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Abstract: This paper analyzes the co-movements of prices of fossil fuels, energy stock markets and
EU allowances. This analysis is conducted in order to identify the spillover effect of volatility and
correlation among these financial markets, and to provide a scientific basis that shows the interest of
incorporating sustainable assets in the design of minimum risk strategies of investment. To achieve
this goal, we have used a Vector Autoregressive-Dynamic Conditional Correlation-Generalized
Autoregressive Conditional Heteroscedasticity (VAR-DCC-GARCH) model that also incorporates
a stock index of industrial companies as a leading indicator of the level of economic activity. In
addition, the paper conducts an impulse response analysis to determine how unexpected shocks
to prices are propagated along time, and, in particular, how they affect prices of the others, both
in mean, variance and correlation. Therefore, the results of this one- and two-dimensional analysis
allow for the study of short and long run dynamics of the relationship among those prices, thus,
providing greater meaning and information for investors, which has implications for building their
portfolios. The analyzed period was from January 2010 to February 2021, so that the data include half
of phase II, full phase III and the onset of phase IV of the EU ETS, as well as the COVID-19 outbreak
in the European context. We also analyzed whether the EUA price impulses the demand of clean
energy stocks, which has important implications for the objective of triggering the investment in clean
energy. Our results show the transmission mechanism of all of those prices, which are relevant not
only for investors but also for policymakers to construct an early-warning system, revealing the most
important transmission channels. Moreover, from an investment viewpoint, we observe a decline in
dirty energies and a rise in the clean energy market, which might be an indication of the progress
towards the energy transition to renewables sources within a circular economy perspective. Therefore,
this shows that the EU ETS is achieving its goals, and that clean energy companies, aligned with
their role towards socially responsible initiatives, are also gaining acceptance in terms of investments,
which would be beneficial for the environment.

Keywords: climate change; EU ETS; energy markets; VAR-DCC-GARCH; impulse response analysis;
minimum risk portfolio

1. Introduction

Climate change has deeply influenced environmental issues, the economy and human
health in the world. Greenhouse gas (GHG) emissions are the main source of climate
change and global warming. Confronted with this situation, many countries and regions
implemented the emission trading scheme, to achieve emission mitigation goals set by the
Kyoto Protocol, Copenhagen Accord and Paris agreement.

The EU emissions trading system (EU ETS) is the cornerstone of the EU’s policy to
combat climate change, and its key tool for reducing GHG emissions cost-effectively. The
EU ETS works on the ‘cap and trade’ principle. Within the cap (set as the total amount

Mathematics 2021, 9, 1787. https://doi.org/10.3390/math9151787 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1205-1756
https://orcid.org/0000-0003-1394-9816
https://orcid.org/0000-0002-5788-6661
https://doi.org/10.3390/math9151787
https://doi.org/10.3390/math9151787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9151787
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9151787?type=check_update&version=2


Mathematics 2021, 9, 1787 2 of 36

of gases that can be emitted by installations covered by the system), companies receive
or buy emission allowances, which they can trade with one another as needed. The EU
ETS operates by setting a cap on CO2 emissions, which generates a price that reflects the
scarcity in the market.

The EU ETS was divided into four phases (phase I: 2005–2007, phase II: 2008–2012,
phase III: 2013–2020), and the fourth phase (2021–2030), has just begun. In phase I and
phase II, the cap was established bottom-up, based on the aggregation of the national
allocation plans of each member state. Phase III started with a single EU-wide cap for
stationary sources, which was annually reduced by a linear factor of 1.74%. As a result, in
2014, the commitment to reduce CO2 emissions to 21% was fulfilled, ahead of the deadline
set in 2020, reaching a 33% reduction. Currently, Phase IV continues using a linear cap
reduction factor of 2.2% annually, applied to both stationary sources and the aviation
sector without a sunset clause (part of a law or contract that states when it will end, or the
conditions under which it will end), so that the cap will continue to decline beyond 2030.

The efficiency of this carbon market can be assessed through the development of the
carbon price [1–6]. However, despite these good results, it is not clear enough that the
effect of the EU ETS system has been key in achieving the emission mitigation goals. Breaks
and changes in the data generating process that underlies the EUA price time series are a
consequence of the design of the EU ETS. Since the pilot test of the initial phase 2005–2007,
the regulation of the emission rights market has undergone a series of modifications that
tried to solve the problems of excess supply, derived from the 2008 financial crisis. A decline
in economic activities led to decreasing emissions and hence to a decreasing demand of
allowances, causing an increase in the supply surplus that induced prices to be quoted
below €10, from the end of 2011 until 2018. Ref. [7] studied the determinants of CO2
emissions in the period 2005–2012, in which the policies of the European Commission
through the EUA only influenced the years prior to the crisis, subsequent reduced emissions
were mainly due to the decline in activity resulting from the 2008 recession. Consequently,
in March 2019, the European Commission devised a new instrument, the market stability
reserve (MSR), to intervene in the allowances price and adjust the annual supply of CO2
allowances based on the CO2 allowances in circulation. In this way, the MSR incorporated
greater restrictions on the surplus supply that drove the price to levels around €24 in the
years 2019 and 2020, thus increasing the cost of emissions of GHG. Currently, although
the effect of the COVID-19 pandemic has caused significant declines in industrial activity,
especially in periods of confinement, the prices of EU allowances were trading at around
€35 at the beginning of 2021.

In reference to the trading volume, the EU carbon market already represented 84%
of the total value of the international carbon market in 2010, although it was only since
2018 that it has resumed its key role in curbing CO2 emissions; this contributed to solving
the structural imbalances that existed between supply and demand. In addition, new
sectors have been incorporated. A Carbon Border Adjustment Mechanism (CBAM) has
been established to avoid carbon leakage, and the current economic situation caused by
the COVID-19 pandemic perfectly justifies establishing an adequate system that manages
to reduce emission levels in the carbon market.

Specifically, the COVID-19 situation has caused some concern and uncertainty in the
recovery of certain key sectors in energy demand. In addition, the start of the 2020–2030
phase shows a new scenario with the commitment adopted in the Paris Agreement that
is determined to reduce emissions by at least 40% in 2030 from 1990, or in the European
Green Deal with a total reduction by 2050.

Consequently, for the EU ETS system to be the driving force that helps meet the agreed
objectives, a rigorous analysis is necessary that must include the main financial markets
involved, and their relationship with the EUA price. The associated trading has led to
higher levels of EUA price volatility and to a changing relation between the EUA price and
fossil fuel prices, economic activity and energy stock markets. In addition, due to the vast
trading volume and drastic price changes, the EU ETS is viewed as a common financial



Mathematics 2021, 9, 1787 3 of 36

market for analyzing financial characteristics and portfolio management [8]. Therefore, it is
presumable that the level of interaction or interdependence between markets has important
consequencesm in terms of predictability, portfolio diversification and asset allocation. For
this reason, ref. [9] recommended a joint study between the carbon market and fossil fuels
market (coal, oil and gas).

The present work focuses on this issue, taking into account, on the one hand, the
energy markets that generate the most pollution, either due to their frequent use or due to
their very nature, and, on the other hand, the markets for clean and dirty energy stocks
that are related to the carbon market through the EUA.

Regarding energy markets, according to World Bank data, the main source of primary
energy comes from the consumption of fossil fuels (oil, gas and coal). Furthermore, the
indicators of the International Energy Agency show that the consumption of fossil fuel in
the production of energy, transport and in the industry emits the highest amount of CO2
emissions in the world.

The fossil fuel prices have a large impact on the global economy, and the performance
of almost all companies is affected by their fluctuations [10]. Numerous empirical stud-
ies [11–13] document that an increase in oil price has had negative impacts on stock prices.
However, such effects could be industry specific, since there are several sectors that could
even make profits from rising oil prices. One of these exceptions might be the renewable
or clean energy industry [14]. This is because rising oil prices encourage the substitution
of alternative energy sources for conventional energy sources [15]. An increase in fossil
fuel prices should drive demand for clean energy, consequently driving up the price. This
should result in an increase of clean energy companies’ stock returns, since this industry
would be more attractive to investors. In addition, even though the alternative energy
industry may still be small compared to other more established energy industries, the
growing role played by renewables is undeniable.

Moreover, the industrial sectors that consume that type of fossil fuel and generate a
large amount of emissions must take into account their financial performance, the price
of fossil fuels and the value of EUA [16]. Furthermore, the greater limitations on surplus
supply through the MSR to meet the ecological transition objectives shows the need to
rigorously analyze the information in all of these markets. Therefore, not only the price
of fossil fuels, but as [17] states, the higher prices of carbon allowances encourage the
production of clean energies. This fact also justifies the relationship between clean energy
equity markets and the carbon market.

Therefore, investors need to better understand the behavior and interactions between
financial markets, in order to develop portfolios with optimal diversification. Authors such
as [18,19] state that the carbon market, although emerging, is also an important part of
financial markets as an alternative investment in portfolio composition.

The relationship between return and volatility among these markets has been studied
in the literature in a segmented manner. Thus, while authors such as [20,21] studied the link
between the carbon market and fossil fuel markets, refs. [17,22] analyzed the relationship of
EUA price with clean energy stocks prices, and [23] explored the connection between fossil
fuels and renewable energy stock. However, to our knowledge, a model that addresses the
joint dynamic linkage in both return and volatility among EU carbon market, fossil fuels
(oil, gas and coal) and energy equity markets has not yet been carried out.

