholar] [CrossRef]
- Cardenas, L.M.; Franco, C.J.; Dyner, I. Assessing emissions-mitigation energy policy under integrated supply and demand analysis: The Colombian case. J. Clean. Prod. 2016, 112 Pt 5, 3759–3773. [Google Scholar] [CrossRef]
- Astegiano, P.; Fermi, F.; Martino, A. Investigating the impact of e-bikes on modal share and greenhouse emissions: A system dynamic approach. Transp. Res. Procedia 2019, 37, 163–170. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Che, Y. Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market. Energy 2019, 180, 444–456. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M.; Muhammad-Sukki, F.; Munir, A.B.; Rahim, R.A. Application of system dynamics approach in electricity sector modelling: A review. Renew. Sustain. Energy Rev. 2016, 56, 29–37. [Google Scholar] [CrossRef]
- Morcillo, J.D.; Franco, C.J.; Angulo, F. Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems. Appl. Energy 2018, 216, 504–520. [Google Scholar] [CrossRef]
- Morcillo, J.D.; Angulo, F.; Franco, C.J. Analyzing the hydroelectricity variability on power markets from a system dynamics and dynamic systems perspective: Seasonality and ENSO phenomenon. Energies 2020, 13, 2381. [Google Scholar] [CrossRef]
- Aracil, J. Structural stability of low-order system dynamics models. Int. J. Syst. Sci. 1981, 12, 423–441. [Google Scholar] [CrossRef]
- Mosekilde, E.; Aracil, J.; Allen, P.M. Instabilities and chaos in nonlinear dynamic systems. Syst. Dyn. Rev. 1988, 4, 14–55. [Google Scholar] [CrossRef]
- Thomsen, J.S.; Mosekilde, E.; Sterman, J.D. Hyperchaotic phenomena in dynamic decision making. In Complexity, Chaos, and Biological Evolution; Springer: Berlin/Heidelberg, Germany, 1991; pp. 397–420. [Google Scholar]
- Sterman, J.D. Deterministic chaos in models of human behavior: Methodological issues and experimental results. Syst. Dyn. Rev. 1988, 4, 148–178. [Google Scholar] [CrossRef] [Green Version]
- Aracil, J. On the qualitative properties in system dynamics models. Eur. J. Econ. Soc. Syst. 1999, 13, 1–18. [Google Scholar] [CrossRef]
- Valencia, J.; Olivar, G.; Franco, C.J.; Dyner, I. Qualitative Analysis of Climate Seasonality Effects in a Model of National Electricity Market. In Analysis, Modelling, Optimization, and Numerical Techniques; Springer: Berlin/Heidelberg, Germany, 2015; pp. 349–362. [Google Scholar]
- Redondo, J.; Ibarra-Vega, D.; Becerra-Fernandez, M.; Olivar-Tost, G. Making decisions in national energy markets with bifurcation analysis. J. Phys. Conf. Ser. 2019, 1414, 012008. [Google Scholar] [CrossRef] [Green Version]
- Dimitrovski, A.; Ford, A.; Tomsovic, K. An interdisciplinary approach to long-term modelling for power system expansion. Int. J. Crit. Infrastruct. 2006, 3, 235–264. [Google Scholar] [CrossRef]
- Heard, B.; Brook, B.; Wigley, T.; Bradshaw, C. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- Shariatzadeh, F.; Mandal, P.; Srivastava, A.K. Demand response for sustainable energy systems: A review, application and implementation strategy. Renew. Sustain. Energy Rev. 2015, 45, 343–350. [Google Scholar] [CrossRef]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Vander Velde, W.E. Multiple-Input Describing Functions and Nonlinear System Design; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000; p. 1008. [Google Scholar] [CrossRef]
- Dyner, I. Energy modelling platforms for policy and strategy support. J. Oper. Res. Soc. 2000, 51, 136–144. [Google Scholar] [CrossRef]
- XM. Información Inteligente. 2021. Available online: http://informacioninteligente10.xm.com.co/pages/default.aspx (accessed on 10 January 2021).
