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Abstract: Short-term quantitative precipitation forecast is a challenging topic in meteorology, as the
number of severe meteorological phenomena is increasing in most regions of the world. Weather
radar data is of utmost importance to meteorologists for issuing short-term weather forecast and
warnings of severe weather phenomena. We are proposing AutoNowP, a binary classification model
intended for precipitation nowcasting based on weather radar reflectivity prediction. Specifically,
AutoNowP uses two convolutional autoencoders, being trained on radar data collected on both
stratiform and convective weather conditions for learning to predict whether the radar reflectivity
values will be above or below a certain threshold. AutoNowP is intended to be a proof of concept
that autoencoders are useful in distinguishing between convective and stratiform precipitation. Real
radar data provided by the Romanian National Meteorological Administration and the Norwegian
Meteorological Institute is used for evaluating the effectiveness of AutoNowP. Results showed that
AutoNowP surpassed other binary classifiers used in the supervised learning literature in terms of
probability of detection and negative predictive value, highlighting its predictive performance.

Keywords: precipitation nowcasting; deep learning; autoencoders; radar data

1. Introduction

Forecast of severe weather phenomena, including the quantitative precipitation fore-
cast (QPF), represents a challenging topic in meteorology. Due to the increase in the number
of heavy rainfall events in most regions of the world, population safety could be affected
and significant damage may occur. The short-term weather forecasting is known as now-
casting and is of particular interest as it has an important role in risks management and
crisis control. The problem of weather nowcasting is a complex and difficult one, due to
its high dependence on numerous environmental conditions. Precipitation nowcasting
represents a challenging and actual research topic, referring to producing predictions of
rainfall intensities over a certain region in the near future, and playing an important role in
daily life [1].

At global scale, flood threat is increasing because of climate change impact of heavy
precipitation, as for instance the total urban area being exposed to flood has dramatically
increased in Europe over the past century. Also, various socioeconomic sectors are im-
pacted by climate change induced hazards, such as extreme rainfall, which amplify both the
intensity and probability of floods [2]. Research on the exposure of flood hazard, using cli-
mate models simulations, showed that the climate change presents the potential to actively
change the human, assets, and urban areas exposure to flood hazard, but nevertheless
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considerable uncertainty in the magnitude of the climate change impact in different regions
around the globe exists [3].

Nowadays, integrating crowdsourced observations into research studies can con-
tribute to reducing the risk and the costs related to extreme events. Citizens around the
world have, currently, at their disposal a great number of sources of information and
amazing possibilities to report and to study meteorological phenomena. Hence, these
volunteers who collect, report and/or process the data they observe are citizen scientists.
They are active not only in the field of meteorology, but also in sciences as astronomy,
archeology, natural history and others [4]. Their contribution to science can have a practical
effect, especially by increasing the awareness and perception on climate change related
risks, thus helping in mitigating the effects.

Although significant progress has been made recently on nowcasting systems in
general, and precipitation nowcasting in particular, the challenges remain as, for instance,
severe convective storms are localized, occurring on a small spatial area (i.e., mesoscale)
and having an overall short lifecycle. Due to its high spatiotemporal resolution, radar data
is used both in the so-called expert nowcasting systems and in the less complex forms that
involve processing the radar data solely [5,6]. These systems blend radar data and other
observations with numerical weather prediction (NWP) models to generate forecasts up to
6 h [7]. Although NWP significantly improves the precipitation nowcasting, there are still
issues to be resolved, like the predictability of precipitation systems, the improvement of
rapid update NWP, and the need for improvement of mesoscale observation networks [8].

Some of the most used radar products in weather nowcasting are reflectivity (R) and
Doppler radial velocity (V). For instance, operational meteorologists are mainly using
the values of reflectivity and radial velocity to monitor the spatiotemporal evolution of
precipitating clouds, while operational radar algorithms use the reflectivity for rainfall
estimation and storm tracking and classification: R values above a certain threshold
(e.g., 35 dBZ [5,9]) indicate possible convective storms occurrence associated with heavy
rainfall. Estimating the values of the radar products based on their historical values is
important for QPF. NWP models [10] represent the main techniques for QPF, but there
are still errors in rainfall forecasting due to difficulties in modelling cloud dynamics and
microphysics [11].

Deep learning methods [12–14] are believed to have the potential to overcome the
limitations of NWP methods through modeling patterns in large amounts of historical
meteorological data. Deep learning methods offer data-driven solutions for the nowcasting
problem, by learning dependencies between radar measurements at consecutive time
steps [15]. A central characteristic of deep neural networks is represented by their ability to
learn abstract representations of the input data through stacking multiple layers and thus
forming deep architectures. Autoencoders (AEs) are a type of neural network that can be
trained to learn low dimensional representations that capture the relevant characteristics
of the input data [16]. AEs are trained to learn data representations by reconstructing
their inputs. They are built of two components, an encoder that maps the input to a latent
representation and a decoder that uses this representation to reconstruct the input. Typically,
the dimensionality of the latent representation is chosen to be smaller than the input space
dimensionality, thus obtaining a so-called undercomplete autoencoder. Autoencoders
can be trained using gradient descent methods to minimize the error between the input
data and the predicted reconstruction [16]. Convolutional autoencoders (ConvAEs) are
able to capture spatial patterns in the input data by using convolutions as their building
blocks. Convolutional encoder-decoder architectures have been extensively used in various
computer vision tasks and they are the typical choice for modeling the spatial characteristics
of meteorological measurements gathered along geographical locations [15,17,18].

The contribution of the paper is threefold. First, we aim at introducing a supervised
classifier AutoNowP that uses two convolutional autoencoders for distinguishing between
convective and stratiform rainfall based on radar reflectivity prediction. AutoNowP is
based on training two ConvAEs trained on radar data collected on both stratiform and
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convective weather conditions. After the training step, AutoNowP will learn to predict
whether the radar reflectivity values will be higher than a certain threshold, and thus
indicating if a convective storm is likely to happen. AutoNowP is intended to be a proof of
concept that AEs applied on radar data are useful in distinguishing between convective
and stratiform rainfall. Secondly, the effectiveness of AutoNowP is empirically proven
on two case studies consisting of real radar data collected from the Romanian National
Meteorological Administration (NMA) and the Norwegian Meteorological Institute (MET).
The obtained results are compared to the results of recent similar approaches in the field of
precipitation nowcasting. As an additional goal we aim at analyzing the relevance of the
obtained results from a meteorological perspective, as a proof of concept that autoencoders
are able to capture relevant meteorological knowledge. To the best of our knowledge, an
approach similar to AutoNowP has not been proposed in the nowcasting literature so far.

To summarize, the research conducted in the paper is oriented toward answering the
following research questions:

RQ1How to use an ensemble of ConvAEs to supervisedly discriminate between severe
and normal rainfall conditions, considering the encoded relationships between radar
products values corresponding to both normal and severe weather events?