Taking into account all of this background information, this paper dynamically an-
alyzes the relationship between the prices of fossil fuels, emission allowances and clean
and dirty energy stocks as well as their persistence over time, in order to provide strategies
for investors. In addition, the economic activity of companies is taken into account by
adding an industrial stock index that acts as a leading indicator of their level of economic
activity. Returns, risks and correlations of assets are key elements in empirical finance, espe-
cially in the construction of optimal portfolios. Therefore, to achieve the objective, we use
a Vector Autoregressive-Dynamic Conditional Correlation-Generalized Auto-regressive
Conditional Heteroscedasticity (VAR-DCC-GARCH) model that lets us capture their evolu-
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tion through time and identify the transmission of shocks across the mean, volatility and
correlation of all those variables. In addition, the results of a detailed impulse response
analysis allow us to study short and long run dynamics of the relationship among all of
those prices, providing greater meaning and information for investors, which can have,
in particular, implications for construction of their investment portfolios. In addition, the
analyzed period is from January 2010 to February 2021, which includes half of phase II, full
phase III of the EU ETS and the onset of phase IV. Hence, we can also analyze whether the
EUA price impulses the demand of clean energy stocks, which has important implications
for policymakers, as the objective of the EU ETS is to trigger investment of these types
of stocks.

On the one hand, investigating the transmission mechanism is relevant for policy-
makers to construct an early-warning system, revealing the most important transmission
channels and to guide competent authorities to sustainable energy transitioning towards
decarbonization. On the other hand, the importance of identifying the spillover effect of
volatility and correlation in a dynamic way is crucial to efficiently manage the investment
portfolios, and to carry out optimal diversification of assets. This intelligent management
reduces the risk, and controls the changes that may occur due to the economic situation in
general or to greater restrictions with the mechanisms that adjust the supply of allowances.

Compared with the previous literature, the contribution of this article is four-fold.
Firstly, this paper considers the construction of a model that addresses the joint dynamic
linkage, in both return, volatility and correlation, between the markets of carbon, of fossil
fuels and of energy equities, by taking into account the industrial activity. Second, the
analyzed period is similarly a novelty, given that it is from January 2010 to February 2021,
so data comprise half of phase II, full phase III and the onset of phase IV of the EU ETS. This
includes the removal of the oversupply of allowances, as well as the COVID-19 outbreak.
Third, a detailed and meticulous study has been made of the impulse response functions in
both returns, volatility and correlation from a one-dimensional and two-dimensional per-
spective, which has allowed us to find the most relevant effects among all of those markets.
Fourth, the weights of the optimal portfolio of minimum risk have been determined by
taking into account the evolution of the economic situation and the uncertainty associated
with the expected returns of each asset, and by evaluating the existence of significant
differences between the portfolio variances using the Diebold–Mariano test [24].

The structure of this paper is as follows: Section 2 contains a review of the relevant
literature. Section 3 describes the data and the multivariate VAR-DCC-GARCH model used
in the paper. This section also includes the construction of the impulse response functions.
In Section 4, we provide and discuss the empirical results. Finally, Section 5 shows general
conclusions and further work.

2. Literature Review

Several authors have studied the relationship between prices of CO2 emission al-
lowances (EUA) and the fossil energy market. Ref. [25] showed that the main drivers of
the EUA are raw energy prices (brent, gas and coal), together with the economic activity
level. Ref. [26] found an indirect link between the consumption of fossil fuels, used in the
production of electric energy, and the EUA prices.

Refs. [27,28] found a negative effect of changes in the price of the electricity and the
three fossil fuels (coal, gas and oil) on carbon prices in US, with the exception of gas
that changes the sign of its effect if the price of carbon is high. More recently, in Europe,
the results of [29] showed, on the one hand, that coal prices tend to move weakly in the
opposite direction to oil and gas prices and, on the other hand, that EUA prices had not
affected the process of switching from coal to gas as an alternative energy since this was
very expensive.

The literature has also dealt with the transmission of volatility and the evolution of
the correlations between fossil fuel prices and those of the EUA. In this sense, ref. [30]
highlighted that the interrelationships between EUA prices and fossil fuels are dynamic,
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finding a transmission of volatility from oil and gas to the carbon market and from the latter
to coal and gas. Similarly, ref. [31] also found that the volatility transmission is dynamic,
being especially stronger in crisis periods. Ref. [20] showed the existence of spillover effects
in volatility between EUA prices and coal and gas prices, but not with oil prices. In their
research, ref. [21] measured both total and directional volatility spillovers by means of the
forecast-error variance decompositions. Their results revealed that the emission allowances
market was a receiver in excess return, and a transmitter in excess volatility. Regarding the
role of fossil energy, both oil and especially gas had a great influence on the volatility of
the carbon market and, in the case of gas, even in situations that change over time due to
climate policies and extreme conditions.

The applicability of these works is not only useful for designing adequate environmen-
tal policies, but also for intelligent portfolio management. Information on the correlation
and transmission of volatility in the fossil fuel and equity markets can be useful to ad-
equately diversify the portfolio and implement hedging strategies to reduce risk. This
type of study has mainly focused on the effect of oil prices, since it is the most used fossil
fuel. Thus, ref. [32] showed the negative relationship between oil prices and the Greek
stock market. Ref. [33] found the existence of increasing trends in the correlations between
different raw materials (oil, gold, silver and copper) and decreasing trends with the S&P
500 index since the Iraq war in 2003. Ref. [34] discovered that the correlation between oil
prices and the Chinese stock market increased markedly because of the 2008 crisis, and
that new energy companies were less exposed to this fuel. In their work, ref. [35] analyzed
data from different countries, and found changing correlations that increased with the 2008
crisis, and showed that oil price shocks tended to have a negative effect on stock markets.

Studies on the relationship of clean energy start-ups and fossil fuel prices have also
focused primarily on explaining the effects of oil. Thus, refs. [36,37] showed that, despite
the fact that oil price increases favor the performance of clean energy companies, the
prices of technology companies exert a greater influence on the profitability of those
companies. Refs. [14,38] found a structural change after the 2008 crisis, from which oil
prices and share prices of technology companies had an even stronger relationship with
clean energy stock prices. Ref. [39] analyzed the systemic risk between oil prices and the
contribution rates of renewable energy based on the conditional value at risk, and found
that variations in oil prices contribute to around 30% of the risk of this indicator. Finally,
ref. [15] found that oil prices and technology stock prices affect the share price of clean
energy companies. However, they found no relationship between EUA prices and these
companies’ stocks. Moreover, ref. [40] found a significant level in the transmission of
volatility among EUA, fossil fuels, electricity and the clean energy market. They found that
the most important effects (on both return and volatility) were exerted by oil prices and
the effects of clean energy and coal markets on EUA prices were also significant. Similarly,
through analyzing the European and American markets, ref. [17] found volatility spillover
effects between EUA prices and clean energy companies specific to each country–region. In
addition, they found a low average correlation between both types of assets, which makes
proper diversification possible. In their study, in China, ref. [22] found significant dynamic
correlations and transmission of volatility between both markets together with coal. In this
case, the persistence of shocks is greater between coal and clean energy stocks, reflecting
the great importance of this fuel in that country.

Other works have related the allowances price with the stock markets of “dirty”
energy, due to their higher levels of CO2 emissions. Thus, ref. [41] showed the existence
of a positive relationship between the stock prices of electricity companies and that of
emission allowances, although [42,43] showed that EUA price reductions did not positively
affect the stock price of the dirty energy sector in certain periods of large EUA price drops.
Ref. [44] found the presence of a carbon premium with the granting of free carbon emission
allowances for German companies, which contributed to increasing their price, especially
for the most emission-intensive companies. Ref. [45] showed a positive and negative
impact between the returns of the (EUA) and the stocks of “dirty” energy companies in
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Spain for the subsequent periods of phase II and phase III, respectively. Similarly, ref. [46]
showed that the returns of the EUA negatively affect the returns of the stocks of the most
carbon intensive companies. More recently, ref. [47] found a strong link between the returns
of European electricity stocks and the EUA, although their relationship depends on the
situation of the market of emission allowances and on the stability of the financial markets.
Finally, in the Chinese stock market, ref. [48] found negative dynamic correlations between
the carbon emissions trading market and the capital market, relating it to the establishment
of unreasonable shares in the EUA stock market.

Therefore, it is evident that the literature has studied the link between the emission
allowances market with fossil fuel markets, and those of the stocks of clean and dirty
energy companies. The results highlight the existence of significant spillover effects in
volatility and changing correlations between series overtime, related to the evolution of the
economic activity. However, we have not found any work that analyzes the relationships
among all markets together, which can give a wider perspective to these relationships. Our
goal is to help fill this gap in the literature while also explicitly incorporating the expected
evolution of the level of companies’ economic activity.

3. Data and Methods

This section starts by presenting some basic information about the data analyzed
in this study in Section 3.1. Section 3.2 describes the VAR-DCC-GARCH model used to
estimate the expected return and risk of the analyzed series. Finally, Section 3.3 shows how
to carry out an impulse response analysis in mean, volatility and correlation, which gives
an indication of how these moments change after positive or negative shocks.

3.1. The Data

This study has used data from seven series of daily closing prices from 19 January
2010 to 5 February 2021, which includes 2675 observations. All variables are expressed in
euros. The fossil fuel series (named GAS.UE, OIL and COAL in our database) refers to
the futures prices of the main raw materials in Europe (Daily closing prices of UK Natural
Gas, Brent oil and Rotterdam Coal Futures were obtained from Intercontinental Exchange
(ICE) on Investing.com). Coal futures are listed on the stock exchange Rotterdam market,
which is the largest trading volume in Europe. The “Brent” oil futures are listed in the
United Kingdom, and they are the main reference for the price of a barrel of this fuel
in Europe. In the case of Natural Gas Futures, the reference in Europe is also listed on
the United Kingdom stock exchange market. These three fuels are the main generators
of “dirty” energy, and coal is the one that pollutes the most and is the cheapest of the
three. Gas is the one that pollutes the least, and, in Europe, it has experienced important
growth replacing coal in generating electricity (https://www.iea.org/data-and-statistics/
?country=EU28&fuel=Energy%20supply&indicator=ElecGenByFuel, accessed on 7 May
2021) [29]. Finally, oil continues to be the main natural resource of the industrialized world,
whose demand continues to grow (https://www.iea.org/data-and-statistics?country=
WORLD&fuel=Energy%20supply&indicator=TPESbySource, accessed on 7 May 2021).