- Morcillo, J.D.; Franco, C.J.; Angulo, F. Delays in electricity market models. Energy Strategy Rev. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Espinosa, O.; Vaca, P.; Ávila, R. Elasticidades de demanda por electricidad e impactos macroeconómicos del precio de la energía eléctrica en Colombia. Rev. MÉtodos Cuantitativos Para Econ. Empresa 2013, 16, 216–249. [Google Scholar]
- XM. Información Inteligente. 2021. Available online: http://informacioninteligente10.xm.com.co/hidrologia/Paginas/HistoricoHidrologia.aspx (accessed on 10 January 2021).
- Jaramillo, G.P. ¿Atractores extraños (caos) en la hidro-climatología de Colombia? Rev. Acad. Colomb. Cienc 1997, 21, 431–444. [Google Scholar]
- Tziperman, E.; Stone, L.; Cane, M.A.; Jarosh, H. El Niño Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator. Science 1994, 264, 72–74. [Google Scholar] [CrossRef] [Green Version]
- XM. Oferta y Generación. Índice Multivariado ENSO. 2021. Available online: http://informesanuales.xm.com.co/2013/SitePages/operacion/2-9-Anex-Indice-multivariado-ENSO.aspx (accessed on 10 January 2021).
- Vallis, G.K. El Niño: A chaotic dynamical system? Science 1986, 232, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Akhmet, M.; Fen, M.O.; Alejaily, E.M. The Effects of El Niño on the Global Weather and Climate. arXiv 2018, arXiv:1801.00891. [Google Scholar]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar] [CrossRef]
- Barlas, Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 1996, 12, 183–210. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H.; Seong, B.S. How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy 2010, 38, 2216–2224. [Google Scholar] [CrossRef]
- EPM. Proyecto Hidroeléctrico Ituango. 2019. Available online: https://www.epm.com.co/site/nuestros-proyectos/proyecto-ituango (accessed on 14 February 2021).
- EPM. Especial Contingencia HidroItuango. 2019. Available online: https://www.epm.com.co/site/home/camino-al-barrio/historias-de-barrio/especial-hidroituango-1 (accessed on 14 February 2021).
- XM. XM Presenta Análisis de Posibles Escenarios Para la Atención de la Demanda Eléctrica del País. 2018. Available online: https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=1747 (accessed on 10 March 2012).
- ESPXS. Portal BI: Información inteligente. 2020. Available online: http://portalbissrs.xm.com.co/Paginas/Home.aspx (accessed on 5 April 2020).
- Ma, T.; Wang, S. Bifurcation Theory and Applications; World Scientific: Singapore, 2005. [Google Scholar]
- Kwatny, H.G.; Yu, X.M.; Nwankpa, C. Local bifurcation analysis of power systems using Matlab. In Proceedings of the International Conference on Control Applications, Albany, NY, USA, 28–29 September 1995; pp. 57–62. [Google Scholar]
- Kawakami, H.; Yoshinaga, T. Codimension Two Bifurcation and its Computational Algorithm. In Bifurcation and Chaos; Springer: Berlin/Heidelberg, Germany, 1995; pp. 97–132. [Google Scholar]
- Lynch, S. MATLAB Programming for Engineers. In Applications of Chaos and Nonlinear Dynamics in Engineering; Springer: Berlin/Heidelberg, Germany, 2011; Volume 1, pp. 3–35. [Google Scholar]
Parameter | Value |
---|---|
a | 10 |
b | 28 |
c | 2.6667 |
10 | |
5 | |
20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcillo, J.D.; Angulo, F.; Franco, C.J. Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study. Mathematics 2021, 9, 1560. https://doi.org/10.3390/math9131560
Morcillo JD, Angulo F, Franco CJ. Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study. Mathematics. 2021; 9(13):1560. https://doi.org/10.3390/math9131560
Chicago/Turabian StyleMorcillo, José D., Fabiola Angulo, and Carlos J. Franco. 2021. "Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study" Mathematics 9, no. 13: 1560. https://doi.org/10.3390/math9131560
APA StyleMorcillo, J. D., Angulo, F., & Franco, C. J. (2021). Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study. Mathematics, 9(13), 1560. https://doi.org/10.3390/math9131560