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Abstract: In this article, we prove integral formulas for a Riemannian manifold equipped with a
foliation F and a unit vector field N orthogonal to F , and generalize known integral formulas (due
to Brito-Langevin-Rosenberg and Andrzejewski-Walczak) for foliations of codimension one. Our
integral formulas involve Newton transformations of the shape operator of F with respect to N and
the curvature tensor of the induced connection on the distribution D = TF ⊕ span(N), and this
decomposition of D can be regarded as a codimension-one foliation of a sub-Riemannian manifold.
We apply our formulas to foliated (sub-)Riemannian manifolds with restrictions on the curvature
and extrinsic geometry of the foliation.
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1. Introduction

Foliations, which are defined as partitions of a manifold into collections of submani-
folds of the same dimension, called leaves, appeared in the 1940s in the works of G. Reeb
and Ch. Ehresmann, culminating in the book [1]. Since then, the subject has enjoyed a
rapid development, see e.g., [2]. Extrinsic geometry of foliations of Riemannian manifolds
was developed in recent years, see surveys in [3–9], and has applications in differential
geometry and analysis on real and complex manifolds. By extrinsic geometry we mean
properties of foliations on Riemannian manifolds which can be expressed in terms of the
second fundamental form of the leaves and its invariants (principal curvatures, scalar mean
curvature, higher order mean curvatures σr’s for r > 1 and so on). G. Reeb also published a
paper [10] on extrinsic geometry of foliations, in which he proved that the integral of the
mean curvature of the leaves of any codimension-one foliation on any closed Riemannian
manifold equals zero, ∫

M
σ1 d volg = 0; (1)

thus, either the mean curvature of the leaves σ1 ≡ 0 or σ1(x) σ1(x′) < 0 for some points
x 6= x′.

Integral formulas in Riemannian geometry can be viewed as “conservation laws” of
quantities when the metric changes. Integral formulas are now the centerpiece of extrin-
sic geometry of foliations and are useful in several geometric situations: characterizing
foliations, whose leaves have a given geometric property; prescribing the higher mean
curvatures of the leaves of a foliation; minimizing functionals such as volume defined
for tensor fields on a foliated manifold. In [4], the Newton transformations Tr(AN) of the
shape operator AN of the leaves (with a unit normal vector field N) were applied to a
codimension-one foliated (n + 1)-dimensional Riemannian manifold (with the curvature
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tensor R), and a series of integral formulas with total r-th mean curvatures for r ∈ [0, n− 2]
was proved:∫

M

(
(r + 2) σr+2 − trF (Tr(AN) R(· , N)N)− 〈divF Tr(AN), ∇N N〉

)
d volg = 0. (2)

These integral formulas were obtained by applying the Divergence Theorem to suitable
vector fields. The next to (1) integral formula in the series (2) for r = 0 and n ≥ 2 is, see [11],∫

M
(2 σ2 − RicN,N)d volg = 0. (3)

By (3), there are no totally umbilical codimension-one foliations of a closed manifold of
negative Ricci curvature, and there are no harmonic codimension-one foliations of a closed
manifold of positive Ricci curvature. It was proved in [6], and can be deduced from (2),
that on a compact space form Mn+1(c) the total σr’s are independent of F :

∫
M

σr d volg =

{
cr/2

(
n/2
r/2

)
Vol(M, g), n and r even,

0, either n or r odd.
(4)

The natural question arises: can we find integral formulas similar to (2) and (4) for
foliations of arbitrary codimension? In studying this question, we consider a foliation F
of any codimension, whose normal bundle has zero Euler class; thus, F can be equipped
with a unit normal vector field N. Let

D = TF ⊕ span(N) (5)

be a distribution on M (subbundle of the tangent bundle TM) spanned by TF (the tangent
bundle of F ) and N. In the article, we prove integral formulas (in Theorems 1–3 and Corol-
laries 3 and 4), which generalize (2) and (4) for codimension-one foliations. Our integral
formulas involve r-th mean curvatures of F with respect to N, i.e., symmetric functions of
the shape operator AN of F , Newton transformations of AN and the curvature tensor of
the induced connection on D. We apply our formulas to foliations with restrictions on the
curvature and the extrinsic geometry.