The series of stock prices of clean and dirty energy sectors are the S&P Global Clean
Energy Index (more information and details on the weights and the calculation formula of
this index can be seen on https://www.spglobal.com/spdji/en/indices/esg/sp-global-
clean-energy-index/#overview, accessed on 7 May 2021) and the EURO STOXX® Oil & Gas
Index (more information and details on the weights and the calculation formula can be seen
on https://www.stoxx.com/index-details?symbol=SXEE, accessed on 7 May 2021), respec-
tively. The S&P Global Clean Energy Index (named CLEAN in our database) is designed to
measure the performance of 31 companies from all over the world in clean energy-related
businesses. This index comprises a diversified mix of production companies, in addition to
clean energy technology and equipment. The “dirty” energy indicator (named OIL.GAS
in our database) provides information on the 12 largest European companies engaged in
the exploitation, drilling, production, refining, distribution and retail sale of oil and gas

https://www.iea.org/data-and-statistics/?country=EU28&fuel=Energy%20supply&indicator=ElecGenByFuel
https://www.iea.org/data-and-statistics/?country=EU28&fuel=Energy%20supply&indicator=ElecGenByFuel
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=TPESbySource
https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=TPESbySource
https://www.spglobal.com/spdji/en/indices/esg/sp-global-clean-energy-index/#overview
https://www.spglobal.com/spdji/en/indices/esg/sp-global-clean-energy-index/#overview
https://www.stoxx.com/index-details?symbol=SXEE
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products, according to the market standard Industry Classification Benchmark (ICB) (ICB
categorizes companies according to their primary source of revenue, for more details see
https://www.stoxx.com/sector-classification-icb, accessed on 20 July 2021). Moreover, we
have decided to include an indicator, in order to reflect the situation of industrial activity
throughout the period, so, we can have a reference related to the situation of the economic
cycle in each time, which helps to interpret the relationships based on this indicator. This in-
dicator (named INDUSTRIAL in our database) is represented by the STOXX 600 Optimized
Industrial Goods and Services index (data are obtained from ETF ISIN: IE00B5MJYX09,
more information and details on the weights and the calculation formula can be seen on
https://www.stoxx.com/index-details?symbol=sxonp, accessed on 20 July 2021). This in-
dex provides information from a representation of the leading companies in their respective
sectors that make up the STOXX Limited based on the Industry Classification Benchmark.

Finally, the variable EUA collects the prices of European Unit Allowances, and has
been obtained from SENDECO2 (European CO2 Trading System), a company that buys
and sells emission rights on its own account, and technical and administrative advice of
industrial facilities subject to the trade directive (EU ETS).

Figure 1 shows the evolution of the seven series throughout the analyzed period.
A general decreasing movement of coal and oil prices is observed, although with some
correction in the 2016–2019 period. In the case of coal, this decrease is due to its loss of
importance in the energy mix, especially since 2018, caused by its high pollution power
and its dangerous effects on people’s health, which makes it necessary to abandon and
transition towards sustainable energy production. In the case of oil, there are two sharp falls,
the first in 2014 (Syrian conflict) and the second in 2020 (COVID-19 pandemic). Regarding
gas, there is not a clear trend, but rather a fluctuating evolution of prices depending on the
scope of production, reserves, weather conditions, economic growth and crude oil prices
as well as, more recently, coal prices. Fossil fuels still have a major role in the development
of the economy, facilitating the mobility of people and goods, the production of many
materials and energy generation. In this sense, the main consumption of coal comes from
industry, oil from transportation and gas from household demand.

Figure 1. Matrix graph with the evolution of the daily prices of the seven series.

Figure 1 also shows a strong rising trend in the industrial index, which reflects the
economic growth in Europe and the influence of technological advances. In reference to the

https://www.stoxx.com/sector-classification-icb
https://www.stoxx.com/sector-classification-icb
https://www.stoxx.com/index-details?symbol=sxonp
https://www.stoxx.com/index-details?symbol=sxonp


Mathematics 2021, 9, 1787 8 of 36

evolution of EUA price, we can focus on the different phases of the EU ETS, especially in
phase III (2013–2020), where after hitting its minimum, the latest reforms on the withdrawal
of excess supply have caused a significant rebound in the price. This evolution has been
accompanied by a similar evolution in clean energy share prices, the value of which has
shot up since 2020, which highlights that high EUA prices have encouraged the use of this
type of energy. Prices of dirty energy company shares are closely linked to that of their
fossil fuels, especially to those of gas and oil. These opposite trends in prices of clean and
dirty energy companies in recent years show more favorable future scenarios for companies
that are committed to the renewable energy transition.

3.2. The Model

Let {pi,t; i = 1, ..., N; t = 1, ..., T} be the series of daily prices of the financial assets analyzed.
As in most financial studies, all of the analysis are carried out with the returns of

assets instead of their prices, which, unlike prices, are stationary (see Figure 2) and they
are also more interesting from an investment point of view.

Figure 2. Matrix graph with the evolution of the daily returns of the seven series.

So, let {rt = (r1,t, ..., rN,t)’; t = 1, ..., T} be the series of daily financial returns vectors with

ri,t = 100· log
(

Pi,t
Pi,t−1

)
for i = 1, ..., N.

We assume that
rt|F t−1 = µt + εt

whereF t = {r1, ..., rt} is the information set in period t, µt = E[rt|F t−1] and εt = (ε1t, ..., εN,t)’ is
the error term. The conditional mean vector, µt, is derived from a conditional heteroscedas-
tic Vector Autoregressive Model of order K (VAR(K)) given by:

µt =

K

∑
k=1

Φkrt−k

with {Φi; i = 1, ..., K} being time invariant matrices N × N and

var(rt|F t−1 ) = var(εt|F t−1) = Ht

where Ht is a N × N positive definite matrix.
In order to model the evolution of Ht, we have used the class of multivariate models

called Dynamic Conditional Correlation (DCC) models introduced by [49,50]. This kind of
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model allows for correlations and covariances to vary over time, by keeping the flexibility of
the univariate GARCH approach to capture the volatility of each univariate series. This is a
reliable tool for estimating interconnections between them. Because of the interdependence
between stock market variables, the estimation of correlations and covariance matrices
turns out to be a requisite for financial market investors.

In the DCC(M1,M2)-GARCH(P,Q) specification, the variances and covariance matrix
Ht is given by:

Ht = DtRtDt

where Dt = diag
(√

h11,t, ...,
√

hNN,t
)

with hii,t = var(ri,t|F t−1 ) for i = 1, ..., N and Rt is the
conditional correlation matrix. The conditional variances hii,t are given by n independent
GARCH(P,Q) models that can be written in vector form as:

diag(Ht) = Ω +

P

∑
p=1

Apεt−p � εt−p +

Q

∑
q=1

Bqdiag(Ht−q)

where Ω = diag(ωi),
{

Ap = diag
(
αi,p

)
; p = 1, ..., P

}
and {Bq = diag(βi,q); q = 1, ..., Q}

are N × N diagonal matrices, and � denotes the Hadamard operator.
With respect to the time varying correlation matrix, Rt, we assume that

Rt = Q∗−1
t QtQ

∗−1
t

where Qt is given by:

Qt =
-

Q +
M1

∑
m=1

am

(
zt−mz′t−m −

-
Q
)
+

M2

∑
n=1

bn

(
Qt−m −

-
Q
)

Q∗t = diag(Qt)

with a1, ..., aM1 and b1, ..., bM2 being non-negative scalars verifying the condition that
∑M1

m=1 am + ∑M2
n=1 bn < 1, which is imposed to ensure the stationary and positive def-

initeness of Qt; zt = D−1
t εt are the standardized residuals;

-
Q is the unconditional co-

variance matrix of the standardized residuals, resulting from the first stage estimation;

{ztz′t =
-

Q;−M1 ≤ t ≤ 0} and {Qt =
-

Q; −M2 ≤ t ≤ 0}, are the starting values of Qt.
The parameters of the model are estimated in a three-step procedure based on [51]. In

a first step, we estimate a multivariate VAR(K) model for rt and we obtain an estimation
ε̂t of the residuals εt. In a second step a univariate GARCH(P,Q) model is estimated
for each residual univariate time series {ε̂i,t; i = 1, ..., n; t = 1, ..., T} and an estimation

of D̂t = diag
(√

ĥ11,t, ...,
√

ĥNN,t

)
, t = 1, ..., T is obtained. Finally, in a third step, the

estimation of a1, ..., aM1 and b1, ..., bM2 is carried out by maximizing the following pseudo
log-likelihood L:

L =


L1 if zt ∼ N(0, Rt)

L2 if zt ∼ tν(0, Rt)

L3 if zt ∼ L(0, Rt)

where

L1 = −1
2

T

∑
t=1

(
log(|Rt|) + ẑ′tR

−1
t ẑt

)

L2 = Tlog

Γ
(

N+ν
2

)
Γ
(
ν
2
)
− NT

2
log(ν)− 1

2

T

∑
t=1

(
log(|Rt|)+, (ν+ N) log

(
1 +

1
ν

ẑ′tR
−1
t ẑt

))

L3 = −1
2

T

∑
t=1

(
log(|Rt|) +

(N − 2)
2

log

(
ẑ′tR
−1
t ẑt

2

)
− 2 log

(
K (2−N)

2

(√
2ẑ′tR

−1
t ẑt

)))
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and N(0, Rt), tν(0, Rt), L(0, Rt) denote a multivariate normal, a multivariate Student t with
ν degrees of freedom and a multivariate symmetric Laplace distributions, respectively, all

of them with location 0 and scale matrix Rt, and where ẑt = D̂−1
t ε̂t,

-
Q = 1

T ∑T
t=1 ẑ′tẑt and

Kν is the modified Bessel function of the second kind.

