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Abstract: In this paper, we introduce a new class of multi-dimensional robust optimization problems
(named (P)) with mixed constraints implying second-order partial differential equations (PDEs) and
inequations (PDIs). Moreover, we define an auxiliary (modified) class of robust control problems
(named (P)(b̄,c̄)), which is much easier to study, and provide some characterization results of (P)
and (P)(b̄,c̄) by using the notions of normal weak robust optimal solution and robust saddle-point
associated with a Lagrange functional corresponding to (P)(b̄,c̄). For this aim, we consider path-
independent curvilinear integral cost functionals and the notion of convexity associated with a
curvilinear integral functional generated by a controlled closed (complete integrable) Lagrange
1-form.

Keywords: Lagrange 1-form; second-order Lagrangian; normal weak robust optimal solution;
modified objective function method; robust saddle-point

1. Introduction

As we all know, partial differential equations (PDEs) and partial differential inequa-
tions (PDIs) are essential in modeling and investigating many processes in engineering and
science. In this respect, many researchers have taken a special interest in their study. We spec-
ify, for example, the research works of Mititelu [1], Treanţă [2–4], Mititelu and Treanţă [5],
Olteanu and Treanţă [6], Preeti et al. [7], and Jayswal et al. [8] on the study of some opti-
mization problems with ODE, PDE, or isoperimetric constraints. In order to reduce the
complexity of the considered optimization problems, some auxiliary optimization problems
were formulated to investigate the initial problems more easily (Treanţă [9–12]). Neverthe-
less, since the real-life processes and phenomena often imply uncertainty in initial data,
many researchers have turned their attention to optimization issues governed by first- and
second-order PDEs, isoperimetric restrictions, stochastic PDEs, uncertain data, or a combi-
nation thereof. In this context, we mention the following research papers: Wei et al. [13],
Liu and Yuan [14], Jeyakumar et al. [15], Sun et al. [16], Preeti et al. [7], Lu et al. [17], and
Treanţă [18]. The structure of approximate solutions associated with some autonomous
variational problems on large finite intervals was studied by Zaslavski [19]. Furthermore,
Geldhauser and Valdinoci [20] investigated an optimization problem with SPDE constraints,
with the peculiarity that the control parameter s is the s-th power of the diffusion operator
in the state equation. In [21], Babamiyi et al. focused on identifying a distributed parameter
in a saddle point problem with application to the elasticity imaging inverse problem. Very
recently, Debnath and Qin [22], investigated the robust optimality and duality for minimax
fractional programming problems with support functions.

Motivated and inspired by previous research works, in this paper, we introduce and
study new classes of robust optimization problems. More exactly, by taking curvilinear in-
tegral objective functionals with mixed (equality and inequality) constraints implying data
uncertainty and second-order partial derivatives, we introduce the robust control problems
under study. Further, by using the concept of convexity associated with curvilinear integral
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functionals and the notion of robust saddle-point associated with a Lagrange functional
corresponding to the modified robust optimization problem, we formulate and prove
some characterization results for the considered classes of control problems. The novelty
elements included in the paper, in comparison with other research papers in this field,
are provided by the presence of uncertain data both in the objective functional and in
the constraint functionals and also by the presence of second-order partial derivatives.
Moreover, the proofs associated with the main results are established in an innovative
way. Furthermore, since the mathematical framework introduced here is appropriate for
various scientific approaches and viewpoints on complex spatial behaviors, the current
paper could be seen as a definitive research work for a large community of researchers in
engineering and science.

The paper is structured as follows. Section 2 provides the preliminary and necessary
mathematical tools, which will be used in the next sections. Section 3 includes the main
results of this paper. Under convexity assumption of the cost functional, the first main
result establishes a connection between a robust saddle point of the Lagrange functional as-
sociated with the associated modified problem (P)(b̄,c̄) and a weak robust optimal solution
of (P). By assuming the convexity hypotheses of the constraint functionals, the converse of
the first main result is presented in the second main result. In Section 4, we formulate the
conclusions and further development.

