Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Quantile-Coherency Approach
3.2. Causality-in-Quantiles Approach
4. Data
5. Results
5.1. Analysis of Quantile Coherence Result
5.2. Analysis of Causality-in-Quantiles Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guesmi, K.; Saadi, S.; Abid, I.; Ftiti, Z. Portfolio diversification with virtual currency: Evidence from bitcoin. Int. Rev. Financ. Anal. 2019, 63, 431–437. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, M.; Drakeford, B.M.; Li, T. Spillover effects between oil and natural gas prices: Evidence from emerging and developed markets. Green Financ. 2019, 1, 30–45. [Google Scholar] [CrossRef]
- Shahzad, S.J.H.; Bouri, E.; Roubaud, D.; Kristoufek, L. Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin. Econ. Model. 2020, 87, 212–224. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, Z. A systematic review in crude oil markets: Embarking on the oil price. Green Financ. 2019, 1, 328–345. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Huang, Z. Risk Connectedness Heterogeneity in the Cryptocurrency Markets. Front. Phys. 2020, 8, 243. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xu, M. The Influential Factors of Financial Cycle Spillover: Evidence from China. Emerg. Mark. Financ. Trade 2019, 56, 1336–1350. [Google Scholar] [CrossRef]
- Bouri, E.; Molnár, P.; Azzi, G.; Roubaud, D.; Hagfors, L.I. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Financ. Res. Lett. 2017, 20, 192–198. [Google Scholar] [CrossRef]
- Maghyereh, A.; Awartani, B.; Tziogkidis, P. Volatility spillovers and cross-hedging between gold, oil and equities: Evidence from the Gulf Cooperation Council countries. Energy Econ. 2017, 68, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Cheng, H. Which is the safe haven for emerging stock markets, gold or the US dollar? Emerg. Mark. Rev. 2018, 35, 69–90. [Google Scholar] [CrossRef]
- Dyhrberg, A.H. Bitcoin, gold and the dollar—A GARCH volatility analysis. Financ. Res. Lett. 2016, 16, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Nan, Z.; Kaizoji, T. Bitcoin-based triangular arbitrage with the Euro/U.S. dollar as a foreign futures hedge: Modeling with a bivariate GARCH model. Quant. Financ. Econ. 2019, 3, 347–365. [Google Scholar] [CrossRef]
- Jiang, Y.; Feng, Q.; Mo, B.; Nie, H. Visiting the effects of oil price shocks on exchange rates: Quantile-on-quantile and causality-in-quantiles approaches. N. Am. J. Econ. Financ. 2020, 52, 101161. [Google Scholar] [CrossRef]
- Bouri, E.; Lucey, B.; Roubaud, D. Cryptocurrencies and the downside risk in equity investments. Financ. Res. Lett. 2020, 33, 101211. [Google Scholar] [CrossRef]
- Wang, G.-J.; Tang, Y.; Xie, C.; Chen, S. Is bitcoin a safe haven or a hedging asset? Evidence from China. J. Manag. Sci. Eng. 2019, 4, 173–188. [Google Scholar] [CrossRef]
- Dyhrberg, A.H. Hedging capabilities of bitcoin. Is it the virtual gold? Financ. Res. Lett. 2016, 16, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Smales, L. Bitcoin as a safe haven: Is it even worth considering? Financ. Res. Lett. 2019, 30, 385–393. [Google Scholar] [CrossRef]
- Spiegel, F.V.D. Will the role of the dollar as the international reserve currency be challenged? Int. Econ. Econ. Policy 2005, 1, 293–304. [Google Scholar] [CrossRef]
- Azar, S.A. The Relation of the US Dollar with Oil Prices, Gold Prices, and the US Stock Market. Res. World Econ. 2015, 6, 159–171. [Google Scholar] [CrossRef]
- Druck, P.; Magud, N.E.; Mariscal, R. Collateral damage: Dollar strength and emerging markets’ growth. North Am. J. Econ. Financ. 2018, 43, 97–117. [Google Scholar] [CrossRef]
- Naresh, G.; Vasudevan, G.; Mahalakshmi, S.; Thiyagarajan, S. Spillover effect of US dollar on the stock indices of BRICS. Res. Int. Bus. Financ. 2018, 44, 359–368. [Google Scholar] [CrossRef]
- Chkili, W. Dynamic correlations and hedging effectiveness between gold and stock markets: Evidence for BRICS countries. Res. Int. Bus. Financ. 2016, 38, 22–34. [Google Scholar] [CrossRef]