3.3. Impulse Response Analysis

In this section, the determination of the impulse response functions is addressed.
Impulse response functions represent the mechanisms through which shocks spread over
time. Their main purpose is to describe the evolution of model variables in reaction to a
shock in one or more of them.

These functions explore the dynamics of an error shock in the system on the future
predicted mean, variance and correlation of the variables. In order to simplify the expres-
sions, we obtain these functions for the VAR(1)-DCC(1,1)-GARCH(1,1) model, which is the
selected one in our empirical application.

We denote by VIRFM to the impulse response function for the conditional expectation, that
is defined as the mean of the response vector conditional on history and a current shock, as
compared with a baseline that conditions only on historical innovations. That is to say:

VIRFM(h,F t−1) = E[rt+h|zt = et,F t−1 ]− E[rt+h|F t−1 ]

where the standardized shock et occurs at time t, and h represents the horizon of prediction.
The impulse response function in a VAR(1) is given by:

VIRFM(h,F t−1) = Φ1VIRFM(h− 1,F t−1), when h ≥ 1

with Φ1 being the matrix of coefficients of the VAR(1) model, and the initial value is:

VIRFM(0,F t−1) = H1/2
t et

In the same way, we denote by VIRFH the impulse response function for the variance
and covariance matrix of the variables, and it is defined as [52]:

VIRFH(h,F t−1) = E[Ht+h|zt = et,F t−1 ]− E[Ht+h|F t−1 ]

This study can be carried out separately for conditional variances and correlations
because of the following decomposition:

E[Ht+h|F t−1 ] ∼= E[Dt+h|F t−1 ]E[Rt+h|F t−1 ]E[Dt+h|F t−1 ]

In regard to the impulse response function for the conditional volatility, as opposed
to the conditional mean, we use the fact that GARCH models can be viewed as a VAR
model for the error εit squares. Therefore, it is possible to use this particular structure to
analytically calculate conditional expectations of volatility in their VIRF analysis. Thus, let
us denote by VIRFD that the impulse response function corresponding to the individual
volatilities of each variable, which is defined as the expectation of volatility conditional on
an initial shock and on history minus the baseline expectation that conditions on history:

VIRFD(h,F t−1) = E
[
D2

t+h|zt = et,F t−1

]
− E

[
D2

t+h|F t−1

]
In our case, we have a GARCH(1,1) model for each residual εit, then P = Q = 1 and the

model reduces to:
diag(Ht) = Ω + Aεt−1 � εt−1 + Bdiag(Ht−1)

with Ω, A and B being the diagonal matrices that contain the parametersωi, αi and βi of
the n individual models for the conditional variances. The VIRFD for a horizon h can be
calculated as [52]:

VIRFD(h,F t−1) = (A + B)VIRFD(h− 1,F t−1), when h > 1
and for h = 1:

VIRFD(1,F t−1) = A·diag
(

H
1
2
t
(
ete′t − IN

)
H

1
2
t

)
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with IN the identity matrix N × N.
Finally, for the correlation matrix, let us denote VIRFR as the impulse response function

of the conditional correlation, which is defined as:vspace-3pt

VIRFR(h,F t−1) = E[Rt+h|zt = et,F t−1 ]− E[Rt+h|F t−1 ]

Given the DCC model and following [51] we use the following approximation:

E[Rt+h|F t−1 ] ≈ E[Qt+h|F t−1 ]

Therefore,

VIRFR(h,F t−1) ≈ E[Qt+h|zt = et,F t−1 ]− E[Qt+h|F t−1 ]

where
E[Qt+h|F t−1 ] = (1− a− b)

-
Q + azt+h−1z′t+h−1 + bE[Qt+h−1|F t−1 ]

and
-

Q = 1
T ∑T

t=1 ẑ′tẑt. So, the impulse response function is approximated by:

VIRFR(h,F t−1) = (a + b)VIRFR(h− 1,F t−1), when h > 1

VIRFR(1,F t−1) = a·D−1
t H

1
2
t
(
ete′t − IN

)
H

1
2
t D−1

t

4. Results

This section provides the empirical results, which are organized in the following way.
Section 4.1 presents the results of the estimation process. Section 4.2 shows the impulse
response analysis and, finally, Section 4.3 shows the dynamic evolution of the minimum
risk portfolio weights.

4.1. Estimation of the Model

Figure 2 shows the daily evolution of the return of the analyzed prices, and Table 1
displays the results of a descriptive study. Their behavior is typical of most of daily
asset returns series [53]: heteroscedasticity with volatility clustering (large changes tend
to be followed by large changes of either sign, and small changes tend to be followed
by small changes) and statistically significant leptokurtosis. The series with the highest
volatility are EUA and GAS.UE, meanwhile the three stock indices—CLEAN, OIL.GAS and
INDUSTRIAL—have lower and similar volatilities, given that they are weighted averages
of firm returns.

Table 1. Descriptive analysis of the daily returns of the seven series.

Minimum Maximum Mean Std. Dev. Skewness Kurtosis

COAL −18,090 19,416 −0.009 1394 0.737 * 47,574 *
GAS.UE −17,253 34,275 0.012 2926 1.098 * 11,975 *

OIL −27,976 19,077 −0.009 2303 −1.043 * 21,159 *
EUA −42,252 21,586 0.039 3244 −0.979 * 15,572 *

CLEAN −12,497 11,033 0.013 1527 −0.606 * 7415 *
OIL.GAS −17,953 12,387 −0.012 1527 −1.067 * 17,061 *

INDUSTRIAL −14,344 9414 0.041 1337 −0.928 * 9818 *
* Significant at 0.1%.

Figure 3 shows a matrix graphic with the cross-correlation function of all the return
series in the off-diagonal cells, and their autocorrelation function in the diagonal ones.

The diagonal cells highlight the existence of a majority of small non-significant auto-
correlations, typical of this kind of financial time series (A study of the autocorrelations
of each series revealed that their absolute values were ≤0.10; besides the 80% these were
not significant and among the significant the 62.5% corresponded to lags ≥ 6, which is
due to the heteroscedastic character of the series (see Figure 4).) [53]. On the contrary,
the off-diagonal cells show that most of the contemporaneous correlations are significant.
Three groups of assets can be distinguished according to the importance of their correla-
tions: COAL and GAS.UE; OIL, CLEAN, OIL.GAS and INDUSTRIAL; and EUA. The first
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two groups only have relevant positive correlations intra-groups and insignificant ones
between them. For its part, EUA has significant positive correlations with all the series.

Figure 3. Cross-correlation function of the returns of the seven series in the off-diagonal cells and with the autocorrelation
function on themselves in the diagonal.
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Figure 4. Matrix graph with the cross-correlation function of the residuals of the VAR(1) model in the off-diagonal cells, and
with the autocorrelation function of the quadratic residuals in the diagonal.
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In order to collect the joint links, we fitted VAR(K) models with K ≤ 5 and we
selected K using some information criteria: Akaike information criterion (AIC), Bayesian
information criterion (BIC) and Hannan and Quinn information criterion (HQC). AIC
selected K = 3 while HQC and BIC selected K = 1, due to their more parsimonious character.
Figure 4 shows the cross-correlation function of the residuals of the VAR(1) model in
the off-diagonal cells, and the autocorrelation function of the quadratic residuals in the
diagonal cells in a matrix graphic. Residuals are heteroscedastic with all of the diagonal
autocorrelations significantly positive, reflecting the existence of volatility clustering and
a high persistence in all the series. Therefore, we use a GARCH model for each of the
analyzed series.

The off-diagonal cells in Figure 4, which contain the correlations between residuals,
point towards a multivariate GARCH model that should be proposed, allowing correlation
between all of the series. Moreover, we can observe the existence of a simultaneous
correlation between the different series, so we estimated a DCC model and carried out
the [51] test, to verify whether the correlations are constant over time or not. The test value
was 24.495 with a p-value of 4.79 × 10−6, clearly indicating that the correlations are not
constant throughout the period studied (Analogous studies with the residuals of VAR(2)
and VAR(3) models were car-ried out, and we obtained similar results which are omitted
for the sake of brevity). Studies on the interrelationships between prices of EUA and of
fossil energy (coal, gas and Brent oil) such as that of [20,30] showed that these are dynamic
and therefore, changing in time.

To determine the definitive model, a comparison analysis with three multivariate
distributions of the errors (multivariate Gaussian, multivariate Student t and multivariate
Laplace) and with lags 1, 2 and 3 was carried out. This study is presented in Table 2,
which shows the value of the selection information criteria (The values of the information
criteria and the estimations of the models used in the paper were made using the packages
rmgarch and rugarch of R version 4.0.3).

Table 2. Selection criteria with different multivariate distributions and VAR-GARCH-DCC models (the optimal model in
bold print).

VAR(1)-GARCH(1,1)-DCC(1,1) VAR(2)-GARCH(1,1)-DCC(1,1) VAR(3)-GARCH(1,1)-DCC(1,1)

Distribution AIC BIC HQC AIC BIC HQC AIC BIC HQC

M. Normal 25.127 25.332 25.202 25.160 25.473 25.273 25.201 25.622 25.353

M. T Student 24.319 24.526 24.394 24.357 24.672 24.471 24.408 24.831 24.561

M. Laplace 24.655 24.860 24.729 24.698 25.011 24.811 24.759 25.180 24.912

From Table 2, we can see that the VAR(1)-GARCH(1,1)-DCC(1,1) model with multi-
variate Student’s t distribution is selected since it has the minimum value in all criteria.
Table 3 presents the estimation of the coefficients of the mean equation of the VAR(1) model.