RQ2What is the performance of AutoNowP introduced for answering RQ1 on real radar
data collected from Romania and Norway and how does it compare to similar re-
lated work?

The rest of the paper is organized as follows. A literature review on recent deep learn-
ing methods for precipitation nowcasting is presented in Section 2. Section 3 introduces
our binary classification model AutoNowP for predicting if the radar reflectivity values are
above or below a specific threshold. The performed experiments and the obtained results
are described in Section 4, while a discussion on the results and a comparison to related
approaches is provided in Section 5. Section 6 presents the conclusions of our research and
highlights directions for future work.

2. Literature Review on Machine-Learning-Based Precipitation Nowcasting

A lot of work has been carried out lately in the field of machine-learning-based
precipitation nowcasting. We are reviewing, in the following, several recent approaches in
the field.

Shi et al. [19] have approached precipitation nowcasting by introducing an extension
of a long short-term memory (LSTM) network, named ConvLSTM, suitable for handling
spatiotemporal data by preserving due to the convolutional structure of the spatiotemporal
features. Their architecture is composed of two networks, a ConvLSTM encoder and a
ConvLSTM decoder. As precipitation nowcasting performance indicators, a Rainfall Mean
Squared Error (Rainfall-MSE) of 1.420, a Critical Success Index (CSI) of 0.577, a False Alarm
Rate (FAR) of 0.195 and a Probability of Detection (POD) of 0.660 have been obtained.

Heye et al. [20] investigated a precipitation nowcasting approach based on a 3D
ConvLSTM architecture. In their experiments, a vanilla sequence-to-sequence model
achieved better performance than a model using attention layers. Overall, the CSI varied
between 0.40 and 0.43, the FAR ranged from 0.28 to 0.31, and the POD fluctuated between
0.46 and 0.51.

A method for precipitation nowcasting, combining the advantages of convolutional
gated recurrent networks (ConvGRU) and adversarial training was introduced by
Tian et al. [21]. The method aimed at improving the sharpness of the predicted precip-
itation maps by means of adversarial training. The system is composed of a generator
network, represented by the ConvGRU, which learns to generate realistically looking
precipitation maps and a discriminator represented by a convolutional neural network that
is trained to distinguish between predicted ground truth maps. Their method achieved
better performance in terms of probability of detection than an optical flow algorithm and
the original ConvGRU. Han et al. [22] used 3D convolutions to build a neural network for
convective storm nowcasting. The task was formulated as a binary classification problem
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and their multisource approach achieved a CSI of 0.44, FAR of 0.45, and POD of 0.69 for
30 min forecasts, outperforming a Support-Vector Machine using hand-crafted features.

The MetNet model [15] has been introduced by Sønderby et al. using both radar and
satellite data for precipitation forecasting with a lead time of up to 8 h. The model incor-
porates three components—a feature extractor formed of a succession of downsampling
convolutional layers, a ConvLSTM component used for modeling dependencies on the
past time steps and an attention module composed of several axial self-attention blocks
that aim to capture relationships among geographic locations situated far away in the
map. By including the forecasted time in the data given as input and thus conditioning the
entire model on it, predictions for multiple time steps can be obtained in parallel. The loss
function was computed only for points on good quality maps from the data set in order to
account for possible noisy or incorrect labels. MetNet outperformed the persistence model,
an optical flow-based algorithm, as well as the High-Resolution Rapid Refresh (HRRR)
for forecasts up to 8 h in the future. By performing ablation studies, they pointed out
that using a large spatial context leads to better performance than using a smaller context
on long-term predictions. However, reducing the temporal context up to 30 min did not
decrease the model’s performance. Moreover, the authors pointed out that radar data plays
a more important role in the overall model performance for short-term predictions than for
long-term ones. These results can be explained by the fact that long-term predictions need
to take into account a larger spatial context that cannot be typically captured by radar, thus
highlighting the importance of incorporating satellite data for this type of predictions.

The model proposed by Franch et al. [23] aimed to improve the performance of now-
casting systems on extreme events prediction by training an ensemble of Trajectory Gated
Recurrent Units (TrajGRUs), each optimized by over-weighting the objective for a specific
precipitation threshold. In addition to the ensemble components, a model stacking strategy
that consists of training an additional model using the outputs of the ensemble components
is employed. Moreover, their approach enhances the radar data with orographic features.
The proposed model achieved overall better performance than several TrajGRU baselines
and two models obtained by using only part of the components—an ensemble model
without orographic features, and a single model trained with orographic features.

Chen et al. [1] improved upon the training of ConvLSTMs by introducing a multi-
sigmoid loss function tailored for the precipitation nowcasting task and incorporating
residual connections in the recurrent architecture. Additionally, the group normalization
mechanism proved to be beneficial for the model’s performance. The model was trained
on radar images and predictions were evaluated for lead times of up to one hour.

The Small Attention-Unet (SmaAt-Unet) [17] precipitation nowcasting model intro-
duced by Trebing et al. is a modified U-Net architecture, in which traditional convolutions
have been replaced by depthwise separable convolutions and convolutional block attention
modules have been added to the encoder. The proposed approach achieved an overall
comparable performance to the original U-Net, while using a quarter of the number of
parameters. The nowcasting is done for up to 30 min in the future using 1 h of past radar
data, sampled at a frequency of 5 min. Similarly to other U-Net-based methods, different
time stamps are concatenated channelwise and given as input to the network. Patterns
across the channel dimension are captured by the attention modules. As precipitation
nowcasting performance indicators, a CSI of 0.647, a FAR of 0.270, and an F-score of 0.768
have been obtained.

An approach for weather forecasting using ConvLSTMs and attention was introduced
in [18]. Their proposed method was tested on the ECMWF (European Centre for Medium-
Range Weather Forecasts) Reanalysis v5 (ERA5) data set, which contains several weather
measurements such as temperature, geopotential, humidity and vertical velocity at a
time resolution of one hour. The approach was shown to outperform other methods
such as Simple Moving Average, U-Net, and ConvLSTM, achieving MSE values between
1.32 and 2.47.
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Jeong et al. [24] alternatively proposed a weighted broadcasting strategy for Con-
vLSTMs, which is based on the idea of overweighting the last time stamp in the input
sequence. Their approach reached generally better performance than the baseline ConvL-
STM architecture, with CSI values ranging between 0.0108 and 0.5031, FAR between 0.2960
and 0.5653, POD values in the range 0.0110-0.6403 and Heidke skill score (HSS) between
0.01 and 0.3.

A deep learning approach for precipitation estimation from reflectivity values was
introduced by Yo et al. [25]. The proposed approach was compared to an operational
precipitation estimation method used by the Central Weather Bureau in Taiwan and was
shown to slightly outperform it, especially in predicting extreme meteorological events.
However, the improvement was not statistically significant, the proposed method obtaining
an average POD of 0.8 and FAR of 0.0134.