Please note that (M,D) with the metric on D (e.g., the restriction of g) is the object
of sub-Riemannian geometry, see [5]. Apparently, a foliated sub-Riemannian manifold
(M,D,F , g), i.e., the tangent bundle TF of a foliation F is a subbundle of D, is a new (or
little-studied) geometrical object. Therefore, the results (in Sections 3 and 4) can be inter-
preted as integral formulas for codimension-one foliations of a sub-Riemannian manifold.

2. Preliminaries

Here, using the induced linear connection on a distribution, we define the shape
operator (with its Newton transformations) and the curvature tensor related to a codi-
mension-one foliated sub-Riemannian manifold, then we prove three auxiliary lemmas.

Let D be an (n + 1)-dimensional distribution on a smooth m-dimensional manifold
M, i.e., a subbundle of TM of rank n + 1 (where 0 < n < m). In other words, to each point
x ∈ M we assign an (n + 1)-dimensional subspace Dx of the tangent space Tx M smoothly
depending on x. A pair (M,D), where M is a manifold and D is a non-integrable distri-
bution on M, is called a non-holonomic manifold, see [5]. The concept of a non-holonomic
manifold was introduced for a geometric interpretation of constrained systems in classical
mechanics. A sub-Riemannian manifold is a non-holonomic manifold (M,D), equipped
with a sub-Riemannian metric g = 〈· , ·〉, i.e., the scalar product g : Dx ×Dx → R for all
x ∈ M, see [5]. Usually, they assume that the sub-Riemannian metric on the horizontal
bundle D is extended to a Riemannian metric (also denoted by g) on the whole manifold
M. This allows us to define the orthogonal distribution D⊥ (the vertical subbundle) such
that TM = D ⊕D⊥.
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The orthoprojector P : TM→ D onto the distributionD is characterized by the properties

P = P∗ (self-adjoint), P2 = P,

e.g., [12]. A sub-Riemannian manifold equipped with a foliation F such that the tangent
bundle TF is a subbundle of the horizontal bundle will be called a foliated sub-Riemannian
manifold. By Frobenius Theorem, e.g., ([5] Theorem 1.7), a foliation is determined by an
involutive distribution, i.e., the Lie bracket of any two its vector fields also belongs to
this distribution.

In this article, we assume that F is a codimension-one foliation relative to D, i.e.,
dimF = n, and there exists a unit vector field N orthogonal to F and tangent to D. This
means that the Euler characteristic of the subbundle D is zero and the following orthogonal
decomposition is valid, see (5):

D = TF ⊕ span(N).

The Levi-Civita connection ∇ on (M, g) induces a linear connection ∇P on the distri-
bution D = P(TM):

∇P
X PY = P∇X PY, X, Y ∈ Γ(TM),

which is compatible with the metric: X〈U, V〉 = 〈∇P
XU, V〉+ 〈U, ∇P

XV〉 for any sections
U and V of D and X ∈ Γ(TM). Define the horizontal vector field

Z = ∇P
N N,

and note that ∇N N is the curvature vector of N-curves in (M, g).
The shape operator AN : TF → TF of the foliation F with respect to N is defined by

AN(X) = −∇P
X N, X ∈ TF . (6)

The elementary symmetric functions σj(AN) of AN (called the r-th mean curvatures of F
with respect to N in D) are given by the equality

∑ n
r=0 σr(AN) tr = det( id TF + tAN), t ∈ R.

Note that σr(AN) = ∑ i1<···<ir λi1 · · · λir , where λ1 ≤ . . . ≤ λn are the eigenvalues of AN .

Let τj(AN) = tr Aj
N for j ∈ N be the power sums symmetric functions of AN . For example,

σ0(AN) = 1, σ1(AN) = τ1(AN) = tr AN , σn(AN) = det AN , and

2 σ2(AN) = τ2
1 (AN)− τ2(AN). (7)

For short, we set
σr = σr(AN), τr = τr(AN).

Next, we introduce the curvature tensor RP : TM× TM→ End(D) of the connection∇P:

RP(X, Y) = ∇P
X∇P

Y −∇P
Y∇P

X −∇P
[X, Y]. (8)

Set RP(X, Y, V, U) = 〈RP(X, Y)V, U〉 for U, V ∈ D. The sectional P-curvature of a plane
spanned by non-collinear vectors X, Y is RP(X, Y, Y, X)/(X2Y2 − 〈X, Y〉2).

