Existence–Uniqueness and Wright Stability Results of the Riemann–Liouville Fractional Equations by Random Controllers in MB-Spaces
Abstract
:1. Introduction and Preliminaries
- (a)
- and for all ;
- (b)
- for all ;
- (c)
- when and for every .
- (1)
- (: the product CTN);
- (2)
- (: the minimum CTN);
- (3)
- (: the Lukasiewicz CTN).
2. Riemann–Liouville Fractional Equations
- It is left continuous and always increasing for positive values, it means that, for
- For , we have
- (MN1)
- We show that iff .
- (MN2)
- (MN3)
- We assume thatThus,Now, we conclude that
3. Riemann–Liouville Fractional Volterra Integro-Differential Equation
4. Random Stability of Riemann–Liouville Fractional Volterra Integral Equation
5. Applications, Random Wright Stability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Saadati, R. Nonlinear contraction and fuzzy compact operator in fuzzy Banach algebras. Fixed Point Theory 2019, 20, 289–297. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. North-Holland Series in Probability and Applied Mathematics; North-Holland Publishing Co.: New York, NY, USA, 1983. [Google Scholar]
- Ćerstnev, A.N. On the notion of a random normed space. Dokl. Akad. Nauk SSSR 1963, 149, 280–283. (In Russian) [Google Scholar]
- Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 536. [Google Scholar]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Trends in Logic–Studia Logica Library; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; Volume 8. [Google Scholar]
- Madadi, M.; O’Regan, D.; Rassias, T.M.; Saadati, R. Best approximation of κ-random operator inequalities in matrix MB-algebras. J. Inequal. Appl. 2021, 2021, 14. [Google Scholar] [CrossRef]
- Madadi, M.; Saadati, R.; Park, C.; Rassias, J.M. Stochastic Lie bracket (derivation, derivation) in MB-algebras. J. Inequal. Appl. 2020, 2020, 15. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. JIPAM. J. Inequal. Pure Appl. Math. 2003, 4, 7. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1986, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Golet, I. Some remarks on functions with values in probabilistic normed spaces. Math. Slovaca 2007, 57, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Series: Mathematics and Its Applications; Ellis Horwood Ltd.: Chichester, UK; John Wiley & Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Wright, E.M. The generalized Bessel function of order greater than one. Q. J. Math. Oxf. Ser. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Lyapunov functions to Caputo reaction-diffusion fractional neural networks with time-varying delays. J. Math. Comput. Sci. 2018, 18, 328–345. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; El-Owaidy, H.M.; Ghanem, A.S. Null controllability of fractional stochastic delay integro-differential equations. J. Math. Comput. Sci. 2019, 19, 143–150. [Google Scholar] [CrossRef]
- Khan, O.; Araci, S.; Saif, M. Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function. J. Math. Comput. Sci. 2020, 20, 122–130. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R.; Atangana, A. Ulam-Hyers-Rassias stability for nonlinear Ψ-Hilfer stochastic fractional differential equation with uncertainty. Adv. Differ. Equ. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R. Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv. Differ. Equ. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Eidinejad, Z.; Saadati, R.; de la Sen, M. Radu-Mihet method for the existence, uniqueness, and approximation of the ψ-Hilfer fractional equations by matrix-valued fuzzy controllers. Axioms 2021, 10, 63. [Google Scholar] [CrossRef]
- El-hady, E.; Ogrekci, S. On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative. J. Math. Comput. Sci. 2021, 22, 325–332. [Google Scholar] [CrossRef]
- El-Ajou, A. Taylor’s expansion for fractional matrix functions: Theory and applications. J. Math. Comput. Sci. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Al-Issa, S.M. Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach. J. Nonlinear Sci. Appl. 2020, 13, 180–186. [Google Scholar] [CrossRef] [Green Version]
- El-Moneam, M.A.; Ibrahim, T.F.; Elamody, S. Stability of a fractional difference equation of high order. J. Nonlinear Sci. Appl. 2019, 12, 65–74. [Google Scholar] [CrossRef]
- Sene, N. Global asymptotic stability of the fractional differential equations. J. Nonlinear Sci. Appl. 2020, 13, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Sene, N. Stability analysis of the generalized fractional differential equations with and without exogenous inputs. J. Nonlinear Sci. Appl. 2019, 12, 562–572. [Google Scholar] [CrossRef]
- Youssef, M.I. Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function. J. Nonlinear Sci. Appl. 2020, 13, 293–302. [Google Scholar] [CrossRef]
- Da Sousa, J.V.C.; Fabio, G.R.; de Oliveira, E.C. Stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator. Math. Meth. Appl. Sci. 2019, 42, 3033–3043. [Google Scholar] [CrossRef] [Green Version]
- Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber. 2004, 346, 43–52. [Google Scholar]
- Cădariu, L.; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, 2008, 749392. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Aderyani, S.; Saadati, R. Best approximations of the ϕ-Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions. Adv. Differ. Equ. 2021, 2021, 21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesiar, R.; Saadati, R. Existence–Uniqueness and Wright Stability Results of the Riemann–Liouville Fractional Equations by Random Controllers in MB-Spaces. Mathematics 2021, 9, 1602. https://doi.org/10.3390/math9141602
Mesiar R, Saadati R. Existence–Uniqueness and Wright Stability Results of the Riemann–Liouville Fractional Equations by Random Controllers in MB-Spaces. Mathematics. 2021; 9(14):1602. https://doi.org/10.3390/math9141602
Chicago/Turabian StyleMesiar, Radko, and Reza Saadati. 2021. "Existence–Uniqueness and Wright Stability Results of the Riemann–Liouville Fractional Equations by Random Controllers in MB-Spaces" Mathematics 9, no. 14: 1602. https://doi.org/10.3390/math9141602
APA StyleMesiar, R., & Saadati, R. (2021). Existence–Uniqueness and Wright Stability Results of the Riemann–Liouville Fractional Equations by Random Controllers in MB-Spaces. Mathematics, 9(14), 1602. https://doi.org/10.3390/math9141602