3. Methodology

With the goal of answering research question RQ1, this section introduces our binary
classification model proposal, AutoNowP, that consists of two ConvAEs, trained on radar
data collected from rainfall conditions with different classes of severity, for recognizing
severe phenomena. More specifically, AutoNowP is trained for learning to predict whether
the radar reflectivity values will be above or below a specific threshold. The ConvAE
models are used due to their ability to preserve the structure of the input data and to detect
underlying structural relationships within the data.

AutoNowP is aimed to empirically demonstrate that autoencoders are able to learn,
by self-supervision, features that are relevant for distinguishing structural relationships
in radar data collected in both stratiform and convective weather conditions. The model
is designed to classify if a radar product Rp is below or above a threshold τ. In the
experiments we will use two radar products, the reflectivity at the first elevation level
(R01) and the composite reflectivity, and different values for the threshold τ (e.g., 5, 20,
35 dBZ). AutoNowP consists of three stages depicted in Figure 1: data representation and
preprocessing, training, and testing (evaluation). These stages will be further detailed.

Figure 1. Overview of AutoNowP.

3.1. Data Representation and Preprocessing

The raw radar data used in our experiments is converted into two-dimensional arrays,
with a grid cell representing a geographical location. A cell in the matrix stores the value of
a specific radar product at a given time stamp. A sequence of such matrices is available for
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a given day, each matrix storing the values for a specific radar product p at a time moment t.
We assume that np radar products are available and thus, the radar data at a time moment
t may be visualized as a data grid with np channels.

In our previous works [11,26] we highlighted that similar values for the radar products
in a specific location l at a time t are encoded in similar neighborhoods of the location l at
time t−1. For a specific location l at time t, a d2–dimensional vector containing the values
of a radar product Rp from the sub-grid of diameter d centered on l (at time t−1) will be
assigned. The d2—dimensional instance will be labeled with the of Rp for the location l at
time t [11]. A sample data grid containing the values for the product R01 at time t is shown
in Figure 2a, while Figure 2b depicts the data grid at time t−1.

15 5 10 10 15
10 25 15 5 10
20 0 10 10 10
15 10 25 15 5
15 0 15 5 0

(a) The data matrix at time stamp t. In red
is the value of R01 at location l = (3, 3).

20 30 10 15 10
15 15 10 20 5
20 10 15 20 25
10 5 10 10 20
15 5 10 15 20

(b) The data grid at time stamp t−1. In blue is
the neighborhood of the location l = (3, 3) of
diameter d = 3.

Figure 2. Sample data grids at time stamp t and t−1 highlighting an instance sample at location
l = (3, 3) and a diameter d = 3 for the neighborhood.

For the example from Figure 2, the instance corresponding to the location (3,3) at time
t is the vector (15,10,20,10,15, 20,5,10,10) and is labeled with 10 (the value of R01 at location
(3,3) and time t).

Consequently, considering a specific diameter d for the neighborhood, a data set R
is built from the instances (d2—dimensional points) associated to each location from the
data grid and all available time moments [11]. The radar data set R will be divided in two
classes: the positive class (denoted as “+”) composed by the instances having the label
(i.e., values for the radar product Rp at a certain time t) higher than a threshold τ, while
the negative class (denoted as “−”) contains the instances having the label lower or equal
to the threshold τ. The data set representing the positive class is denoted by R+, while R−
denotes the set of instances belonging to the negative class. We note that the dimensionality
of R− is significantly larger than the cardinality of R+, as the number of severe weather
events is often small.

Both data sets are then normalized so that the value Rp of a radar product is trans-
formed to be in the [0, 1] range. For normalization purposes, we use the classic min/max
normalization formula:

Rp′(l, t) =
Rp(l, t)− Rpmin
Rpmax − Rpmin

,

where:

• Rp(l, t) is the value of Rp at time t and location l;
• Rp′(l, t) is the normalized value of Rp at time t and location l;
• Rpmin is the minimum value in the domain of Rp;
• Rpmax is the maximum value in the domain of Rp.

It should be noted that we are using the minimum and maximum values from a radar
product’s domain to ensure that both R+ and R− data sets are normalized in the same way
(i.e., the same value in different data sets is mapped to the same normalized value), as the
positive data set may have different minimum and maximums than the negative data set.
AutoNowP is trained and tested on the normalized data.
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3.2. AutoNowP Classification Model

Considering the notations from Section 3.1, the classification problem is formalized
as the approximation of two target functions (i.e., one target function for each class)
tc : R+ ∪ R− → [0, 1] (∀c ∈ {+,−}) that express the probability of instances from
R+ ∪R− to belong to the “+” or “−” classes. Thus, the learning goal of AutoNowP will
be to approximate the functions t+ and t−. AutoNowP consists of two ConvAEs, one for
the “+” class (CA+) and one for the “−” class (CA−). For training an autoencoder CAc
(c ∈ {+,−} 47% from the data set Rc (i.e., 70% from the data not used for testing) will be
used for training, 20% for the model validation and the rest of 33% from Rc will be further
used for testing, using a 3-fold cross-validation testing methodology.

3.2.1. Training

As previously stated, AutoNowP classifier will be trained to predict, based on the
radar products values from the neighborhood of a geographical location at time t − 1,
whether the value of a radar product Rp at time t will be higher than a threshold τ. For
instance, if Rp is chosen as R01 and τ as 35 dBZ, then AutoNowP will be trained to predict
if, in a certain geographical location or area, a convective storm is likely to occur (i.e., if the
value of R01 will be higher than 35 dBZ in that geographical location).

AutoNowP is trained to recognize both normal and severe weather events, and thus
it will learn to predict if a certain instance is likely to indicate stormy or normal weather.
Each of the two autoencoders CA+ and CA− will be self-supervisedly trained on the data
set of positive and negative instances, respectively (R+ andR−).

The prediction is based on estimating the probabilities (denoted by p+ and p−) that a
high-dimensional instance corresponding to a particular geographic location (as described
in Section 3.1) belongs to the positive and negative classes. The method for computing
these probabilities will be detailed in Section 3.2.2.

Autoencoders Architecture

The current study uses convolutional undercomplete AEs to learn meaningful lower-
dimensional representations for radar data. The autoencoders were implemented in Python,
using the Keras framework with Tensorflow backend. Both autoencoders (CA+ and CA−)
have the same architecture. The input data of the AEs is the 2D grid of the neighborhood
of diameter d for one location (as exemplified in Figure 2b)—i.e., the 2D grid representing
the values of an instance fromR+ ∪R−. As we have to choose a different diameter d for
our experiments on different data sets (see Section 4.1), we made the architecture so that it
minimally changes with d: while the number, type and hyper-parameters of each layer of
the network remain the same, the number of neurons on each layer changes, proportionally,
depending on d.