Table 3. Estimated coefficients of the VAR(1) model (the significant coefficients are in bold print).

Coefficients COAL(-1) GAS.UE(-1) OIL(-1) EUA(-1) CLEAN(-1) OIL.GAS(-1) INDUSTRIAL(-1)

COAL 0.02338 0.05579 ** 0.00922 −0.00919 0.02650 −0.05097 * 0.03341
(0.24255) (0.00000) (0.51479) (0.28874) (0.25299) (0.07805) (0.30190)

GAS.UE 0.02176 0.05417 ** −0.00455 0.00584 0.01190 −0.10689 * −0.01403
(0.60628) (0.00818) (0.87886) (0.74917) (0.80771) (0.07985) (0.83716)

OIL −0.03012 −0.00792 0.07510 ** 0.00359 0.06640 * 0.01437 −0.13066 **
(0.36423) (0.62306) (0.00138) (0.80293) (0.08432) (0.76465) (0.01498)

EUA −0.11469 ** −0.05019 ** −0.01282 0.00617 0.04902 −0.15851 ** 0.04049
(0.01410) (0.02686) (0.69803) (0.76041) (0.36527) (0.01894) (0.59218)

CLEAN −0.04084 * 0.01264 0.00291 0.01138 0.13734 ** 0.05042 −0.11047 **
(0.06196) (0.23390) (0.85097) (0.22939) (0.00000) (0.11099) (0.00180)

OIL.GAS −0.01479 −0.00295 0.00410 −0.01071 0.06667 ** 0.06888 ** −0.05208
(0.50154) (0.78264) (0.79208) (0.26052) (0.00891) (0.03034) (0.14340)

INDUSTRIAL −0.01428 −0.00292 0.02909 ** −0.01063 0.09595 ** 0.00449 −0.06639 **
(0.45801) (0.75483) (0.03263) (0.20168) (0.00002) (0.87190) (0.03298)

The p-values are enclosed in parentheses, indicated with * significant at 10% and ** significant at 5%.
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It can be seen that the autoregressive AR(1) coefficients of most of the series are small
(absolute value < 0.15). All of this reflects the existence of high levels of efficiency in the
market, with quick mean reversion to zero against any imbalance that appears in the asset
returns. The short-term evolution of EUA is negatively influenced by COAL, GAS.UE and
OIL.GAS. A price increase of COAL and GAS.UE foresees a decrease in CO2 emissions and,
therefore, a decrease in EUA prices. Similarly, when prices of OIL.GAS go up, investors
discount a higher profitability of the companies in this sector, with a reduction in their costs
that translates into a subsequent decrease in the prices of GAS.UE, COAL and EUA. On
the other hand, the past evolution of EUA does not significantly influence any of the series,
which reflects that the stimulus to reduce CO2 by switching from dirty to clean energy it
is not channeled through the mean return of the series. Refs. [15,42,43] also did not find
significant relationships between allowance and stock prices of clean and dirty energy
firms. Perhaps this fact justifies the change to more restricted mechanisms of removing
excess allowances.

Finally, we focus on the relationship between clean, dirty and industry stocks with oil
prices. Industrial price growths anticipate the decrease in OIL prices as well as in CLEAN
and OIL.GAS stock prices, i.e., cost decreases, which therefore increase the companies’
future profitability. On the other hand, OIL price increases anticipate INDUSTRIAL stock
price increases because an increase in the demand of this raw material is usually linked
to economic boom periods. In the same line, increases in CLEAN stock prices are also
usually connected to economic boom periods and, for this reason, anticipate increases in
OIL prices and in OIL.GAS and INDUSTRIAL stock prices. This fact indirectly reveals the
increasing importance of clean companies, whose evolution has a significant and direct
influence not only on the industrial sector, but also on the price of oil and dirty companies
(but not the opposite). All of this highlights the convenience in promoting the activity of
these types of companies, to the detriment of other more polluting ones, not only for the
obvious environmental reasons but also for economic purposes.

The estimates of the conditional variance and covariance equations of the DCC(1,1)-
GARCH(1,1) model with multivariate Student t distribution are shown in Table 4 and
Figure 5. Figure 5 shows the estimated volatility of the daily returns of the seven series
in the diagonal cells, and the estimated dynamic correlation between two variables in the
off-diagonal cells in the matrix graphic. A red horizontal line marks the mean value that
would correspond to a constant correlation model (CCC model).

Table 4. Estimated coefficients of the DCC(1,1)-GARCH(1,1) model with multivariate Student t distribution. The significant
coefficients are in bold.

Coefficients COAL GAS.UE OIL EUA CLEAN OIL.GAS INDUSTRIAL

ωi
0.0098 ** 0.0629 * 0.0325 ** 0.1089 ** 0.0286 ** 0.0226 ** 0.0394 **
(0.0374) (0.0504) (0.0328) (0.0479) (0.0107) (0.0104) (0.0000)

αi
0.0087 * 0.1051 ** 0.0797 ** 0.1196 ** 0.01018 ** 0.0925 ** 0.1106 **
(0.0527) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

βi
0.9866 ** 0.8939 ** 0.9179 ** 0.8794 ** 0.8880 ** 0.9019 ** 0.8666 **
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

a 0.0116 **
(0.0000)

b
0.9683 **
(0.0000)

ν
6.3634 **
(0.0000)

The p-values are enclosed in parentheses, indicated with * significant at 10% and ** significant at 5%.
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Figure 5. Matrix graph with the estimated dynamic correlation between two variables in the off-diagonal cells and with
the estimated volatility of the daily returns of the seven series in the diagonal. The estimated constant correlation of a
VAR(1)-CCC-GARCH(1,1) model is in red.
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All of the coefficients are significant, and the volatility persistence (sum of alpha and
beta) is very high in all the series, oscillating between 0.90 and 0.999, with large estimation
of the beta coefficients. This indicates, on the one hand, the heteroscedastic character of the
series (alpha coefficients are all significantly different from zero) and, on the other hand, the
existence of medium/long-term impacts of unexpected shock and the importance of the
volatility clustering phenomenon in these series, which was already revealed in Figure 4.

The same occurs with the coefficients a and b, in which their sum is very close to one,
with values significantly different from zero. This highlights the time varying character of
covariance and correlations of all the series and reflects a high persistence in their evolution.
However, the existence of systematic non-constant trends in the estimated evolution of
correlations is not appreciated (see off-diagonal cells in Figure 4), but there is an oscillating
behavior around their mean values. Works such as that of [20] show a persistent long-term
dynamic correlation between the EU carbon market and fossil fuels. In addition, in China,
ref. [22] found significant dynamic correlations between the carbon market and stocks
of clean energy companies, and [48] between the carbon market and the oil and natural
gas market.

COAL series have the lowest values of volatility, due to the lower trading volume
in the energy market. Moreover, the closure of coal mines and the phasing out of coal
use for power generation has reduced its importance in this market (more information
can be seen on https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunities-and-
challenges-ahead, accessed on 20 July 2021). CLEAN, OIL.GAS and INDUSTRIAL series
have lower and similar volatilities (see also Figure 2) because, as commented above, they
are weighted averages of stock prices, which flattens their daily growth. Furthermore,
they have high positive levels of correlation, which reflects the existence of risk synergy
effects between them, as the changes of time-varying variances between the two markets
will become consistent [20,22]. Volatilities of OIL, GAS.UE and EUA series tend to be the
highest (see also Figure 2), which along with the difficulty of forecasting fossil fuel prices,
could make renewables more attractive for consumers and providers.

With the only exception of EUA, a high value of return volatility is highlighted in
March 2020 (see Figure 5), coinciding with the start of the COVID-19 pandemic. The
EUA series presents a great volatility at the onset of phase III, where the way of acquiring
allowances changed. EUA price is also directly related with all the series, but with low-
middle sized correlation levels around 0.2. These results are in line with those of [20], who
related the carbon market with fossil fuels, as well as those of [17,22] who included shares
of clean energy companies, and those of [48] who incorporated the equity market.

4.2. Impulse Response Analysis

In this section, we represent the impulse response functions, in mean, volatility and
correlations. Section 4.2.1 shows the impulse response curves (univariate) that is to say, the
effects when a shock occurs in one variable. Section 4.2.2 displays the impulse response
surfaces (bivariate) or the effects when shocks occur in two variables.

4.2.1. Shock in a Single Variable

In this section, we analyze the effects of unexpected shocks in each series on the
conditional mean, volatility and correlation of the seven series for different time horizons.
The selected horizon for conditional volatility and correlation is approximately one year,
about 200 days, but in the case of the conditional mean, we have reduced this horizon to
10 days because the effects of shocks decline rapidly. We have worked with impulses from
2 to 10 times the standard deviation in the absolute value. Lines represent the different
impulses colored in black, cyan, blue, green and red, respectively.

• Impulse response curves for the conditional mean

Figure 6 shows a 7 × 7 matrix graphic with the impulse response functions for the
conditional mean return of the seven variables. Each row corresponds to the shocked
variable and each column to the response of each variable. Therefore, the diagonal contains

https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunities-and-challenges-ahead
https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunities-and-challenges-ahead
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the response of each variable to its shock. We have used the same scale in the off-diagonal
cells, in order to observe the greatest influences on the returns of all the series more clearly.
The scale is different only for diagonal cells, as they contain the strongest effects. In all the
cases, the effects disappear quickly because of the strong mean reversion character of all of
the series.