2. Preliminaries

In this paper, we use the following working hypotheses and notations:

• Consider Rp,Rq,Rr and Rn as Euclidean spaces of dimension p, q, r and n, respec-
tively;

• Consider Θ ⊂ Rp as a compact domain and the point t = (tα) ∈ Θ as a multi-parameter
of evolution or multi-time;

• Consider Γ ⊂ Θ as a piecewise smooth curve joining the points t0 and t1 in Θ;

• B is the space of C4-class state functions b = (bτ) : Θ → Rq and bα :=
∂b
∂tα

, bαβ :=

∂2b
∂tα∂tβ

denote the partial speed and partial acceleration, respectively;

• C is the space of C1-class control functions c = (cj) : Θ→ Rr;
• Consider T as the transpose for a given vector;
• Consider the following convention for inequalities and equalities of any two vectors

x, y ∈ Rn:

(i) x < y⇔ xi < yi, ∀i = 1, n,
(ii) x = y⇔ xi = yi, ∀i = 1, n,
(iii) x 5 y⇔ xi ≤ yi, ∀i = 1, n,
(iv) x ≤ y⇔ xi ≤ yi, ∀i = 1, n and xi < yi for some i.

In the following, we consider g = (g1, . . . , gm) = (gl) : J2
(

Θ,Rq
)
× C × Ul → Rm,

l = 1, m, fκ : J2
(

Θ,Rq
)
× C ×Wκ → R, κ = 1, p, h = (h1, . . . , hn) = (hζ) : J2

(
Θ,Rq

)
×

C × Vζ → Rn, ζ = 1, n, are C3-class functionals. Furthermore, let us assume that w =
(wκ), u = (ul) and v = (vζ) are the uncertain parameters for some convex compact
subsets W = (Wκ) ⊂ Rp, U = (Ul) ⊂ Rm and V = (Vζ) ⊂ Rn, respectively. Denote by

J2
(

Θ,Rq
)

the second-order jet bundle associated with Θ and Rq. Furthermore, assume
that the previous multi-time-controlled second-order Lagrangians fκ determine a controlled
closed (complete integrable) Lagrange 1-form (see summation over the repeated indices,
Einstein summation):

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ ,

which generates the following controlled path-independent curvilinear integral functional:
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∫
Γ

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ .

The second-order PDE and PDI constrained variational control problem with uncer-
tainty in the objective and constraint functionals is defined as follows:

(P) min
(b(·),c(·))

∫
Γ

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ

subject to

g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0, t ∈ Θ

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, t ∈ Θ

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

The associated robust counterpart of the aforementioned variational control problem
(P) is defined as:

(RP) min
(b(·),c(·))

∫
Γ

max
w∈W

fκ(t, b(t), bσ(t), bαβ(t), c(t), w)dtκ

subject to

g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0, t ∈ Θ, ∀u ∈ U

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, t ∈ Θ, ∀vs. ∈ V

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

Further, denote by

D = {(b, c) ∈ B × C : g(t, b(t), bσ(t), bαβ(t), c(t), u) 5 0,

h(t, b(t), bσ(t), bαβ(t), c(t), v) = 0, b(t0) = b0, b(t1) = b1,

bσ(t0) = bσ0, bσ(t1) = bσ1, t ∈ Θ, u ∈ U, vs. ∈ V }

the feasible solution set in (RP), and we call it the robust feasible solution set of (P).

To simplify the presentation, we use the following notation:

π = (t, b(t), bσ(t), bαβ(t), c(t)).

The associated first-order partial derivatives of fκ , κ = 1, p, are defined as

∂fκ

∂b
=
( ∂fκ

∂b1 , · · · ,
∂fκ

∂bq

)
,

∂fκ

∂c
=
( ∂fκ

∂c1 , · · · ,
∂fκ

∂cr

)
.

In the same manner, we have gb :=
∂g
∂b

and gc :=
∂g
∂c

by using matrices with m rows

and hb :=
∂h
∂b

and hc :=
∂h
∂c

by using matrices with n rows.

Further, in accordance to Treanţă [3], we define the notion of a weak robust optimal
solution of the considered class of constrained variational control problems. This notion
will be used to establish the associated robust necessary conditions of optimality and the
main results derived in the paper.

Definition 1. A pair (b̄, c̄) ∈ D is said to be a weak robust optimal solution to (P) if there does
not exist another point (b, c) ∈ D such that

∫
Γ

max
w∈W

fκ(π, w)dtκ <
∫

Γ
max
w∈W

fκ(π̄, w)dtκ .
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Next, we shall use the Saunders’s multi-index notation (Saunders [23], Treanţă [3,24])
to formulate the concept of convexity and the robust necessary optimality conditions
for (P).