Even if the architecture of the autoencoder may be adapted to the diameter d of the
neighborhood (i.e., the dimensionality d2 of the input data), the value of d may influence
the performance of AutoNowP model. Intuitively, high values for d will make the AEs to
harder distinguish between the positive and negative instances. This may happen since,
hypothetically speaking, it would be possible that two neighboring points at time t (one
positive and one negative) have a large number of identical neighbors at time t− 1 (i.e., the
data instances representing the two locations are similar) and thus the AEs are unable to
distinguish between them. On the other hand, a small number of neighbors for a data point
(i.e, small values for d) is not enough for AutoNowP classifier to discriminate between the
input instances. For determining the most appropriate value for the diameter d, a grid
search was performed for selecting the value d that provides the best performance for
AutoNowP.

In the following, we will present the architecture of the autoencoders and the hyper-
parameters used, without mentioning the number of neurons, so that the following de-
scription is valid for the AutoNowP model in general, regardless of the specific experiment.
Figure 3 illustrates the architecture of the autoencoder (as mentioned above, both autoen-
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coders, CA− and CA+, have the same architecture). This is a Convolutional Autoencoder,
thus the main layers are the Conv2D—2-dimensional convolution layers—represented in
yellow in the figure. These layers reduce the data grid input in three steps, leading to an
encoding layer (the blue layer in the figure). From the encoding, the autoencoder needs
to recreate the input, thus the inverse of the Conv2D is needed: Conv2DTranspose (the
orange layers). Using the Conv2DTranspose layers we apply the reverse transformation so
that it recreates the data grid as it was before the convolutions. When using convolutions,
we need to reduce the size of the image, and this works best if the size of the image is
even. However, our input layer has always an odd size: since the input represents the
neighborhood of one point, having that point in the center, for a given radius r, the size
will be (2r + 1, 2r + 1)—i.e., we take r neighbors from all sides of the center; for example, r
neighbors on the right with r neighbors on the left plus the center itself results in an 2r + 1
length. Since the input is always odd in size, we need to adjust it so that we can perform
the convolutions. For this, we use a ZeroPadding2D layer: after the Input layer (first gray
layer), we pad the margins of the data grid with zeros until it reaches the desired size, using
the ZeroPadding2D layer (the red layer). Afterwards, the convolutions can occur. The
transpose convolutions will recreate the data grid as it was before the convolutions—that
is, after padding—so it is not the same size as the input. Since it is an autoencoder, we
want to match the output to the input, thus, we need to adjust the transpose convolutions
output so that the final size of the autoencoder output fits the size of its input. To readjust
the size, we use a Cropping2D layer, which will also be the output layer of the autoencoder
(the second gray layer represented in the figure).

Figure 3. Architecture of a Convolutional Autoencoder (CAc).

As with other neural networks, while the architecture is the principal element of the
network, there are other metaparameters that need to be tuned that change the network’s
behavior. One of these is the number of neurons on each hidden layer, but as we mentioned
above, this number may differ among the experiments if the input size changes; however,
while the absolute number changes, the proportion of neurons on the hidden layers
are preserved. Then, we have the activation used for the layers: for all convolutional
layers, transpose convolutional layers and the dense layers, except for the last transpose
convolutional layer, we use the SELU activation function (Scaled Exponential Linear
Unit [27]). For the last transpose convolutional layer, we used the sigmoid activation
function, so that the output of the autoencoder is between 0 and 1, as is the input. For all
convolutional layers and transpose convolutional layers, we used a kernel size of 4 and
2 strides.

The training configuration was the following: we used a batch size of 1024 and we
trained each autoencoder for 500 epochs in the case of the NMA data set and for 200 epochs
for the MET data set; the Adam optimizer [28] was used with learning rates of 0.01 and
0.001 respectively for the NMA and MET data sets and epsilon of 0.00001.
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Loss Functions

As explained in Section 3.1, the high-dimensional input instance x may be visualized
as a data grid, i.e., the neighborhood around the location of the value we want to predict.
The autoencoders learn to encode and decode each instance, the output of the autoencoder
being the reconstruction of the instance. The loss functions represent the difference between
the original instances and their reconstruction; lower values for the loss indicate better
reconstructions (i.e., closer to the input), with a loss equal to 0 meaning no difference. The
loss is based on a modified mean squared error (MSE), to assign a priority to the values
greater than the threshold τ relative to the other values. More specifically, we wanted to
be able to make the autoencoders prioritize values in the neighborhood that are either
greater or lower or equal to the given threshold τ. We also wanted to be able to change
this prioritization between CA− and CA+ (i.e., CA− is trained to prioritize negative points,
while CA+ is trained by over-weighting positive points in the neighborhood) and between
experiments, so we introduced a parameter, α, that controls this prioritization. We split the
computation of MSE in two parts: computing the MSE for values greater than τ (Formula (1))
and computing the MSE for values lesser or equal to τ (Formula (2)). The final loss value
(Formula (3) is expressed as a linear combination between the two separately computed
MSEs; we use the α parameter to decide how to prioritize the values greater than τ relative
to the values less or equal to τ. The exact way to compute the loss function L(x, x′) for a
given instance x ∈ R+ ∪R− is given by Formulae (1)–(3):

MSEgreater(x, x′) =
1
d2 ∑

1≤i≤d2
xi>τ

(xi − x′i)
2 (1)

MSElesser(x, x′) =
1
d2 ∑

1≤i≤d2

xi≤τ

(xi − x′i)
2 (2)

L(x, x′) = α ·MSEgreater(x, x′) + (1− α) ·MSElesser(x, x′) (3)

where:

• d is the diameter of the neighborhood used for characterizing the input instances x
(see Section 4.1);

• x ∈ R+ ∪R− is the d2-dimensional instance for which we compute the loss;
• x′ is the autoencoder output for instance x (the reconstruction of x);
• τ is the chosen threshold that differentiates between positive and negative class;
• α is the parameter that we introduced for the loss;
• xi and x′i denote the ith component from x and x′ respectively.

3.2.2. Classification Using AutoNowP

After AutoNowP has been trained as described in Section 3.2.1, when an unseen query
instance q has to be classified, the probabilities p+(q) (that q belongs to the positive class)
and p−(q) (that q belongs to the negative class) are computed. As shown above, a query
instance q is a high-dimensional vector (Section 3.1) consisting of radar products values
from the neighborhood of a specific geographical location l at time t. AutoNowP will
classify q as “+” (i.e., the value of the radar product Rp at time t+1 is likely to be higher
than the threshold τ) iff p+(q) ≥ p−(q), i.e., p+(q) ≥ 0.5.