Figure 6. Matrix graph with the mean impulse response curves for several forecast horizons and shock sizes. The off-
diagonal cells contain the response of the conditional mean of one variable, when the shocked variable is a different one and
the diagonal cells encloses the responses when the shocks are produced on itself (the shocked variable in brackets).
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The results of the off-diagonal cells of Figure 6 also show that the influence rapidly
decays towards zero. The greatest effects occur inside of the three commented blocks of
the series, due to their high level of intra-connection, while the lowest effects take place
between series of different blocks. For instance, if a shock occurs in any of the series in the
third block (OIL, CLEAN, OIL.GAS and INDUSTRIAL), the highest responses correspond
to the series of this block (see the graphics corresponding to the crossing of rows 3, 5, 6 and
7 with the same columns), whereas the impact on the series of the first block (COAL and
GAS.UE) is almost negligible (see the graphics corresponding to the crossing of rows 3, 5,
6 and 7 with columns 1 and 2). Clearly, a higher size of the impulse influences a greater
response in all the variables.

• Impulse response curves for the conditional variance

Figure 7 shows a 7 × 7 matrix graphic with the impulse response curves for the
conditional volatility of the seven series. Each row corresponds to the shocked variable
(marked between brackets in the title of each chart) and each column to the response of each
variable. In particular, the diagonal contains the response of each variable to its own shocks.
Again, in the off-diagonal cells we have used the same scale, in order to observe more
clearly the greatest influences on the volatility of all of the series. For diagonal graphics,
the scale is different because they contain the strongest effect.

For each series the major volatility impacts are caused as a response to its own
shocks. With respect to off-diagonal cells, the main impacts correspond to some of the
interconnected series. Thus, graphic (1, 2) (graphic (i, j) denotes the graphic corresponding
to the crossing of row i and column j) shows a negative impact of COAL on GAS.UE, but
not the other way around (see graphic (2, 1)). Impacts are observed both ways between
GAS.UE and EUA (graphic (2, 4) and graphic (4, 2)), OIL and OIL.GAS (graphic (3, 6)
and graphic (6, 3)), CLEAN and EUA (graphic (4, 5) and graphic (5, 4)), CLEAN and
INDUSTRIAL (graphic (5, 7) and graphic (7, 5)) as well as OIL.GAS and INDUSTRIAL
(graphic (6, 7) and graphic (7, 6)). Furthermore, in all the cases, a higher size of the impulse
influences in a greater volatility response. In general, the effects are lasting due to the high
volatility persistence.

These results are in line with [20], who found a unidirectional excess volatility of coal
to EUA, and from the latter to gas for a series that covered a period until September 2014.
Therefore, in the later period analyzed in our paper, a greater connection between coal
and gas has been produced, probably due to the change to gas in electricity production.
Ref. [20] explained that this change could be due to its lower polluting effect and its greater
technical and economic flexibility, allowing the complementary use of other renewable
energy sources. Unlike [20], and in line with other authors such as [30], we found excess
bidirectional volatility between gas and EUA prices, which could also be explained by the
increased use of gas in electricity generation. In addition, ref. [21] found that the volatility of
gas prices significantly affects EUA prices, ref. [46] explained the transmission of volatility
between the carbon markets and the electric companies, and [47] showed a strong link
between the performance of the shares of electric companies and emission allowances.
Finally, the bidirectional transmission of volatility between CLEAN and EUA is in line
with the results of [17,40], who showed volatility transmission from carbon market to clean
energy companies. The rest of the volatility impacts explain the relationship between OIL
prices with OIL.GAS share prices, and between these with industrial activity, which also
affects clean energy share prices.
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Figure 7. Matrix graph with the volatility impulse response curves for several forecast horizons and shock sizes. The
off-diagonal cells contain the response of the conditional volatility of one variable when the shocked variable is a different
one and the diagonal cells enclose the responses when the shocks are produced on itself (the shocked variable in brackets).

• Impulse response curves for the conditional correlation

Figure 8 shows a 7 × 7 matrix graphic with the impulse response curves for the
conditional correlation between two variables when the shock is produced in one of them.
Each row corresponds to the shocked variable and each column to the impulse response
functions of the correlation, between the pair of variables listed on the title of the graphic.
The diagonal indicates the shocked variable and all of the off-diagonal graphics have
been drawn with the same scale, in order to clearly observe the greatest influences on the
changes in correlation of all of the series.
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Figure 8. Matrix graph with the conditional correlation impulse response curves for several forecast horizons and shock
sizes. The off-diagonal cells of each row contain the response of the correlation between the shocked variable and each of
the others. The diagonal cells specify the shocked variable.
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Figure 8 shows that the greatest impacts (both ways) occur between variables con-
tained in the same block: COAL and GAS.UE on the one hand (graphic (1, 2) and graphic
(2, 1)) and OIL, CLEAN, OIL.GAS and INDUSTRIA, on the other hand (graphic (i, j); i = 3,
5, 6, 7; j = 3, 5, 6, 7). Moreover, the correlations of EUA with the rest of the series are also
affected both ways by their shocks (see all graphics in row 4 and column 4). Again, the
size of impacts is directly related to the size of the shocks, and their effects are lasting
due to the high persistence of the covariances. Ref. [20] showed the existence of positive
dynamic correlations between EUA price and all fossil fuels prices, being higher with coal,
followed by gas and lastly with oil. Ref. [22] found significant dynamic correlations in
China between carbon and coal markets, and both with the clean company equity market.
Ref. [48] showed, also in China, the existence of dynamic conditional correlations between
the carbon emissions trading market and the oil and natural gas market. It is interesting
to comment the findings of [20], who showed that increases in volatility, in times of crisis,
increase the levels of positive dynamic correlation, and, therefore, the risk synergy effects,
with the opposite effect occuring in more calm periods in the economy, where the effect
decreases the correlation.

4.2.2. Shocks in Two Variables

Given that one of the objectives of the paper is to analyze the performance of the
EUA market, in this section, we analyze the interactions of EUA with the rest of variables.
Concretely, we study the response functions for the conditional mean, volatility and
correlation of each variable when the shocks occur simultaneously in EUA and in other
variables. The organization of this section is the same as the previous one, only now the
impulse response functions are surfaces instead of curves.

• Impulse response surfaces for conditional mean

Figure 9 shows a 6 × 7 matrix graphic with the response surfaces (in this case planes)
of the one step ahead (horizon 1) conditional mean of all of the seven variables (by column
and listed on the title of each graph) to bivariate impulses in all pairs of combinations of
each variable with EUA (by row). For instance, graphic (1, 2) shows the return response of
GAS.UE (axis OZ) to simultaneous shocks in COAL (axis OY) and EUA (axis OX). The size
of shocks oscillates from −10 to 10 standard deviations of each series (see axis OX and OY),
while the increment of the conditional expected return (axis OZ) oscillates from −6% (blue)
to 6% (red). In this case, the positive obliquity of the plane indicates that positive (negative)
shocks in COAL and EUA produce an increase (decrease) in the expected GAS.UE return.
However, shocks of different signs in COAL and EUA tend to offset their effects on the
expected GAS.UE return. In addition, the degree of inclination of the plane, with respect
to the plane z = 0 is high, which indicates that the size (in absolute terms) of these effects
is high. For instance, simultaneous shocks of 10 (−10) standard deviations in COAL and
EUA are expected to increase (decrease) the GAS.UE return around 5%.

Figure 9 highlights that the response functions of each series only depend on its own
shocks, independent of the size of the EUA shocks (see graphics (1, 1), (2, 2), (3, 3), (4, 5),
(5, 6) and (6, 7)). This fact can be appreciated in the color lines of the plane, which are
approximately parallel to the OX axis. Analogously, the response of EUA only depends on
its own shocks because the color lines of the plane are parallel to the OY axis (see graphics
in column 4).

Regarding cross-effects (Regarding cross-effects, i.e., effects of bivariate shocks in EUA
and another series on the response of a third series), column 2 shows that GAS.UE is affected
by bivariate EUA-COAL and EUA-OIL shocks. However, for the rest of combinations,
the response of GAS.UE is only affected by the EUA shock (the color lines of each plane
are parallel to OY axis). Column 1 shows that COAL is only weakly affected by bivariate
EUA-GAS.UE shocks (see the low inclination of the plane in graphic (1, 2)). OIL is affected
to a greater or lesser extent by the interaction of EUA shocks, with the shocks of other series
and the effects of EUA being stronger when combined with the fossil fuels and weaker
when combined with the stock indices (see column 3). Finally, CLEAN, OIL.GAS and
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INDUSTRIAL are affected by the interaction of the EUA shocks, with those of the variables
in their block, with EUA having less effect (see graphic (i, j) 5 ≤ i 6= j ≤ 7).

Figure 9. Matrix graph with the response surfaces of the conditional mean of all of the seven variables (by column) to
bivariate impulses in all pairs of combinations of each variable with EUA (by row).

Figure 10 displays a matrix graphic with the response surfaces of the one step ahead
(horizon 1) conditional mean of EUA return to bivariate impulses in all pairs of combi-
nations of the rest of the variables (The impulse response functions of two or more steps
ahead were insignificant, due to the high mean reversion of all the series and are omitted
for the sake of brevity).
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Figure 10. Matrix graph with the response surfaces of the conditional mean of EUA to bivariate impulses in all pairs of
combinations of the rest of the variables.

The strongest effects on EUA are exerted by interactions of GAS.UE or OIL shocks
with the rest (see graphics in columns 1 and 2 and row 2). In all of the cases, the size of the
impacts increases with the size of the shocks.

• Impulse response surfaces for the conditional volatility

Figure 11 presents a matrix graphic with the response surfaces of the one step ahead
(horizon = 1) conditional volatility of the seven variables (by column) to bivariate impulses
in all pair combinations of each variable with EUA (by row). For instance, graphic (1,2)
shows the volatility response of GAS.UE (axis OZ) to impulses in COAL (axis OY) and
EUA (axis OX). The size of shocks oscillates from −10 to 10 standard deviations of each
series (see axis OX and OY), while the increment of the expected conditional volatility
(axis OZ) oscillates from −5 units (blue) to 15 units (red). In this case, the largest increase
in volatility corresponds to the largest shocks in absolute value with the same sign. The
largest decreases correspond to the largest shocks in absolute value but with different signs.