Definition 2. A curvilinear integral functional

F(b, c, w̄) =
∫

Γ
fκ(t, b(t), bσ(t), bαβ(t), c(t), w̄)dtκ =

∫
Γ

fκ(π, w̄)dtκ

is said to be convex at (b̄, c̄) ∈ B × C if the following inequality

F(b, c, w̄)− F(b̄, c̄, w̄) ≥
∫

Γ

∂fκ

∂b
(π̄, w̄)[b(t)− b̄(t)]dtκ

+
∫

Γ

∂fκ

∂bσ
(π̄, w̄)[bσ(t)− b̄σ(t)]dtκ

+
1

n(α, β)

∫
Γ

∂fκ

∂bαβ
(π̄, w̄)[bαβ(t)− b̄αβ(t)]dtκ

+
∫

Γ

∂fκ

∂c
(π̄, w̄)[c(t)− c̄(t)]dtκ

holds for all (b, c) ∈ B × C.

According to Treanţă [24], we formulate the robust necessary optimality conditions
for (P).

Theorem 1. If (b̄, c̄) ∈ D is a weak robust optimal solution to (P) and maxw∈W fκ(π, w) =
fκ(π, w̄), κ = 1, p, then there exist the scalar µ̄ ∈ R, the piecewise smooth functions ν̄ =
(ν̄l(t)) ∈ Rm

+, γ̄ = (γ̄ζ(t)) ∈ Rn, and the uncertainty parameters ū ∈ U and v̄ ∈ V such that the
following conditions

µ̄
∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄) (1)

−Dσ

[
µ̄

∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]
+

1
n(α, β)

D2
αβ

[
µ̄

∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
= 0, κ = 1, p

µ̄
∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄) = 0, κ = 1, p (2)

ν̄T g(π̄, ū) = 0, ν̄ = 0, (3)

µ̄ ≥ 0 (4)

hold for all t ∈ Θ, except at discontinuities.

Remark 1. The robust necessary optimality conditions of (P) are given by the conditions (1)–(4).

Definition 3. A pair (b̄, c̄) ∈ D is said to be a normal weak robust optimal solution to (P) if µ̄ > 0
in Theorem 1. We can consider µ̄ = 1 without loss of generality.

Next, we use the modified objective function method to reduce the complexity of (P).
In this direction, let (b̄, c̄) be an arbitrary given robust feasible solution to (P). The modified
multi-dimensional variational control problem associated with the original optimization
problem (P) is defined as:
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(P)(b̄,c̄) min
(b(·),c(·))

∫
Γ

{∂fκ

∂b
(π̄, w)(b(t)− b̄(t)) +

∂fκ

∂bσ
(π̄, w)(bσ(t)− b̄σ(t))

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ(t)− b̄αβ(t)) +

∂fκ

∂c
(π̄, w)(c(t)− c̄(t))

}
dtκ

subject to

g(π, u) 5 0, t ∈ Θ

h(π, v) = 0, t ∈ Θ

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1,

where the functionals g, fκ and h are given as in (P).
The associated robust counterpart of the modified multi-dimensional variational

control problem (P)(b̄,c̄) is defined as:

(RP)(b̄,c̄) min
(b(·),c(·))

∫
Γ

max
w∈W

{∂fκ

∂b
(π̄, w)(b(t)− b̄(t)) +

∂fκ

∂bσ
(π̄, w)(bσ(t)− b̄σ(t))

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ(t)− b̄αβ(t)) +

∂fκ

∂c
(π̄, w)(c(t)− c̄(t))

}
dtκ

subject to

g(π, u) 5 0, t ∈ Θ, ∀u ∈ U

h(π, v) = 0, t ∈ Θ, ∀vs. ∈ V

b(t0) = b0, b(t1) = b1, bσ(t0) = bσ0, bσ(t1) = bσ1.

Remark 2. The robust feasible solution set of the problem (P)(b̄,c̄) is the same as in (P). Conse-
quently, it is also denoted by D.

Definition 4. A pair (b̂, ĉ) ∈ D is said to be a weak robust optimal solution to (P)(b̄,c̄) if there
does not exist another point (b, c) ∈ D such that∫

Γ
max
w∈W

[∂fκ

∂b
(π̄, w)(b− b̄) +

∂fκ

∂bσ
(π̄, w)(bσ − b̄σ)

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(bαβ − b̄αβ) +

∂fκ

∂c
(π̄, w)(c− c̄)

]
dtκ

<
∫

Γ
max
w∈W

[∂fκ

∂b
(π̄, w)(b̂− b̄) +

∂fκ

∂bσ
(π̄, w)(b̂σ − b̄σ)

+
1

n(α, β)

∂fκ

∂bαβ
(π̄, w)(b̂αβ − b̄αβ) +

∂fκ

∂c
(π̄, w)(ĉ− c̄)

]
dtκ .