- Kumar, D. Return and volatility transmission between gold and stock sectors: Application of portfolio management and hedging effectiveness. IIMB Manag. Rev. 2014, 26, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.; Tiwari, A.K.; Sohag, K.; Shahbaz, M. Connectedness among crude oil prices, stock index and metal prices: An application of network approach in the USA. Resour. Policy 2019, 62, 57–65. [Google Scholar] [CrossRef]
- Alkhazali, O.M.; Zoubi, T.A. Gold and portfolio diversification: A stochastic dominance analysis of the Dow Jones Islamic indices. Pac. Basin Financ. J. 2020, 60, 101264. [Google Scholar] [CrossRef]
- Mo, B.; Chen, C.; Nie, H.; Jiang, Y. Visiting effects of crude oil price on economic growth in BRICS countries: Fresh evidence from wavelet-based quantile-on-quantile tests. Energy 2019, 178, 234–251. [Google Scholar] [CrossRef]
- Naeem, M.A.; Hasan, M.; Arif, M.; Balli, F.; Shahzad, S.J.H. Time and frequency domain quantile coherence of emerging stock markets with gold and oil prices. Phys. A Stat. Mech. Appl. 2020, 553, 124235. [Google Scholar] [CrossRef]
- Ashfaq, S.; Tang, Y.; Maqbool, R. Volatility spillover impact of world oil prices on leading Asian energy exporting and importing economies’ stock returns. Energy 2019, 188, 116002. [Google Scholar] [CrossRef]
- Mensi, W.; Hammoudeh, S.; Shahzad, S.J.H.; Shahbaz, M. Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. J. Bank. Financ. 2017, 75, 258–279. [Google Scholar] [CrossRef]
- Baruník, J.; Kley, T. Quantile coherency: A general measure for dependence between cyclical economic variables. Econ. J. 2019, 22, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Mensi, W.; Hkiri, B.; Al-Yahyaee, K.H.; Kang, S.H. Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach. Int. Rev. Econ. Financ. 2018, 54, 74–102. [Google Scholar] [CrossRef]
- Bouri, E.; Gupta, R.; Lau, M.C.K.; Roubaud, D.; Wang, S. Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles. Q. Rev. Econ. Financ. 2018, 69, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Maghyereh, A.; Abdoh, H. Tail dependence between Bitcoin and financial assets: Evidence from a quantile cross-spectral approach. Int. Rev. Financ. Anal. 2020, 71, 101545. [Google Scholar] [CrossRef]
- Raza, N.; Shahzad, S.J.H.; Tiwari, A.; Shahbaz, M. Asymmetric impact of gold, oil prices and their volatilities on stock prices of emerging markets. Resour. Policy 2016, 49, 290–301. [Google Scholar] [CrossRef]
- Bekiros, S.; Boubaker, S.; Nguyen, D.K.; Uddin, G.S. Black swan events and safe havens: The role of gold in globally integrated emerging markets. J. Int. Money Financ. 2017, 73, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Trabelsi, N.; Alqahtani, F.; Hammoudeh, S. Analysing systemic risk and time-frequency quantile dependence between crude oil prices and BRICS equity markets indices: A new look. Energy Econ. 2019, 83, 445–466. [Google Scholar] [CrossRef]
- Zhao, Z.; Wen, H.; Li, K. Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China. Econ. Model. 2021, 94, 780–788. [Google Scholar] [CrossRef]
- Balcilar, M.; Demirer, R.; Gupta, R.; Wohar, M.E. The effect of global and regional stock market shocks on safe haven assets. Struct. Chang. Econ. Dyn. 2020, 54, 297–308. [Google Scholar] [CrossRef]
- Platanakis, E.; Urquhart, A. Should investors include Bitcoin in their portfolios? A portfolio theory approach. Br. Account. Rev. 2020, 52, 100837. [Google Scholar] [CrossRef]
- Kajtazi, A.; Moro, A. The role of bitcoin in well diversified portfolios: A comparative global study. Int. Rev. Financ. Anal. 2019, 61, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Raheem, I.D.; Kang, S.H. Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model. Phys. A Stat. Mech. Its Appl. 2019, 535, 122295. [Google Scholar] [CrossRef]