This figure highlights that the response functions of the conditional volatility of each
series only depend on its own shocks, independentl of the size of the EUA shocks (the color
lines of the surfaces are approximately parallel to axis OX). With respect to the response
functions of EUA (column 4 of Figure 11), they depend on their own shocks (color lines are
parallel to axis OY) except when they are combined with GAS.UE shocks (see graphic (2, 4))
in which case a weak interaction effect can be observed. According to cross-effects, GAS.UE
is only affected weakly by EUA shocks, except when combined with COAL shocks. Finally,
CLEAN, OIL.GAS and INDUSTRIAL are also very weakly affected by the interaction of
EUA with shocks of them (see graphic (i, j) 5 ≤ i 6= j ≤ 7).
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Figure 11. Matrix graph with the response surfaces of the conditional volatility of all of the seven variables (by column) to
bivariate impulses in all pair combinations of each variable with EUA (by row).

Figure 12 shows a matrix graphic with the response surfaces of the one step ahead
conditional volatility of EUA to bivariate impulses in all pairs of combinations of the rest
of the variables.

The strongest effects on EUA are exerted by interactions of GAS.UE shocks with the
rest of series (see graphic (1, 1) and graphic (2, j) 1≤ j≤ 4)). The strongest effect corresponds
to the interaction of GAS.UE with CLEAN shocks, when shocks of the corresponding series
occur with the same magnitude and direction, while there is a decrease when the direction
is different.
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Figure 12. Matrix graph with the response surfaces of the conditional volatility of EUA to bivariate impulses in all pairs of
combinations of the rest of the variables.

Figure 13 shows a matrix graphic with the dynamic evolution of response surfaces of
the conditional volatility of each variable to bivariate impulses in all pairs of combinations
of each variable with EUA, which contain the most important effects. Each row corresponds
to the response of each variable and each column to a temporal horizon.

It can be seen that the shape of the impacts surface is maintained over time and
decreases as the time horizon grows, although with different speeds that increasingly
depend on the persistence variance of each series (see αi + βI from Table 4). For instance,
notice the high persistence in GAS.UE (row 2) and the low persistence in INDUSTRIAL
(row 7).

• Impulse response surfaces for the conditional correlation

The analysis of the conditional correlation surfaces revealed that the only significant
responses were those corresponding to the combination of shocked variables. For this
reason, Figure 14 shows a matrix graphic with only the dynamic evolution of response
surfaces of the conditional correlation between each pair of variables to their own shocks.
For instance, graphic (1, 1) shows the change of the conditional correlation between COAL
and GAS.UE (axis OZ) to simultaneous shocks in COAL (axis OY) and GAS.UE (axis OX).
The size of shocks oscillates from −10 to 10 standard deviations of each series (see axis OX
and OY), while the increment of the expected conditional correlation (axis OZ) oscillates
from −1 units (blue) to 1.5 units (red). The profiles of all surfaces are very similar and show
that an increase in the correlation is produced when shocks of the corresponding series
occur with the same magnitude and direction, while there is a decrease when the direction
is different.
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Figure 13. Matrix graph with the dynamic evolution of response surfaces of the conditional volatility of each variable to
bivariate impulses in all pairs of combinations of each variable with EUA. Each row corresponds to the response of each
variable and each column to a temporal horizon.
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Figure 14. Matrix graph with the response surfaces of the conditional correlation between all pairs of combinations of two
variables to bivariate impulses on themselves.

Figure 15 shows the dynamic evolution for different horizons of the response surfaces
of the conditional correlation between each variable and EUA in a matrix graphic. Each
row corresponds to each pair of variables and each column to a temporal horizon. The
effects remain almost intact after 10 days but decrease considerably after 25 days and have
practically disappeared after 50 days. This decrease depends on the value of a + b (see
Table 4), which is the same for each pair of variables.

Once this in-depth analysis of the impulse response functions of conditional mean,
volatility and correlation had been carried out, we analyzed the effects of EUA on the
returns and the risk of the rest of variables and vice versa.

If we analyze the impulse response functions of conditional mean, i.e., the expected
returns of the series, we notice that the impacts of EUA increase and last for one day due
to the existence of a strong mean reversion (see row 4 of Figure 6). The most important
impacts are exerted on itself and on GAS.UE and OIL Furthermore, the effects of EUA
shocks are enhanced by shocks that affect other variables, when they are of the same sign
and are offset if they are of a different sign (see Figure 9). Symmetrically, the shocks of these
two variables, both individually (see column 4 of Figure 7) and combined with shocks of
other variables (see Figure 10), affect the return of the EUA. In this case, the effects last for
two days and are positive in the first day and negative in the second, thus reflecting the
existence of a corrective effect typical of the stock markets.

If we consider the responses in volatility (i.e., risk), the most significant impacts of the
EUA are exerted on its own volatility and on that of the GAS.UE (see row 4 of Figure 7).
The existence of an enhancing effect is only observed when combined with a COAL shock
(see column 2 of Figure 11). Symmetrically, the most significant effects on the volatility
of EUA correspond to GAS.UE shocks both individually (see column 4 of Figure 7) and
combined with shocks from other variables (see graphic (2, 4) of Figures 11 and 12). In both
cases, the persistence of these effects is high (see row 4 and column 4 of Figures 7 and 13)
and their values increase with the absolute value of the impacts.

Finally, taking into account the correlation responses, the most significant impacts
on the correlations of the EUA with another variable are exerted by the shocks that affect
them. These impacts increase the value of the correlation and, therefore, the possibility of
a risk synergy effect between them. This effect is persistent (see row 4 and column 4 of
Figures 8 and 15) and is bigger, the greater the absolute value of the shock. Furthermore,
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this effect is enhanced if shocks of the same sign are produced simultaneously in both
variables (see Figure 15).

Figure 15. Matrix graph with the dynamic evolution of response surfaces of the conditional correlation between each
variable and EUA to bivariate impulses of different size on themselves. Each row corresponds to each pair of variables and
each column to a temporal horizon.
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4.3. Optimal Portfolio Weights

The importance of identifying the spillover effect of volatility and correlation in a
dynamic way is crucial to efficiently managing investment portfolios and to carrying out
optimal diversification of assets. This intelligent management allows for reducing the risk
and controlling the changes that may occur, due to the economic situation in general or
greater restrictions with the mechanisms that adjust the supply of allowances.

In this section, we use the results of the estimated VAR(1)-DCC(1,1)-GARCH(1,1)
model in Section 4.1 to investigate portfolio diversification opportunities amongst different
alternative energy financial markets. For this aim, and given that most of investors are
risk averse and prefer less risk for the same level of expected return [54], we will focus on
risk reduction and Markowitz’s minimum variance portfolios. Their weights are obtained
sequentially, by minimizing the volatility of the portfolio subject to a required return
constraint. This problem can be formulated as:

min
ωt

ω′tHtωts.t.ω′tµ = 1

where ωt = (ω1,t, . . . ,ωN,t)
′ is the vector of portfolio weights for time t chosen at time

t − 1, Ht is the conditional variance and covariance matrix of a vector of returns for time t
and µ is the assumed vector of returns. The solution to this problem is:

ωt =
H−1

t µ

µ′H−1
t µ

(1)

Note that ∑N
i=1ωi,t, with ωi,t being the share on asset i for time t, generally will not

need to be equal to 1. Indeed, 1−∑n
i=1ωi,t is the share in the risk-free asset.

This optimal portfolio selection procedure assigns greater weight to assets with high-
expected return and low expected variance, and vice versa. As on the one hand, investors
with different expected returns will hold different portfolios and, on the other hand, it is
impossible to know the true vector of expected returns, we will carry out the optimization
process for a wide range of hypothetical time-invariant vectors of expected returns, which
are not required to be the true one. Different investors at different times have different
vectors of expected returns; therefore, we take a set of return vectors capturing possible
and different scenarios, where returns could be high, and others in which they could be
low or even zero. Asset pricing theory suggests that the unconditional expected returns
for stocks should be positive, and that stocks should have the highest expected return.
So, following [55–57], we do not consider return vectors with all of their components
negative, because this does not respond to reality. The selected vectors of returns have to
be a proxy of expected returns, and the prior belief of investors is that those returns should
be non-negative, and even as high as possible. Once we select that set of return vectors, we
can calculate the corresponding weights for each of them by applying (1), and consequently
we obtain the optimal portfolio. The last step of the selecting process of the final optimal
portfolio is to take the weight for each of its assets and the average of the weights obtained
in the different optimal portfolios for each return vectors of the considered set.

With this way of acting, in our particular case, we have followed three different
strategies to determine the set of return vectors. In the first case, we take the no overlapping
134 monthly averages of the observed returns included in the analyzed period, and we
discard five vectors whose components are all negative. In the second case, we calculate
the no overlapping 45 quarterly averages included in our period, discarding two vectors in
which all of their components are negative. Finally, in the third case, we have considered
the no overlapping 13 yearly averages without discarding any. In order to compare and
select the best option of the three strategies we follow the approach of [56].

Table 5 provides the t-statistics of the Diebold–Mariano test (see details in the Ap-
pendix A) to compare the volatilities of two dynamic portfolios. The null hypothesis of
this test is that there is no difference between the portfolio variances. In our case, we have
compared the portfolios selected by the three strategies (monthly, quarterly and annually)
described earlier. The t-statistics provided in the table are the result of comparing the
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strategy in the column with the one in the row. A negative (positive) value of the t statistic
is evidence in favor of better (worse) performance, in terms of volatilities, of the row
strategy. We can observe that the strategy with a statistically significant risk reduction is
the second one, corresponding to that obtained with the 43 quarterly return averages.