3. Saddle-Point Optimality Criterion

In this section, under some convexity assumptions, we establish some connections
between a weak robust optimal solution of (P) and a robust saddle-point associated with
a Lagrange functional (Lagrangian) corresponding to the modified multi-dimensional
variational control problem (P)(b̄,c̄). In this regard, in accordance with Treanţă [9,11,12]
and Preeti et al. [7], we formulate the next definitions.

Definition 5. The Lagrange functional L((b, c), ν, γ, w, u, v) : B × C ×Rm
+ ×Rn ×W ×U ×

V → R associated with the modified variational control problem (P)(b̄,c̄) is defined as
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L((b, c), ν, γ, w, u, v) =
∫

Γ

{
max
w∈W

[
(b(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (bσ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(bαβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]
+νT(t)g(π, u) + γT(t)h(π, v)

}
dtκ .

Definition 6. A point ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) ∈ D ×Rm
+ ×Rn ×W ×U × V is said to be a robust

saddle-point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem (P)(b̄,c̄) if the following relations are fulfilled:

(i) L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀(u, v) ∈ U × V ,

(ii) L((b, c), ν̄, γ̄, w, ū, v̄) ≥ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀(b, c) ∈ B × C.

Now, taking into account the above definitions, we establish the following two main
results of this paper.

Theorem 2. Let (b̄, c̄) be a robust feasible solution to (P). Assume that maxw∈W fκ(π, w) =

fκ(π, w̄), κ = 1, p, and the objective functional
∫

Γ
fκ(π, w̄)dtκ is convex at (b̄, c̄). If the point

((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange functional L((b, c), ν, γ, w, u, v)
associated with the modified multi-dimensional variational control problem (P)(b̄,c̄), then (b̄, c̄) is a
weak robust optimal solution to (P).

Proof. By reductio ad absurdum, let us assume that (b̄, c̄) is not a weak robust optimal
solution to (P). Therefore, by using the convexity property of the objective functional∫

Γ
fκ(π, w̄)dtκ , we get

∫
Γ

max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w) (5)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
dtκ

<
∫

Γ
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
dtκ ,

for some (b̃, c̃) ∈ D.
From the feasibility of (b̃, c̃) to the problem (P) and ν̄ ∈ Rm

+, we get∫
Γ

ν̄T g(π̃, ū)dtκ ≤ 0. (6)

On the other hand, since ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange
functional L((b, c), ν, γ, w, u, v) associated with the modified multi-dimensional variational
control problem (P)(b̄,c̄), by using Definition 6 (i), we have

L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀u ∈ U, ∀vs. ∈ V ,

which, using of the definition of Lagrange functional, can be rewritten as∫
Γ

{
max
w∈W

[
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)
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+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]
+νT(t)g(π̄, u) + γT(t)h(π̄, v)

}
dtκ

≤
∫

Γ

{
max
w∈W

[
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w)

]
+ν̄T(t)g(π̄, ū) + γ̄T(t)h(π̄, v̄)

}
dtκ .

Since maxw∈W fκ(π, w) = fκ(π, w̄), κ = 1, p, it follows that∫
Γ

{
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w̄) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w̄)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w̄) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w̄)

+νT(t)g(π̄, u) + γT(t)h(π̄, v)
}

dtκ

≤
∫

Γ

{
(b̄(t)− b̄(t))

∂fκ

∂b
(π̄, w̄) + (b̄σ(t)− b̄σ(t))

∂fκ

∂bσ
(π̄, w̄)

+
1

n(α, β)
(b̄αβ(t)− b̄αβ(t))

∂fκ

∂bαβ
(π̄, w̄) + (c̄(t)− c̄(t))

∂fκ

∂c
(π̄, w̄)

+ν̄T(t)g(π̄, ū) + γ̄T(t)h(π̄, v̄)
}

dtκ .