- Conlon, T.; Corbet, S.; McGee, R.J. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Res. Int. Bus. Financ. 2020, 54, 101248. [Google Scholar] [CrossRef]
- Chkili, W. Is gold a hedge or safe haven for Islamic stock market movements? A Markov switching approach. J. Multinatl. Financ. Manag. 2017, 42–43, 152–163. [Google Scholar] [CrossRef]
- Hoang, T.-H.-V.; Lean, H.H.; Wong, W.-K. Is gold good for portfolio diversification? A stochastic dominance analysis of the Paris stock exchange. Int. Rev. Financ. Anal. 2015, 42, 98–108. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Trabelsi, N.; Alqahtani, F.; Raheem, I.D. Systemic risk spillovers between crude oil and stock index returns of G7 economies: Conditional value-at-risk and marginal expected shortfall approaches. Energy Econ. 2020, 86, 104646. [Google Scholar] [CrossRef]
- Maghyereh, A.; Abdoh, H. Tail dependence between gold and Islamic securities. Financ. Res. Lett. 2021, 38, 101503. [Google Scholar] [CrossRef]
- Maghyereh, A.; Abdoh, H. The tail dependence structure between investor sentiment and commodity markets. Resour. Policy 2020, 68, 101789. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Hitomi, K.; Kawasaki, Y.; Jeong, K. A consistent nonparametric test for nonlinear causality—Specification in time series regression. J. Econ. 2011, 165, 112–127. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.; Härdle, W.K.; Song, S. A consistent nonparametric test for causality in quantile. Econ. Theory 2012, 28, 861–887. [Google Scholar] [CrossRef] [Green Version]
- Chuang, C.-C.; Kuan, C.-M.; Lin, H.-Y. Causality in quantiles and dynamic stock return–volume relations. J. Bank. Financ. 2009, 33, 1351–1360. [Google Scholar] [CrossRef]
- Balcilar, M.; Bekiros, S.D.; Gupta, R. The role of news-based uncertainty indices in predicting oil markets: A hybrid nonparametric quantile causality method. Empir. Econ. 2017, 53, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Lie, J.; Wang, J.; Mu, J. Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective. Econ. Model. 2021, 95, 21–34. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, H.; Monginsidi, J.Y. Co-movement of ASEAN stock markets: New evidence from wavelet and VMD-based copula tests. Econ. Model. 2017, 64, 384–398. [Google Scholar] [CrossRef]
- Mo, B.; Nie, H.; Jiang, Y. Dynamic linkages among the gold market, US dollar and crude oil market. Phys. A Stat. Mech. Appl. 2018, 491, 984–994. [Google Scholar] [CrossRef]
Variables | Mean | Max | Min | S. D. | Skew | Kurt | J.B | ADF |
---|---|---|---|---|---|---|---|---|
Bitcoin | 0.3709 | 147.4180 | −84.8829 | 7.2686 | 3.8040 | 114.8219 | 919644 *** | −21.0670 *** |
USD | 0.0108 | 2.4952 | −2.1420 | 0.4363 | 0.0601 | 5.1998 | 355 *** | −42.7640 *** |
Oil | −0.0566 | 41.2023 | −64.3699 | 3.3629 | −2.8817 | 104.2638 | 753137 *** | −43.6660 *** |
Gold | 0.0040 | 5.1334 | −9.5962 | 0.9542 | −0.7036 | 12.5744 | 6856 *** | −41.7860 *** |
USA | 0.0426 | 8.9683 | −12.7652 | 1.1022 | −1.1237 | 26.9138 | 42235 *** | −13.2640 *** |
CHINA | 0.0154 | 6.3691 | −8.8732 | 1.4334 | −0.9995 | 9.7368 | 3615 *** | −40.1480 *** |
UK | 0.0007 | 8.6668 | −11.5124 | 1.0455 | −0.9781 | 18.2644 | 17338 *** | −42.1210 *** |
JAPAN | 0.0418 | 7.7314 | −8.2529 | 1.3861 | −0.1704 | 7.5277 | 1509 *** | −43.3080 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ao, Z.; Mo, B. Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches. Mathematics 2021, 9, 1750. https://doi.org/10.3390/math9151750
Li Z, Ao Z, Mo B. Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches. Mathematics. 2021; 9(15):1750. https://doi.org/10.3390/math9151750
Chicago/Turabian StyleLi, Zhenghui, Zhiming Ao, and Bin Mo. 2021. "Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches" Mathematics 9, no. 15: 1750. https://doi.org/10.3390/math9151750
APA StyleLi, Z., Ao, Z., & Mo, B. (2021). Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches. Mathematics, 9(15), 1750. https://doi.org/10.3390/math9151750