Obviously, RP(Y, X) = −RP(X, Y) (for any linear connection). Since∇P is compatible
with the metric, then the anti-symmetry for the last pair of vectors is valid, e.g., [13],

RP(X, Y, V, U) = −RP(X, Y, U, V). (9)

Lemma 1. For D = TF ⊕ span(N) on (M, g), the following Codazzi type equation is valid:

(∇FX AN)Y− (∇FY AN)X = −RP(X, Y)N, X, Y ∈ TF . (10)
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Proof. Recall the Codazzi’s equation for a foliation (or a submanifold) of (M, g):

(∇X h)(Y, U)− (∇Y h)(X, U) = (R(X, Y)U)⊥, (11)

where R : TM× TM→ End(TM) is the curvature tensor of the Levi-Civita connection,

R(X, Y) = ∇X∇Y −∇Y∇X −∇[X, Y],

⊥ denotes the projection onto the vector bundle orthogonal to F , and h : TF × TF →
(TF )⊥ is the second fundamental form of F in (M, g) defined by

h(X, Y) = (∇XY)⊥.

From (11), for all vectors X, Y, U ∈ TF we obtain

〈(∇FX AN)Y− (∇FY AN)X, U〉+ 〈h(X, U),∇Y N〉
−〈h(Y, U),∇X N〉 = −〈R(X, Y)N, U〉. (12)

Applying the orthoprojector on the vector bundle orthogonal to F , we find

〈R(X, Y)N, U〉 = 〈RP(X, Y)N, U〉+ 〈∇X((∇Y N)⊥)

−∇Y((∇X N)⊥)−∇[X, Y]⊥ N, U〉. (13)

Using the equalities [X, Y]⊥ = 0 (since TF is integrable), (13) and

〈h(X, U), ∇Y N〉 = 〈∇Y N, (∇X U)⊥〉 = −〈∇X((∇Y N)⊥), U〉,
〈h(Y, U), ∇X N〉 = 〈∇X N, (∇Y U)⊥〉 = −〈∇Y((∇X N)⊥), U〉,

in (12) completes the proof.

The following lemma generalizes [4] (Lemma 3.1).

Lemma 2. Let {ei} be a local orthonormal frame of TF such that at a point x ∈ M:

• ∇FX ei = 0 (1 ≤ i ≤ n) for any vector X ∈ Tx M;
• ∇P

ξ ei = 0 (1 ≤ i ≤ n) for any vector ξ ∈ D⊥x M.

Then the following equality is valid at x ∈ M:

〈∇eiZ , ej〉 = 〈A2
Nei, ej〉+ 〈RP(ei, N)N, ej〉

−〈(∇FN AN)ei, ej〉+ 〈Z , ei〉〈Z , ej〉. (14)

Proof. Taking covariant derivative of 〈Z , ej〉 = −〈N, ∇N ej〉 with respect to ei, we find

− 〈Z , ∇ei ej〉 = 〈∇eiZ , ej〉+ 〈∇ei N, P∇N ej〉+ 〈N,∇ei P∇N ej〉. (15)

For a foliation F , we obtain

〈(∇FN AN)ei, ej〉 = ∇N〈N,∇ei ej〉 = 〈Z , ∇ei ej〉+ 〈N,∇N P∇ei ej〉.

Therefore, using (8), we calculate at the point x ∈ M:

〈A2
Nei, ej〉+ 〈RP(ei, N) N, ej〉 − 〈(∇FN AN)ei, ej〉

= 〈A2
Nei, ej〉 − 〈RP(ei, N) ej, N〉+ N〈∇ei N, ej〉

= 〈A2
Nei, ej〉 − 〈Z , ∇ei ej〉 − 〈∇ei P∇N ej, N〉+ 〈∇[ei ,N] ej, N〉. (16)
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By conditions at x ∈ M, we rewrite the last term in (16) as

〈∇P[ei ,N] ej, N〉 = 〈∇[ei ,N] ej, N〉.

Then, using (15) and the following equalities at x ∈ M:

P∇ei N = ∑ 1≤j≤n〈∇ei N, ej〉ej, P∇N ei = 〈∇N ei, N〉N,

〈A2
Nei, ej〉 = 〈∇ei N, N〉〈∇N ej, N〉,

we simplify the last line in (16) as

〈∇eiZ , ej〉 − 〈Z , ei〉〈Z , ej〉.

From the above, the claim follows.

Many authors investigated r-th mean curvatures of foliations and hypersurfaces of
Riemannian manifolds using the Newton transformations of the shape operator, see [4].