The underlying idea behind deciding that a query instance q is likely to belong to the
“+” class (i.e., p+(q) ≥ p−(q)) is the following. We started from the assumption that an AE
is able to encode the structure of the class of instances it was trained on well and with the
intention to further reconstruct data similar to the training data. In addition, the AE will be
unable to reconstruct, through its learned latent space representation, the instances that
are dissimilar to the training data (i.e., likely to belong to another class than the class on
which the AE was trained on). Thus, if for a certain instance q the MSE between q and the
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reconstruction of q by CA+ is less than the MSE between q and the reconstruction of q by
CA−, then it is likely that the query instance belongs to the “+” class, as it is more similar
to the information encoded for the positive class.

Definition 1. Let us denote by MSEc(q̂, q) the MSE between q and the reconstruction (q̂) of q by
the autoencoder CAc (c ∈ {+,−}) and by τ the threshold considered. The probabilities p+(q) and
p−(q) are computed as given in Formulae (4) and (5).

p+(q) = 0.5 +
MSE−(q̂, q)−MSE+(q̂, q)

2 · (MSE−(q̂, q) + MSE+(q̂, q))
(4)

p−(q) = 1− p+(q). (5)

From Formula (4) we observe that 0 ≤ p+(q) ≤ 1 and that if MSE+(q̂, q) ≤ MSE−(q̂, q),
then pr+(q) ≥ 0.5, meaning that q is classified by AutoNowP as being positive. Much
more, we note that:

• if MSE+(q̂, q) = 0 (and consequently MSE−(q̂, q) 6= 0) it follows that p+(q) = 1;
• p+(q) increases as MSE+(q̂, q) decreases;
• if MSE+(q̂, q) > MSE−(q̂, q), then pr+(q) < 0.5, meaning that q is classified by

AutoNowP as being negative.

After the probabilities p+(q) and p−(q) were computed from the training data, the
classification c(q) of q is computed as shown in Formula (6).

c(q) =
{

+ if pr+(q) ≥ 0.5
− otherwise.

(6)

3.3. Testing

After AutoNowP was trained as described in Section 3.2.1, it is evaluated on 33% of
the instances from each data set R+ and R− that were unseen during the training stage.
The classification of a query instance q is made as described in Section 3.2.2.

For evaluating the performance of AutoNowP on a testing data set, the confusion
matrix is computed [29], composed by the number of true positives—TP, true negatives—
TN, false positives—FP, and false negatives—FN. Then, based on the values from the
confusion matrix, evaluation measures used for assessing the performance of supervised
classifiers and weather predictors are employed:

1. Critical success index (CSI) computed as CSI = TP
TP+FN+FP is used for convective

storms nowcasting based on radar data [30].
2. True skill statistic (TSS), TSS = TP·TN−FP·FN

(TP+FN)·(FP+TN)
.

3. Probability of detection (POD), also known as sensitivity or recall, is the true positive
rate (TPRate), POD = TP

TP+FN .
4. Precision for the positive class, also known as positive predictive value (PPV),

PV = TP
TP+FP .

5. Precision for the negative class, also known as negative predictive value (NPV),
NPV = TN

TN+FN .
6. Specificity (Spec), also known as true negative rate (TNRate), Spec = TN

TN+FP .
7. Area Under the ROC Curve (AUC). The AUC measure is recommended in case of

imbalanced data and is computed as the average between the true positive rate and
the true negative rate, AUC = Spec+POD

2 .
8. Area Under the Precision–Recall Curve (AUPRC), computed as the average between

the precision and recall values, AUPRC = Precision+Recall
2 .

All these measures take values in the [0, 1] range, with higher values indicating better
predictors, excepting FAR that should be minimized for a better performance.
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A three-fold cross-validation testing methodology is then applied. The value for each
of the performance measures previously described are averaged over the three runs. The
mean values are computed together with their 95% confidence intervals (CI) [31].

4. Data and Experiments

In this section, we answer research question RQ2 by describing the experiments
conducted for evaluating the performance of AutoNowP and analyzing the obtained
experimental results.

4.1. Data Sets

For assessing the performance of AutoNowP, experiments were conducted on real
radar data provided by the Romanian National Meteorological Administration (NMA) and
the Norwegian Meteorological Institute (MET).

4.1.1. NMA Radar Data Set

The NMA radar data set was collected over central Romania by a single polarization
S-band Weather Surveillance Radar—98 Doppler (WSR-98D) located near the village of
Bobohalma. The radar completes a full volume scan every 6 min, gathering data about
the location, intensity and movement direction, and speed of atmospheric cloud systems.
Volume scan data is collected by employing a scan strategy consisting in 9 elevation angles,
the raw data being afterwards processed to compute a large variety of radar products. For
AutoNowP experiments, we used the base Reflectivity product (R) sampled at the lowest
elevation angle (R01), being expressed in decibels relative to the reflectivity factor Z (dBZ).
Using the so-called Z-R relationships, the base reflectivity is used to derive the rainfall
rate, and further, the radar estimated precipitation accumulation over a given area and
time interval.

The radar data set used herein contains the quality controlled (cleaned) values of the
raw R01 product. The cleaning is needed, as during the radar scans, both meteorological
and nonmeteorological targets can be detected. Various clutter sources (e.g., terrain, build-
ings), biological targets (e.g., insects, birds) and external electromagnetic sources (e.g., sun)
can impact the data quality within the volume scan, and although the signal processing
can effectively mitigate the effects of this data contamination, additional processing is
required to identify and remove the residual nonmeteorological echoes. Herein, the quality
control algorithm is applied in a two-way process, by firstly detecting and removing the
contaminated radar data, and secondly tuning the key variables to mitigate the effects
of the first step on good data. The method used to clean and filter the reflectivity data is
based on the three-dimensional structure of the measured data, in terms of computing
horizontal and vertical data quality parameters. The computation algorithm is executed on
radar data projected on a polar grid to not alter the measurements and to remain at the
level of data recording, and it is built considering various key quality issues like ground
clutter echoes and external electromagnetic interferences. First, the radar data is passed
through a noise filter to remove the isolated ground clutter reflectivity bins, and then the
algorithm performs the identification and removal of echoes generated by external signals
and calculates the horizontal texture and the vertical gradient of reflectivity. The outputs
of these steps (i.e., sub-algorithms) are finally used to reconstruct the quality-controlled
reflectivity field.

Within AutoNowP, the NMA radar data was processed by selecting a value of 7
for the diameter d of the neighborhood (introduced in Section 3.1), representing about
7 km on the physical map, and this distance commonly determines small gradients of
the meteorological parameters [30]. The value 7 for d provided the best performance
for AutoNowP.
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4.1.2. MET Radar Data Set

The MET radar data set used in our experiments consists of composite reflectivity
values gathered from the MET Norway Thredds Data Server [32].