If we set ν = 0 and γ = 0 in the above inequality, we obtain∫
Γ

ν̄T g(π̄, ū)dtκ ≥ 0. (7)

From (6) and (7), it follows that∫
Γ

ν̄T g(π̃, ū)dtκ ≤
∫

Γ
ν̄T g(π̄, ū)dtκ ,

which, along with the inequality (5), gives∫
Γ

{
max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̃, ū)

}
dtκ

<
∫

Γ

{
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̄, ū)

}
dtκ ,

equivalently with ∫
Γ

{
max
w∈W

[
(b̃− b̄)

∂fκ

∂b
(π̄, w) + (b̃σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̃αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̃− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̃, ū) + γ̄Th(π̃, v̄)

}
dtκ
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<
∫

Γ

{
max
w∈W

[
(b̄− b̄)

∂fκ

∂b
(π̄, w) + (b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w)

+
1

n(α, β)
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w) + (c̄− c̄)

∂fκ

∂c
(π̄, w)

]
+ ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ ,

or

L((b̃, c̃), ν̄, γ̄, w̄, ū, v̄) < L((b̄, c̄), ν̄, γ̄, w̄, ū, v̄), (b̃, c̃) ∈ B × C,

which contradicts Definition 6, and the proof is completed.

Theorem 3. Let (b̄, c̄) be a normal weak robust optimal solution to (P). Assume that maxw∈W
fκ(π, w) = fκ(π, w̄), κ = 1, p, and the constraint functionals∫

Γ
ν̄T g(π, ū)dtκ ,

∫
Γ

γ̄Th(π, v̄)dtκ

are convex at (b̄, c̄). Then, ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-point for the Lagrange functional
L((b, c), ν, γ, w, u, v) associated with the modified variational control problem (P)(b̄,c̄).

Proof. Since the relations (1)–(4), with µ̄ = 1, are satisfied for all t ∈ Θ, except at disconti-
nuities, the conditions (1) and (2) yield∫

Γ
(b− b̄){∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄) (8)

−Dσ

[ ∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]
+

1
n(α, β)

D2
αβ

[ ∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
}dtκ

+
∫

Γ
(c− c̄){∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dtκ

=
∫

Γ

[
(b− b̄){∂fκ

∂b
(π̄, w̄) + ν̄T gb(π̄, ū) + γ̄Thb(π̄, v̄)}

+(bσ − b̄σ){
∂fκ

∂bσ
(π̄, w̄) + ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)}

+
1

n(α, β)
(bαβ − b̄αβ){

∂fκ

∂bαβ
(π̄, w̄) + ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)}

]
dtκ

+
∫

Γ
(c− c̄){∂fκ

∂c
(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dtκ = 0,

where we used the formula of integration by parts, the result “A total divergence is equal to
a total derivative” (see Treanţă [4]) and the boundary conditions formulated in the consid-
ered problem.

Further, taking into account the assumption of convexity for the following multiple

integral functionals
∫

Γ
ν̄T g(π, ū)dtκ ,

∫
Γ

γ̄Th(π, v̄)dtκ at (b̄, ū), we obtain

∫
Γ

{
ν̄T g(π, ū)− ν̄T g(π̄, ū)

}
dtκ ≥

∫
Γ
(b− b̄)ν̄T gb(π̄, ū)dtκ

+
∫

Γ
(bσ − b̄σ)ν̄

T gbσ
(π̄, ū)dtκ +

1
n(α, β)

∫
Γ
(bαβ − b̄αβ)ν̄

T gbαβ
(π̄, ū)dtκ

+
∫

Γ
(c− c̄)ν̄T gc(π̄, ū)dtκ ,
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∫
Γ

{
γ̄Th(π, v̄)− γ̄Th(π̄, v̄)

}
dtκ ≥

∫
Γ
(b− b̄)γ̄Thb(π̄, v̄)dtκ

+
∫

Γ
(bσ − b̄σ)γ̄

Thbσ
(π̄, v̄)dtκ +

1
n(α, β)

∫
Γ
(bαβ − b̄αβ)γ̄

Thbαβ
(π̄, v̄)dtκ

+
∫

Γ
(c− c̄)γ̄Thc(π̄, v̄s.)dtκ ,

implying ∫
Γ

{
ν̄T g(π, ū) + γ̄Th(π, v̄)

}
dtκ −

∫
Γ

{
ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ

≥
∫

Γ
(b− b̄)

[
ν̄T gb(π̄, ū) + γThb(π̄, v̄)

]
dtκ

+
∫

Γ
(bσ − b̄σ)

[
ν̄T gbσ

(π̄, ū) + γ̄Thbσ
(π̄, v̄)

]
dtκ

+
1

n(α, β)

∫
Γ
(bαβ − b̄αβ)

[
ν̄T gbαβ

(π̄, ū) + γ̄Thbαβ
(π̄, v̄)

]
dtκ

+
∫

Γ
(c− c̄)

[
ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄s.)