Definition 1. The Newton transformations Tr(AN) of the shape operator AN of an n-dimensional
foliation F of a sub-Riemannian manifold (M,D, g) are defined recursively or explicitly by

T0(AN) = id TF , Tr(AN) = σr id TF −AN Tr−1(AN), 1 ≤ r ≤ n,

Tr(AN) = ∑r
j=0(−1)jσr−j Aj

N = σr id TF −σr−1 AN + . . . + (−1)r A r
N .

For example, T1(AN) = σ1 id TF −AN and Tn(AN) = 0. Notice that AN and Tr(AN)
commute. The following properties of Tr(AN) are proved similarly as for codimension-one
foliations of a Riemannian manifold, e.g., [4] (or [7] Lemma 1.3).

Lemma 3. For the shape operator AN we have

trF Tr(AN) = (n− r) σr,

trF (AN · Tr(AN)) = (r + 1) σr+1,

trF (A2
N · Tr(AN)) = σ1 σr+1 − (r + 2) σr+2,

trF (Tr−1(AN)(∇FX AN)) = X(σr), X ∈ TF , r > 0.

On the other hand, since the (1,1)-tensors AN and Tr(AN) are self-adjoint, we have

〈(∇FX Tr(AN))Y, V〉 = 〈(∇FX Tr(AN))V, Y〉, X, Y, V ∈ TF . (17)

3. Main Results

Here, we prove a series of integral formulas for a codimension-one foliated sub-
Riemannian manifold (M,D,F , g) with D = TF ⊕ span(N).

Recall that the F -divergence of a vector field X tangent to F on (M, g) is defined by

div X = ∑ n
i=1〈∇ei X, ei〉,

where {ei} is a local orthonormal frame of TF . Following [4], define the F -divergence of
the Newton transformation Tr(AN) by

divF Tr(AN) = ∑ n
i=1(∇

F
ei

Tr(AN)) ei. (18)

Please note that divF T0(AN) = 0.
For any X ∈ D, define a linear operatorRP

X : TF → TF by

RP
X : V → RP(V, X)N, V ∈ TF . (19)
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The following result generalizes Lemma 2.2 in [4].

Lemma 4. The leafwise divergence of Tr(AN) for r > 0 satisfies the inductive formula

〈divF Tr(AN), X〉 = −〈divF Tr−1(AN), AN X〉+ trF (Tr−1(AN)RP
X), (20)

where X ∈ Γ(F ). Equivalently, for r > 0 we have

〈divF Tr(AN), X〉 = ∑ r
j=1(−1)j−1 trF (Tr−j(AN)RP

Aj−1
N X

). (21)

Proof. Using the recursive definition of Tr(AN), we have

divF Tr(AN) = ∇Fσr − AN divF Tr−1(AN)−∑ n
i=1(∇

F
ei

AN) Tr−1(AN)ei.

Applying Codazzi type equation (10) and the last formula in Lemma 3, we obtain

∑ n
i=1〈(∇

F
ei

AN)Tr−1(AN)ei, X〉 = ∑ n
i=1〈Tr−1(AN)ei, (∇Fei

AN)X〉

= ∑ n
i=1〈Tr−1(AN)ei, (∇FX AN)ei − RP(ei, X)N〉

= trF (Tr−1(AN)(∇FX AN))−∑ n
i=1〈R

P(ei, X)N, Tr−1(AN)ei〉
= X(σr)− trF (Tr−1(AN)RP

X).

Here, we used RP(ei, X)N = RP
X(ei), see (19). Hence, the inductive Formula (20) holds.

Finally, (21) follows directly from the above.

Remark 1. (a) If P = id TM, i.e., F is a codimension-one foliation of M, then RP = R, and using
the symmetry 〈R(X, Y)U, V〉 = 〈R(U, V)X, Y〉, we simplify Equation (20) to the form

divF Tr(AN) = −AN divF Tr−1(AN) + ∑ n
i=1(R(N, Tr−1(AN)ei)ei)

>,

(see Lemma 2.2 in [4]), where > denotes the orthogonal projection on the vector bundle TF .
(b) Let the distribution TF be P-curvature invariant, i.e.,

RP(X, Y)V ∈ TF , X, Y, V ∈ TF . (22)

By (9), Equation (21) implies that divF Tr(AN) = 0 for every r ≥ 0. Condition (22) is obviously
satisfied, if the distribution TF is auto-parallel, i.e., ∇XY ∈ Γ(TF ) for all X, Y ∈ Γ(TF ).
A sufficient condition for (22) is the constancy of the sectional P-curvature, i.e., the following
equality with some real constant c:

RP(X, Y)V = c (〈Y, V〉X− 〈X, V〉Y), X, Y, V ∈ D. (23)

The following result generalizes Proposition 3.3 in [4].