The reflectivity product, available at [33] was derived from the raw reflectivity values
by considering the best radar scan out of all considered elevations. Thus, it is a composite
product, obtained by applying an interpolation scheme that weights radar volume sources
differently based on their quality flags and various properties that may influence the
measurement. The considered properties include ground or sea clutter, ships or airplanes,
beam blockage, RLAN, sun flare, height above CAPPI level (typically 1000 m msl), range,
and azimuth displacement. The measurements used in our experiments were collected by
the radar at a time resolution of 7.5 min.

The dimension d of the neighborhood data grid was set to 15 for the MET experiment,
since this dimensionality provided the best performance for AutoNowP.

Table 1 describes the data sets used as our case studies. The second column in the
table indicates the radar product Rp of interest. The next three columns contain the number
of instances from the data sets (both “+” and “−”) and the percentage of positive and
negative instances obtained using a threshold of 10 dBZ. The last column illustrates the
entropy of each data set. The entropy is used for measuring the imbalancement of each
data set [34]: lower entropy values indicate a higher degree of imbalancement.

Table 1. Description of the data sets.

Data Set Product of Interest (Rp) # Instances % of “+” Instances % of “−” Instances Entropy

NMA R01 9003688 3.44% 96.56% 0.216

MET Composite reflectivity 6607836 31.97% 68.03% 0.904

From Table 1 we can see that the NMA data set is severely imbalanced: only 3.44% of
the instances belong to the positive class, leading to a negative to positive ratio of about
28:1. Another element that highlights the high degree of data imbalancement is the entropy;
where an entropy value of 1 reflects a perfectly balanced data set, the NMA data set entropy
of 0.216 reflects a data set with low diversity, heavily weighted in favor of one class to the
detriment of the other. The MET data set, on the other hand, showed a higher proportion
of positive samples for this choice of threshold, as reflected by a higher entropy. In this
setting, the negative to positive ratio is approximately 2:1.

The two-dimensional PCA [35] projections of the instances from both NMA and MET
data sets from Figure 4 highlight the difficulty of the classification task. For both data sets,
there is a low degree of separation between the class of negative instances (blue colored)
and the class of positive instances (red colored).

(a) 2D PCA plot for the NMA data set. (b) 2D PCA plot for the MET data set.

Figure 4. 2D PCA visualization of the NMA data set (a) and MET data set (b).
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The NMA data sets used in our experiments are publicly available at [36], while the
MET data is publicly available at [37].

4.2. Results

This section presents the experimental results obtained by applying AutoNowP classi-
fier on the data sets described in Section 4.1. For the ConvAEs, the implementation from
the Keras deep learning API [38] using the Tensorflow framework was employed.

The experiments were performed on a workstation laptop, with an Intel i9-10980HK
CPU, 32 GB RAM and Nvidia RTX 2080 Super for GPU acceleration; and on a Google cloud
instance with 12 vCPUs, 64 GB RAM and access to a Nvidia Tesla V100 for GPU acceleration.

The evaluation measures and the testing methodology described in Section 3.3 were
employed. Table 2 depicts the obtained results for both data sets used in our case studies,
for various values of the threshold τ. The 95% confidence intervals (CIs) are used for
the results.

The thresholds we decided to use were chosen considering both computational and
meteorological factors. In the literature, there is no convention on thresholds for R. For
example, Han et al. [9,39] chose to use the 35 dBZ threshold while Tran and Song [40]
studied their prediction performance using the 5, 20 and 40 dBZ thresholds. Thus, the
values 10, 20 and 30 were chosen for τ for the NMA data and 10, 15, 20 for the MET data
set. Since the MET data contains few instances whose values are higher than 30 dBZ,
AutoNowP could not be applied for this threshold. The best values obtained for the
evaluation measures are highlighted for both data sets.

Table 2. Experimental results, using 95% CIs.

Data Set τ CSI TSS POD PPV NPV Spec AUC AUPRC

10
0.615 0.861 0.876 0.674 0.996 0.985 0.931 0.775
± ± ± ± ± ± ± ±

0.018 0.012 0.012 0.017 0.001 0.002 0.006 0.013

20
0.425 0.471 0.474 0.810 0.989 0.997 0.736 0.642

NMA ± ± ± ± ± ± ± ±
0.072 0.091 0.092 0.015 0.001 0.001 0.046 0.039

30
0.151 0.157 0.157 0.812 0.993 1.000 0.579 0.485
± ± ± ± ± ± ± ±

0.046 0.051 0.028 0.031 0.001 0.000 0.014 0.007

10
0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008

15
0.566 0.626 0.675 0.793 0.920 0.951 0.813 0.734

MET ± ± ± ± ± ± ± ±
0.05 0.09 0.12 0.08 0.03 0.03 0.05 0.029

20
0.401 0.500 0.536 0.710 0.947 0.963 0.750 0.623
± ± ± ± ± ± ± ±

0.090 0.223 0.269 0.173 0.026 0.046 0.111 0.048

As shown in Table 2, the values for most of the evaluation measures decrease as the
threshold τ increases. This is normal behavior, as the prediction becomes more difficult
for higher values. The precision values (both for the positive and negative classes—PPV
and NPV) and the true negative rate (Spec) increase for higher thresholds, denoting
that the negative class is easier to predict for high values for τ and the number of false
predictions decreases. However, the number of true positives significantly decreases for
higher thresholds and this is reflected in the other performance metrics that decrease. High
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values (around 0.9) were obtained for sensitivity (POD), specificity, and AUC for τ = 10
denoting a good enough performance of AutoNowP. In addition, the small values obtained
for the 95% CI reveal the stability of the model.

5. Discussion

With the goal of better highlighting the performance of AutoNowP, this section dis-
cusses the obtained results and then provides a comparison between AutoNowP and
similar approaches from the nowcasting literature.

5.1. Analysis of AutoNowP performance

As shown in Table 2, AutoNowP succeeds in recognizing the negative class (high
specificity) and detecting the positive class (probability of detection higher than 0.85 for
τ = 10). This is a strength of AutoNowP, the ability to detect severe phenomena well.
However, we observed false predictions, both for the positive and negative classes and
these occur mostly close to the decision boundary. The performance of AutoNowP is
impacted mainly by a large enough amount of false positive predictions, but most of these
errors appear near the edges of radar echoes. In these areas the difference between classes
becomes blurred, as the neighborhood contains some high values, not enough to be similar
enough to the center of the event, but not few enough to be outside the event. These kinds
of neighborhoods are close to both classes, the dissimilarity between them and either class
is small. For these kinds of instances, AutoNowP has the most prediction errors. In order to
better understand the areas where these instances appear, we have created a visualization
in Figure 5. This figure shows the actual R01 values read by the radar in two consecutive
time steps, color-coded by the dBZ value at each location. In the figure, there are also
white and black regions, which represent the regions where most of the errors made by
AutoNowP appear. The aforementioned regions were found by studying the erroneous
predictions of the model and discovering the common elements of the neighborhoods that
are problematic, both for false negative errors and false positive errors. Then, in Figure 5,
we changed a pixel to white or black if its neighborhood is problematic, if it belongs to the
false negative problems or, respectively, false positive problems. In short, in the image are
represented with black points the locations where the model is highly likely to erroneously
predict them as positive and, similarly, with white points where it tends to wrongly predict
them as negative. The black and white areas in the image account for more than 98% of
AutoNowP’s errors.