]
dtκ

= −
∫

Γ
(b− b̄)

∂fκ

∂b
(π̄, w̄)dtκ −

∫
Γ
(bσ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

− 1
n(α, β)

∫
Γ
(bαβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ −

∫
Γ
(c− c̄)

∂fκ

∂c
(π̄, w̄)dtκ ,

by considering (8). The previous inequality can be formulated as follows∫
Γ
(b− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫
Γ
(bσ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫
Γ
(bαβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫
Γ
(c− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

+
∫

Γ

{
ν̄T g(π, ū) + γ̄Th(π, v̄)

}
dtκ

≥
∫

Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫
Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫
Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫
Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

+
∫

Γ

{
ν̄T g(π̄, ū) + γ̄Th(π̄, v̄)

}
dtκ ,

which involves the inequality

L((b, c), ν̄, γ̄, w, ū, v̄) ≥ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀(b, c) ∈ B × C. (9)

Furthermore, the following inequality is satisfied∫
Γ

νT g(π̄, u)dtκ +
∫

Γ
γTh(π̄, v)dtκ ≤ 0

for all (ν, γ) ∈ Rm
+ ×Rn, (u, v) ∈ U × V and, using the feasibility of (b̄, ū), we obtain∫

Γ
νT g(π̄, u)dtκ +

∫
Γ

γTh(π̄, v)dtκ

≤
∫

Γ
ν̄T g(π̄, ū)dtκ +

∫
Γ

γ̄Th(π̄, v̄)dtκ ,
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or, equivalently, ∫
Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫
Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫
Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫
Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

∫
Γ

νT g(π̄, u)dtκ +
∫

Γ
γTh(π̄, v)dtκ

≤
∫

Γ
(b̄− b̄)

∂fκ

∂b
(π̄, w̄)dtκ +

∫
Γ
(b̄σ − b̄σ)

∂fκ

∂bσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫
Γ
(b̄αβ − b̄αβ)

∂fκ

∂bαβ
(π̄, w̄)dtκ +

∫
Γ
(c̄− c̄)

∂fκ

∂c
(π̄, w̄)dtκ

∫
Γ

ν̄T g(π̄, ū)dtκ +
∫

Γ
γ̄Th(π̄, v̄)dtκ ,

involving

L((b̄, c̄), ν, γ, w, u, v) ≤ L((b̄, c̄), ν̄, γ̄, w, ū, v̄), ∀ν ∈ Rm
+, ∀γ ∈ Rn, ∀(u, v) ∈ U × V . (10)

Consequently, by (9) and (10), we conclude that ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-
point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem (P)(b̄,c̄), and the proof is completed.

Illustrative application. Let us minimize the mechanical work performed by the
variable force F̄ (c2(t) + w1, c2(t) + w2), including the uncertain parameters wκ ∈ Wκ =
[0, 1], κ = 1, 2, to move its point of application along the piecewise smooth curve Γ,
contained in Θ = [0, 3]2 = [0, 3]× [0, 3] and joining the points t0 = (0, 0) and t1 = (3, 3),
such that the following constraints

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ

b(0, 0) = 1, b(3, 3) = 2,

are satisfied, where vζ ∈ Vζ = [1, 2], ζ = 1, 2 and u1 ∈ U1 =

[
1
2

, 1
]

.

To solve the previous problem, for m = 1, n = p = 2, we consider

fκ(π, w)dtκ = f1(π, w)dt1 + f2(π, w)dt2 = (c2 + w1)(t)dt1 + (c2 + w2)dt2

and the constrained robust control problem:

(P1) min
(b(·),c(·))

∫
Γ

fκ(π, w)dtκ

subject to

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ (11)

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ (12)

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ (13)
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b(0, 0) = 1, b(3, 3) = 2. (14)

The robust counterpart of (P1) is formulated as follows:

(RP1) min
(b(·),c(·))

∫
Γ

max
w∈W

fκ(π, w)dtκ

subject to

u1(b− 2)(b + 2) ≤ 0, ∀u1 ∈ U1, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, ∀v1 ∈ V1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, ∀v2 ∈ V2, t = (t1, t2) ∈ Θ

b(0, 0) = 1, b(3, 3) = 2.