Theorem 1. For any compact leaf L of F we have∫
L

(
(r + 2) σr+2 + N(σr+1)− σ1σr+1 − trF (Tr(AN)RP

N)

− 〈Tr(AN)Z , Z〉 − 〈divF Tr(AN), Z〉
)

d volL = 0, r ∈ [0, n− 2], (24)

where the underlined term is given by (21) with X = Z .
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Proof. Using (17) and (18), we compute the divergence of the vector field Tr(AN)Z
as follows:

divF Tr(AN)Z = ∑ n
i=1〈∇ei (Tr(AN)Z), ei〉

= 〈divF Tr(AN), Z〉+ ∑ n
i=1〈∇eiZ , Tr(AN)ei〉.

Using (14) and (19), we compute ∑ n
i=1〈∇eiZ , Tr(AN)ei〉 as

∑ n
i=1

(
〈A2

Nei + RP(ei, N)N − (∇FN AN)ei, Tr(AN)ei〉+ 〈Z , ei〉 〈Z , Tr(AN)ei〉
)

= − trF
(
Tr(AN)(∇FN AN − A2

N −RP
N)
)
+ 〈Tr(AN)Z , Z〉.

By Lemma 3, we can write

trF (Tr(AN)(∇FN AN − A2
N −RP

N)) = N(σr+1)− σ1σr+1 + (r + 2)σr+2 − trF (Tr(AN)RP
N).

Finally, we obtain

∑ n
i=1〈∇eiZ , Tr(AN)ei〉 = −N(σr+1) + σ1 σr+1 − (r + 2)σr+2

+ 〈Tr(AN)Z , Z〉+ trF (Tr(AN)RP
N).

This proves the following:

divF Tr(AN)Z = 〈divF Tr(AN), Z〉+ trF (Tr(AN)RP
N) + 〈Tr(AN)Z , Z〉

− (r + 2)σr+2 − N(σr+1) + σ1σr+1. (25)

Applying the Divergence Theorem to (25) along any compact leaf, we obtain (24).

We can view trF RP
X = ∑ n

i=1〈RP(ei, X)N, ei〉 as the Ricci P-curvature RicP
X,N . Then

RicP
N,N = trF RP

N (26)

is the Ricci P-curvature in the N-direction.

Corollary 1. Let τ1 = const. and RicP
N,N > 0. Then F has no compact leaves.

Proof. Let L be a compact leaf. By (24) with r = 0, using 2 σ2 = τ2
1 − τ2, we obtain∫

L

(
τ2 − N(τ1) + trF RP

N + 〈Z , Z〉
)

d volL = 0.

By conditions and (26), we obtain N(τ1) = 0 and trF RP
N > 0. This yields a contradiction.

For any vector field X in TF , we have

div X = divF X− 〈X, Z〉 − 〈X, H⊥〉, (27)

where H⊥ is the mean curvature vector field of the distribution D⊥ (orthogonal to D) in
(M, g). Recall that a distribution on a Riemannian manifold is called harmonic if its mean
curvature vector field vanishes. There are topological restrictions for the existence of a
Riemannian metric on closed manifold, for which a given distribution becomes harmonic,
see [14].

The following statement generalizes (1).
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Theorem 2. For a closed sub-Riemannian manifold (M,D, g) with D = TF ⊕ span(N) and a
harmonic distribution D⊥, the following integral formula is valid:∫

M
σ1 d volg = 0. (28)

Proof. Recall that σ1 = tr AN , see (6), and observe that

divF N = ∑ n
i=1〈∇ei N, ei〉 = −σ1.

Thus, using the assumption H⊥ = 0, we obtain

div N = divF N − 〈N, H⊥〉 = −σ1. (29)

Applying the Divergence Theorem, yields (28).

We supplement (28) with a series of integral formulas with total r-th mean curvatures
for r ∈ [0, n− 2], which generalize (2).

Theorem 3. For a closed sub-Riemannian manifold (M, g) with D = TF ⊕ span(N) and a
harmonic distribution D⊥, the following integral formula is valid for r ∈ [0, n− 2]:∫

M

(
(r + 2) σr+2 − trF (Tr(AN)RP

N)− 〈divF Tr(AN), Z〉
)

d volg = 0, (30)

where the underlined term is given by (21) with X = Z .