(a) Errors areas analysis of R01 at time t. (b) Errors areas analysis of R01 at time t + 1.

Figure 5. Visualization of AutoNowP errors areas analysis for two consecutive time steps. In white are the areas where the
model usually predicts false negatives and in black are areas where the model usually predicts false positives.
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In Figure 5, it can be observed that most errors appear either at the edges of meteo-
rological events, mostly in case of false positives, or in areas where there are few positive
values, in case of false negatives. In case of false positives (in black), the problem areas
show a tendency of the model to smooth the predictions out, i.e., to create shapes that are
much more uniform. This is not an effect typical for AutoNowP; it is a general problem
affecting radar reflectivity prediction models (e.g., the RadRAR model [11]). In Figure 5, a
region containing false positives is exemplified in the first highlighted region (the bigger
one, around the pixel at (75,50)); it can be seen that the black region surrounds the actual
meteorological event, smoothing it out, creating much more homogenous shapes. This
tendency is kept from one time step to another, the smoothed shape following closely the
real shape.

In case of false negatives (in white), the problems appear generally in areas where
there are few positive values, i.e., the neighborhoods of locations contain many zero or close
to zero values and few values higher than the threshold. For these kinds of neighborhoods,
it is hard to differentiate between classes as they appear both at the start of meteorological
events and at the end of meteorological events. The beginning of meteorological events
is especially hard to predict, as there is no indication if and where a meteorological event
will form; for this reason, the model generally predicts locations with these kinds of
neighborhoods as being negative, introducing some false negative errors. In Figure 5, an
example area containing a false negative region can be observed in the second highlight
(the small one, around the pixel (125,50)). In that highlight, in the first time step (left side)
it can be observed that the meteorological event is small, while in the next time step (right
side), the region of the meteorological event has more than doubled in size. Since in the
first time step the event region is so small, the model has problems predicting the relatively
big changes that will happen until the next time step, thus introducing false negative errors,
visualized as white regions.

Analyzing the false negative predictions of AutoNowP, we also noticed (in both NMA
and MET experiments) situations as the one depicted in Figure 6. The figure presents
the composite reflectivity for two consecutive radar acquisitions from MET data. The red
rectangles highlight a region that illustrates a sample case where AutoNowP provides
false predictions.

Figure 6. Actual composite reflectivity values on two consecutive acquisitions (t—(left) side image— and t + 1—(right)
side image) from MET data.

From Figure 6 one observes that at time t (left side image) there are no values in
the highlighted region for the composite reflectivity, but at t + 1 (the next data received
from the radar—right side image) high values for composite reflectivity are suddenly
detected. Some of the data points inside the rectangle should be classified as positive
instances (higher values are displayed in red), but the model fails to predict the correct
class (i.e., the positive one) as the input for AutoNowP (the data at t) contained mostly
zero-valued data. While these situations are relatively infrequent in real life (the values
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are usually increasing slowly between consecutive time stamps), they still contribute to
a lower prediction accuracy. However, even if AutoNowP is unable to detect the positive
instances at time step t + 1, in the next step, at time t + 2, the model will correctly classify
the data points. This is not a limitation of AutoNowP, as such unexpected events cannot
be detected by a learning model that was trained to predict time t + 1 based on time t. A
possible solution would be to include more previous time steps in the prediction (t− 1,
t− 2, etc).

In order to assess how the cleaning of the raw radar data impacts the predictive
performance of our model, AutoNowP was trained on the uncleaned NMA data as well. A
threshold τ = 10 and the methodology introduced in Section 3 were applied for building
the AutoNowP classification model on the uncleaned data. Table 3 depicts the obtained
results. One observes a significant performance improvement on the cleaned data. For a spe-
cific evaluation measure P, the performance improvement is computed as Pcleaned−Puncleaned

Puncleaned
being shown in the last row of the table.

Table 3. Experimental results obtained applying AutoNowP on the uncleaned NMA data and the
improvement achieved on the cleaned data, for all performance measures.

CSI TSS POD PPV NPV Spec AUC AUPRC

Value 0.364 0.439 0.463 0.641 0.953 0.976 0.719 0.552
± ± ± ± ± ± ± ±

95% CI 0.035 0.072 0.084 0.050 0.003 0.012 0.036 0.018
Improvement 69% 96% 89% 5% 4% 1% 29% 40%

Table 3 highlights an average improvement of 42% on the performance measures
when using the cleaned data. The highest improvements are observed on TSS (96%), POD
(89%) and on CSI (69%), while the lowest improvements are on PPV, NPV and Spec (less
than 5%). These variations in the measures occurs because the uncleaned data introduces
many false negative errors while marginally introducing true positive errors, thus for
measures reliant on false negatives, such as POD, the difference is great while for measures
reliant on false positives, such as Spec, the difference is small. We can speculate why this
happens by analyzing uncleaned data and how it might affect the model: as explained in
Section 4.1, the cleaning of the NMA data removes noise and clutter introduced by the
interference of nonmeteorological targets during the scan. Effectively, this means that in the
uncleaned data there are many locations where there are wrong values, higher than zero
instead of zero. Because of this, during training, the model receives many locations labeled
as negative where the neighborhood still has a large number of high-valued locations (the
erroneous values), thus leading the model to make a false negative prediction (i.e., it will
predict “−” even where there were actual meteorological events with a similar pattern as
the erroneous training instance).

5.2. Comparison to Related Work

As shown in Section 2, most of the approaches introduced in the literature are for
precipitation nowcasting. The existing methods based on radar reflectivity nowcasting
were applied to radar data collected from various geographical regions, using various
parameters settings, testing methodologies and various thresholds for the radar reflectivity
values. The analysis of the recent literature highlighted CSI values ranging from 0.40 [20]
to 0.647 [17]; POD values ranging from 0.46 [20] to 0.71 [21]; F-score values ranging
from 0.58 [15] to 0.786 [15]. The performance of AutoNowP on both data sets used in
our experiments (Table 2) compares favorably with the literature results, considering the
magnitude of the evaluation measures for a threshold of 10 (CSI higher than 0.61, POD
higher than 0.87, F-score higher than 0.8).
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As the literature approaches for nowcasting do not use the same data model as our
approach, an exact comparison with these methods cannot be made. For a more exact
comparison, we decided to apply four well-known machine learning classifiers on the data
sets described in Section 4.1, using τ = 10 and following the testing methodology used for
evaluating the performance of AutoNowP (the performance measures were computed as
shown in Section 3.3 and the testing was repeated 3 times for each training–validation split):
logistic regression (LR), linear support vector classifier (linear SVC), decison trees (DT), and
nearest centroid classification (NCC). We have selected these classifiers as baseline methods
so as to cover a diverse set of methods—linear classifiers, rule-based, and distance-based.