Table 5. Diebold and Mariano test with heteroscedasticity correction.

Monthly Quarterly Yearly

Monthly 2.2707 −2.1427
Quarterly −2.2707 −2.5858

Yearly 2.1427 2.5858
All the results are significant at 5%.

In addition, Figure 16 displays in a two-panel graphic the evolution of the daily
portfolio volatility (left panel) and the daily evolution of the portfolio return (right panel)
obtained with the three strategies (red lines correspond to the monthly strategy, black lines
to the quarterly strategy and blue lines to the yearly strategy). The volatilities pattern (left
panel) is similar in the three strategies, but the oscillations are clearly greater in the yearly
average strategy and smaller in the quarterly one, causing the Diebold and Mariano test to
select this latter strategy as the best. The profile in the three volatility lines indicates that
there are two periods of high volatility, which correspond to April 2013 and March 2020.
The maximum in April 2013 corresponds to the onset of phase III with a change in the
allocations of allowances and the regularization of the EU ETS because there was a surplus
of allowances due to the economic crisis. The EUA price fell from 4.71 to 3.1 and the on
following day to 2.5; therefore, in total, it had a drop of more than 50%, which caused high
volatility, which is reflected in the composition of the portfolio. The second most important
peak corresponds to March 2020 and coincides with the declaration of the health crisis due
to the COVID-19 pandemic, which unleashed a great storm in the markets, producing high
volatility (see Figure 5). With respect to the right panel of Figure 16, which displays the
daily evolution of the portfolio return, we can observe a more homogeneous behavior in
the oscillation levels of returns throughout time than in the case of individual assets (see
Figure 2), which shows a higher control of the inversion risk.

Figure 16. Evolution of the daily portfolio volatility (left panel) and of the daily portfolio return (right panel) for the three
strategies (monthly in red line, quarterly in black line and yearly in blue line).

Figure 17 shows only the evolution of the weights of the optimal portfolio correspond-
ing to the quarterly strategy. The message obtained from the other two strategies (monthly
and annual) is very similar and they are not shown for the sake of brevity.
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Figure 17. Evolution of the weights of the optimal portfolio composed by fossil fuels, energy stocks, EU allowances and a
risk-free asset.

The analysis of the optimal weights shows how the clean energy sector has become
important in optimal diversification strategies with the passage of time. Clearly, CLEAN
is the asset with the greatest weight in the portfolio 74.72% of the days, followed by EUA
with 7.74%. Therefore, it is clear that clean energies have been playing a relevant role in
recent years. To diversify the risks, the portfolio has to go short on selling OIL.GAS asset
on 91.47% of the days. This is due to those assets tending to have lower volatility levels
throughout the analyzed period. Raw materials have specific moments in which they have
the largest weights: COAL has been 5.83%, GAS.UE, 7.52% and OIL 3.18%. All of the EUA
weights were positive with intermediate values, between 8% and 35%, due to its higher
levels of volatility.

It is observed that the weight in CLEAN was the largest from the end of 2016 to
February 2020, where it fell due to the pandemic. The closure of most thermal power plants
at the beginning of 2020 caused a sharp fall in the price of COAL, which may explain the
increase in its weight in the portfolio in the first quarter of 2020. We can see that the weight
of OIL was below CLEAN since 2017, but the COVID 2019 crisis has caused interest in
renewable energies to be lost and OIL has become important again. This fact could be due
to markets taking the economic recovery for granted. The derivative markets, in which
raw materials, such as oil are traded, move with expectations, and these are of economic
reactivation due to medical advances and vaccination processes. The COVID-19 vaccine
is promoting better forecasts for the economy, in which the rise in fuel prices plays an
important role. When dealing with expectations, investors believe that these prices will
continue to rise until a real balance between supply and demand is produced.

5. Conclusions

This paper has carried out a dynamic multivariate study of the evolution of return
of financial assets, related to the energy market (fossil fuels, energy companies and in-
dustrial firms). For this, the VAR-DCC-GARCH family of models has been used, which
provides a very adequate framework to describe their joint evolution, taking into account
their heteroscedastic nature, as well as the temporal evolution of the variances and the
correlations between these series. This allows, on the one hand, analysis of the impulse
response functions of these moments before unexpected shocks affecting each series and,
on the other hand, to capture the patterns existing in the joint evolution of the series in
terms of the binomial risk-return, which constitutes crucial information for the design
of investment portfolios. In particular, special attention has been paid to the temporal
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evolution of the prices of the CO2 European Emission Allowances, in order to know if these
prices are helping to achieve the objective of encouraging the use of renewable energy and
reducing that of dirty energy so that the EU can meet climate objectives.

Our results show the existence of three groups of assets with little influence on each
other. One group is made up of COAL and GAS.UE, a second block is OIL and the
stock indices of energy and industrial companies and, lastly, a third block with only the
allowance prices. The first two groups tend to move simultaneously in the same direction
with significantly positive correlations, and with high persistence in volatility. While it
is true that the correlations change over time, they fluctuate relatively little around an
average value, and also reflect high persistence.

Regarding the return of CO2 allowances, its correlation is positive with all the returns
series, although this is not very strong. The most important impacts of the EUA shocks
on the expected returns and the risk are exerted on itself and on GAS.UE, and vice versa.
The impact on mean lasts at most two days, and they are enhanced by shocks that affect
other variables when they are of the same sign, and are offset if they are of a different sign.
The persistence of the impacts on volatility is high and an enhancing effect of the EUA on
GAS.UE is only observed when combined with a COAL shock, while this pushing up effect
occurs on EUA if the GAS.UE shock is combined with shocks from other variables. Finally,
the most significant impacts on the correlations of the EUA with another variable are
exerted by the shocks that affect them. These impacts increase the value of the correlation
and, therefore, the possibility of a risk synergy effect between them. This effect is persistent
and is bigger, the greater the absolute value of the shock. Furthermore, this effect is
enhanced if shocks of the same sign are produced simultaneously in both variables.

In terms of investment, this paper has dynamically calculated the composition of
a portfolio, with minimal volatility and required return of assets related to fossil fuels,
allowances and energy companies. The results show the importance of investing in clean
companies, due to their lower volatility, while also offsetting the risk with short investments
in oil and gas companies due to their lower volatility. These weights increase significantly
in economic boom years, in which clean companies tend to be an asset to be taken into
account, due to their low levels of volatility and increased return. In times of crisis, however,
its weighting falls in favor of fossil fuels and allowances. All of this achieves returns with
more homogeneous oscillation levels, only altered by unexpected situations, such as, for
example, the current pandemic, which has significantly increased the levels of uncertainty
in all of the series analyzed.

Although, from the speculation point of view, investing in the EUA does not play a
relevant role, but an indirect influence in favor of the environment is observed, which is
highlighted with the growth of the weights of clean energy assets in the optimal portfolio
with time. This result highlights the declining of dirty energies and the rising of the clean
energy market, also amongst the investment community, which might be an indication
of the progress towards the energy transition to renewables sources, within a circular
economy perspective. Therefore, this shows that the EU ETS is achieving its goals and
that clean energy companies, aligned with their role towards socially responsible initia-
tives, could also gain acceptance in terms of investments, which would be beneficial for
the environment.

From our point of view, the information provided by our results may be useful for
policymakers (European commission) when evaluating the impact that the restrictions
imposed on the carbon market by the MSR have had on investment in assets of energy and
industrial companies. In addition, our results could make investments in green and clean
energy assets more appealing to investors, which indirectly have positive implications
regarding social and economic development. Therefore, this could affect the welfare of
clean and green investments, given the evidence on the utility of these renewable energy
investments in mitigating the downside risk of their competent and counterpart dirty
energy assets.
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Despite our good results, it would be interesting to carry out an economic valuation of
the volatility in this field, suggested by [55,56]. This future research would take into account
more general MGARCH models and the risk aversion of the investor. Additionally, it could
be interesting to extend our results by investigating the dynamic directional information
spillover of return and volatility between the four markets: fossil fuels, energy, industrial
stocks and EUA in line with [58].
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Appendix A

Diebold–Mariano Test to Compare the Volatilities of Two Dynamic Portfolios

Let
{
µk; k = 1, 2, 3

}
the hypothesized vector of the returns determined by each one of the

three strategies (monthly, quarterly, yearly)
Let {Ht = var(rt|F t−1); t = 1, ..., T} the estimated conditional covariance matrices of
{rt; t = 1, ..., T}

Let
{

wk
t =

H−1
t µ

k

µk′H−1
t µ

k ; t = 1, ..., T; k = 1, 2, 3
}

the minimizing volatility weigths of the portfolios

Let
{
πk

t =
(
wk

t
)′
(rt −

-
r); t = 1, ..., T; k = 1, 2, 3

}
the portfolio returns.

As [55] we construct the squared returns differences between each pair of strategies
(k1, k2) ∈ {1, 2, 3} × {1, 2, 3} with k1 6= k2

u(k1,k2)
t =

(
π

k1
t

)2
−
(
π

k2
t

)2
; t = 1, ..., T

and we adjust these differences by the geometric mean of the two variances estimators

v(k1,k2)
t = u(k1,k2)

t

√
2
(
µk1′H−1

t µk1

)(
µk2′H−1

t µk2

)
in order to correct for heteroscedasticity.

Let VT =
(

v(k1,k2)
1 , ..., v(k1,k2)

T

)′
and we set up the model

VT = βv1T + εv,T

where 1T is a vector of T ones and εv,T is an error term. The null hypothesis is H0:

βv = 0 and we use a Diebold–Mariano test based on T1/2G−1/2
v

-
V → N(βv1T,IT) where

-
V = 1

T ∑T
t=1 Vt, Gv is an heteroscedasticity and autocorrelation consistent (HAC) estimator

of the covariance matrix estimator of
-

V. More details can be found in [55].
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