Proof. Using (29), we calculate the divergence of σr+1 · N as

div(σr+1 · N) = σr+1 div N + N(σr+1) = N(σr+1)− σ1σr+1.

Then, by (27) with X = Tr(AN)Z , (since D⊥ is a harmonic distribution), we obtain

div
(
Tr(AN)Z + σr+1N

)
= 〈divF Tr(AN), Z〉 − (r + 2) σr+2 + trF (Tr(AN)RP

N).

Applying the Divergence Theorem, we obtain (30).

Example 1. If N is a P-geodesic vector field, i.e., Z = 0, then (30) shortens to the formula∫
M

(
(r + 2) σr+2 − trF (Tr(AN)RP

N)
)

d volg = 0.

For r = 0, (30) gives us the following generalization of (3):∫
M
(2 σ2 − RicP

N,N)d volg = 0. (31)

For n = 1, we obtain σ2 = 0, thus, (31) gives zero integral of the “Gaussian P-curvature” of D.
Next, for r = 1, 2, (30) reduces to the following:∫

M

(
3 σ3 − trF (T1(AN)RP

N +RP
Z )
)

d volg = 0,∫
M

(
4 σ4 + 〈T2(AN)Z , Z〉 − trF

(
T2(AN)RP

N + T1(AN)RP
Z −RP

ANZ
))

d volg = 0.

Example 2. Here is an amazing consequence of (28) and (31). Let us consider a closed connected
sub-Riemannian manifold (M, g;D), dimD ≥ 3 with a harmonic orthogonal distribution D⊥ and
the condition

RicP ≥ 2 c > 0



Mathematics 2021, 9, 1764 9 of 11

for some real c. Suppose that (M, g;D) is equipped with a codimension-one foliation F , i.e.,
D = TF ⊕ span(N). Then the image of the function σ2 : M→ R contains an interval [0, c + ε]
for some ε > 0.

Indeed, by Reeb type formula (28), σ1(x) = 0 at some x ∈ M. Then 2 σ2(x) = −τ2(x) ≤ 0,
see (7). By (31), σ2(F ) ≥ c Vol(M, g). Hence, there exists y ∈ M such that σ2(y) > c (otherwise,
σ2 ≤ c on M, therefore, σ2 ≡ c > 0 on M – a contradiction to σ2(x) ≤ 0). Put ε = σ2(y)− c.
Since M is connected and σ2 : M→ R is a continues function, σ2 takes all values in the interval
[σ2(x), σ2(y)], which obviously includes [0, c + ε].

Using (31), we obtain the following non-existence results for P-harmonic, i.e., σ1 = 0,
and P-totally umbilical, i.e., AN = (σ1/n) id TF , foliations.

Corollary 2. Let (M,D, g) be a closed sub-Riemannian manifold with a harmonic distributionD⊥.

(i) If RicP > 0, then there are no P-harmonic codimension-one foliations in D.
(ii) If RicP < 0, then there are no P-totally umbilical codimension-one foliations in D.

Proof. (i) If F is a P-harmonic codimension-one foliation in D, then 2 σ2 = −τ2 ≤ 0,
see (7).

(ii) If F is a P-totally umbilical codimension-one foliation in D, then

2 σ2 =
n− 1

n
(σ1)

2 ≥ 0.

In both cases, (i) and (ii), we obtain a contradiction to integral formula (31).

Obviously, P-harmonic and P-totally umbilical distributions are harmonic and totally
umbilical, respectively, but the opposite is not true.

4. Some Consequences

Here, we apply our formulas to sub-Riemannian manifolds with restrictions on the
shape operator AN or the induced curvature tensor RP.

4.1. Foliations of Constant Sectional P-Curvature

The total r-th mean curvature of a codimension-one (relative toD) foliationF is given by

σr(F , N) =
∫

M
σr d volg .

The following corollary of Theorem 3 generalizes (4), see also Section 4.1 in [4].

Corollary 3. Let (M,D, g) be a closed sub-Riemannian manifold with D = TF ⊕ span(N) and
a harmonic orthogonal distribution D⊥. If condition (23) is satisfied, then σr(F , N) depend on
r, n, c and the volume of (M, g) only, i.e., the following integral formula is valid:

σr(F , N) =

{
cr/2

(
n/2
r/2

)
Vol(M, g), n and r even,

0, either n or r odd.
(32)

Proof. Using Lemma 3, we obtain

trF (Tr(AN)RP
N) = ∑ n

i=1〈R
P(ei, N)N, Tr(AN)ei〉 = c trF Tr(AN) = c(n− r) σr.