These classifiers were implemented in Python using the scikit-learn [41] machine
learning library. The comparative results are depicted in Table 4, with a 95% CIs for the
values averaged over the three runs of the classifiers. The best values obtained for each
performance metric are highlighted.

Table 4. Comparative results between AutoNowP and other classifiers. 95% CIs are used for
the results.

Data set Model CSI TSS POD PPV NPV Spec AUC AUPRC

NMA

AutoNowP
0.615 0.861 0.876 0.674 0.996 0.985 0.931 0.775
± ± ± ± ± ± ± ±

0.018 0.012 0.012 0.017 0.001 0.002 0.006 0.013

LR
0.672 0.752 0.757 0.857 0.992 0.996 0.876 0.807
± ± ± ± ± ± ± ±

0.012 0.013 0.013 0.005 0.001 0.000 0.007 0.008

Linear SVC
0.685 0.778 0.783 0.845 0.992 0.995 0.889 0.814
± ± ± ± ± ± ± ±

0.012 0.007 0.007 0.015 0.000 0.000 0.003 0.009

DT
0.574 0.725 0.734 0.724 0.991 0.990 0.862 0.729
± ± ± ± ± ± ± ±

0.007 0.004 0.006 0.012 0.001 0.002 0.002 0.006

NCC
0.571 0.793 0.807 0.662 0.993 0.986 0.896 0.735
± ± ± ± ± ± ± ±

0.006 0.013 0.013 0.015 0.001 0.001 0.006 0.003

MET

AutoNowP
0.681 0.740 0.872 0.757 0.936 0.867 0.870 0.814
± ± ± ± ± ± ± ±

0.014 0.009 0.019 0.027 0.005 0.026 0.005 0.008

LR
0.760 0.796 0.853 0.875 0.932 0.943 0.898 0.864
± ± ± ± ± ± ± ±

0.006 0.002 0.001 0.007 0.003 0.002 0.001 0.004

Linear SVC
0.761 0.798 0.858 0.870 0.934 0.940 0.899 0.864
± ± ± ± ± ± ± ±

0.006 0.002 0.001 0.007 0.003 0.003 0.001 0.004

DT
0.670 0.710 0.804 0.801 0.908 0.906 0.855 0.803
± ± ± ± ± ± ± ±

0.010 0.004 0.005 0.009 0.003 0.002 0.002 0.007

NCC
0.681 0.728 0.831 0.791 0.919 0.897 0.864 0.811
± ± ± ± ± ± ± ±

0.009 0.005 0.009 0.007 0.001 0.006 0.003 0.007

The comparative results from Table 4 reveal that AutoNowP obtained the best results
in terms of POD and NPV for both data sets. In addition, for the NMA data set, our
classifier provided the highest TSS and AUC values. Figures 7 and 8 illustrate the ROC
curves for the classifiers from Table 4 on NMA and MET data sets.
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Figure 7. ROC curves for the classifiers from Table 4 on NMA data set.

Figure 8. ROC curves for the classifiers from Table 4 on MET data set.

Table 5 summarizes the results of the comparison between AutoNowP and the classi-
fiers from Table 4. The table indicates, for both the NMA and MET data sets, the number
of comparisons won (first row) and lost (second row) by AutoNowP considering all the
evaluation measures and the classifiers from Table 4. More specifically, a comparison
between our approach and a classifier c, considering a specific performance measure p,
is won by AutoNowP if the value for p provided by AutoNowP is greater than the one
provided by the classifier c. Similarly, the comparison is lost by AutoNowP if the value for
p provided by AutoNowP is lower than the one provided by the classifier c.
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Table 5. Summary of the comparison between AutoNowP and existing classifiers.

NMA Data MET Data Total
WIN 21 16 37
LOSE 11 16 27

% WIN 66% 50% 58%

The results from Table 5 highlight that AutoNowP outperforms similar classifiers in
66% of the cases for the NMA data set and in 50% of the cases for the MET data set out.
Overall, out of 64 comparisons, our AutoNowP approach wins in 37 cases, i.e in 58% of
the cases.

One of the main current limitations of AutoNowP is the training data: in order for the
model to have a high performance it needs to be trained using large amounts of relevant
data. While there are large amounts of historical meteorological data, finding a cohesive
set of relevant, high-quality data is not trivial. Due to the large training data set needed,
the training process of AutoNowP tends to take quite some time, which may hamper the
practicality of the model. The data model might be another drawback of the AutoNowP, as
the way it is currently designed, it might lead to the confounding of the 2 classes in some
special cases, as presented in Section 5.1. Nevertheless, these limitations can be addressed,
which we plan to do in the future: the long training time can be improved by parallelizing
the training process, while the data model can be improved, for example by extending it to
contain more than one previous time step.

6. Conclusions and Future Work

The paper introduced AutoNowP, a new binary classification model for precipitation
nowcasting based on radar reflectivity. AutoNowP used two convolutional autoencoders
that are trained on radar data collected on both stratiform and convective weather condi-
tions for learning to predict if the value for the radar reflectivity on a specific location will
be above or below a certain threshold. AutoNowP was introduced in this paper as a proof
a concept that autoencoders are helpful in distinguishing between convective and strati-
form rainfall. Experiments performed on radar data provided by the Romanian National
Meteorological Administration and the Norwegian Meteorological Institute highlighted
that the ConvAEs used in AutoNowP are able to learn structural characteristics from radar
data and thus the lower-dimensional radar data encoded in the ConvAEs latent space is
consistent with the meteorological evidence.

The generality of AutoNowP classifier has to be noted. Even if it was introduced and
evaluated in the context of precipitation nowcasting, it may be extended and applied for
other meteorological data sources and binary classification tasks.

AutoNowP is one step toward the end goal of our research: to create machine-learning-
based prediction models to be integrated in existing national weather nowcasting systems.
The integration of these models aims to improve the Early Warning System frameworks,
as the predictions create the possibility of issuing more accurate early warnings. Better
early warnings can lead to avoidance of loss and damage due to heavy precipitations, for
example in events such as flash floods in densely populated areas [42].

Future work will be conducted in order to extend the data sets used in the experimental
evaluation. In addition, we aim to apply AutoNowP to other meteorological data sources
(such as satellite data) and thus using the model for other nowcasting scenarios.
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