From (30) we obtain the equality

(r + 2) σr+2(F , N) = c(n− r) σr(F , N). (33)
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Since σ1(F , N) = 0, see (28), by induction we get σr(F , N) = 0 for any odd r. For even
r = 2s and n = 2l, using (33) and induction, we obtain σ2s(F , N) = cs( l

s
)
Vol(M, g).

4.2. P-Totally Umbilical Foliations

Here, we obtain similar to (32) integral formulas when (M,D, g) has the property

RicP
X,N = C 〈X, N〉, X ∈ D, (34)

for some C ∈ R and F (with dimF > 1) is a P-totally umbilical foliation. Please note that
Einstein manifolds satisfy condition (34) when D = TM.

The following corollary of Theorem 3 generalizes result in ([4] Section 4.2) on codimension-
one totally umbilical foliations of Einstein manifolds.

Corollary 4. Let (M,D, g) be a closed sub-Riemannian manifold with D = TF ⊕ span(N),
P-totally umbilical foliation F with dimF > 1, a harmonic orthogonal distribution D⊥, and
satisfying (34). Then σr(F , N) depends on r, n, C and the volume of (M, g) only, i.e., the following
formula holds:

σr(F , N) =

{
(C/n)r/2

(
n/2
r/2

)
Vol(M, g), n, r even,

0, r odd.
(35)

Proof. In this case, Tr(AN) has the form

Tr(AN) = ar (σ1/n)r id TF , where ar = ∑ r
i=0(−1)r−i

(n
i

)
.

Since trF Tr(AN) = (n− r)σr = (n− r)
( n

r
)
(σ1/n)r, then

ar =
n− r

n

( n
r

)
, Tr(AN) =

n− r
n

σr id TF .

By our assumption (34),
RicP
Z ,N = 0, RicP

N,N = C.

Thus, for a closed manifold with a P-totally umbilical foliation F and condition (34), formula
(30) becomes similar to (33):

σr+2(F , N) =
C
n
· n− r

r + 2
σr(F , N).

Using induction similarly to Corollary 3, we obtain (35).

Remark 2. Our integral formulas provide more conditions for the mean curvature
H = σ1/n of F . In the case of a P-totally umbilical codimension-one foliation in D, such
conditions can be easily derived from (30) using σr =

( n
r
)

Hr:∫
M

Hr−1
(

H3(n− 1)(n− r− 1) n

−H(n− 1)(r + 1)RicP
N,N −r(r + 1)RicP

Z ,N

)
d volg = 0. (36)

Here we used the following identity with binomial coefficients:

∑ r
j=1 (−1)j−1 n− r + j

n

( n
r− j

)
=
( n− 2

r− 1

)
.
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These integrals contain polynomials depending on H, and one can obtain obstructions for existence
of P-totally umbilical foliations. For example, if r = n− 1, then (36) reads as∫

M
Hn−2(H RicP

N,N +RicP
Z , N)d volg = 0;

thus, if RicP > 0, then any P-totally umbilical codimension-one foliation in D with Z = 0 is
P-totally geodesic, i.e., AN = 0.

5. Conclusions

In the article, integral formula (2) and its consequences for foliated space forms are
generalized for a Riemannian manifold equipped with a foliation F and a unit vector
field N orthogonal to F . The results can be applied to foliated sub-Riemannian manifolds.
Moreover, our integral formulas can be easily extended for non-integrable distributions
and foliations defined outside of a “singularity set” Σ (a finite union of pairwise disjoint
closed submanifolds of codimension at least k of a closed manifold M) under additional
assumption of convergence of certain integrals. Namely, instead of the Divergence theorem,
we apply the following result, see [9]: if (k − 1)(q − 1) ≥ 1 and X is a vector field on
M \ Σ such that

∫
M ‖X‖

q d volg < ∞, then
∫

M div X d volg = 0. One can also try to extend
our integral formulas for holomorphic foliations of complex (sub-)Riemannian manifolds,
see [15] for the case of Riemannian manifolds, i.e., D = TM, and for foliations of metric
affine manifolds, see [16]. Finally note that our integral formulas are less cumbersome than
the integral formulas in [17].
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