Clearly, the set of all feasible solutions in (RP1) is

D = {(b, c) ∈ S × C : −2 ≤ b ≤ 2,
∂b
∂t1 =

∂b
∂t2 , b(0, 0) = 1, b(3, 3) = 2,

t ∈ Θ, u1 ∈ U1, vζ ∈ Vζ , ζ = 1, 2}.

Now, we are interested in finding a weak robust optimal solution to the problem (P1).
This means that we must find the control function c̄ : Θ → R (that determines the state
function b̄ : Θ→ R), which satisfies the dynamical system (11), (12) and (13) with respect
to the boundary conditions (14). Additionally, we assume that the state function is affine.

Let (b̄, c̄) ∈ D be a weak robust optimal solution to the problem (P1) and consider
maxw∈W fκ(π, w) = fκ(π, w̄), κ = 1, 2. Then, according to Theorem 1, there exists the scalar
µ̄ ∈ R, the piecewise smooth functions ν̄ = ν̄1(t) ∈ R+, γ̄ = (γ̄1(t), γ̄2(t)) ∈ R2, and the
uncertainty parameters ū1 ∈ U1 and v̄ζ ∈ Vζ , ζ = 1, 2, such that the following conditions

2ν̄1ū1 b̄ +
∂γ̄1

∂t1 +
∂γ̄2

∂t2 = 0, (15)

2µ̄c̄− γ̄1 − γ̄2 = 0, (16)

ν̄1ū1(b̄2 − 4) = 0, ν̄1 ≥ 0, µ̄ ≥ 0 (17)

hold for all t ∈ Θ, except at discontinuities.
One can easily verify that the robust necessary optimality conditions (15)–(17) are

satisfied at (b̄, c̄) =
(

1
6 (t

1 + t2) + 1, 29
6

)
, with the Lagrange multipliers µ̄ = 1, ν̄1 = 0, γ̄1 +

γ̄2 = d1 + d2 (with d1 + d2 = µ̄
(

17
3 + v̄1 + v̄2

)
) and the uncertain parameters w̄1 = w2 =

ū1 = 1, v̄1 = v̄2 = 2 ∈ [1, 2]. Further, it can also be easily verified that the objective

functional
∫

Γ
fκ(π, w̄)dtκ is convex at (b̄, c̄) and that ((b̄, c̄), ν̄, γ̄, w̄, ū, v̄) is a robust saddle-

point for the Lagrange functional L((b, c), ν, γ, w, u, v) associated with the modified multi-
dimensional variational control problem

(P1)(b̄,c̄) min
(b(·),c(·))

∫
Γ

(
29
3

+ w1

)(
c− 29

6

)
dt1 +

(
29
3

+ w2

)(
c− 29

6

)
dt2

subject to

u1(b− 2)(b + 2) ≤ 0, t = (t1, t2) ∈ Θ

∂b
∂t1 = 3− c + v1, t = (t1, t2) ∈ Θ

∂b
∂t2 = 3− c + v2, t = (t1, t2) ∈ Θ



Mathematics 2021, 9, 1790 12 of 13

b(0, 0) = 1, b(3, 3) = 2.

Hence, all the conditions of Theorem 2 are satisfied, which ensures that (b̄, c̄) =(
1
6 (t

1 + t2) + 1, 29
6

)
is a weak robust optimal solution to the problem (P1).

4. Conclusions and Further Development

In this paper, by considering path-independent curvilinear integral cost functionals
with mixed (equality and inequality) constraints implying data uncertainty and second-
order partial derivatives, we have introduced new classes of robust optimization problems.
More precisely, by using the notion of convexity for curvilinear integral functionals, the con-
cept of a normal weak robust optimal solution and the robust saddle-point of a considered
Lagrange functional, we have established some characterization results of the problems
under study.

As an immediate subsequent development of the results presented in this paper,
the author mentions the study of well-posedness for the considered classes of robust
control problems.
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18. Treanţă, S. Efficiency in uncertain variational control problems. Neural Comput. Appl. 2021, 33, 5719–5732. [CrossRef]
19. Zaslavski, A.J. Convergence of extremals of variational problems on large intervals. Adv. Nonlinear Stud. 2015, 15, 221–240.

[CrossRef]
20. Geldhauser, C.; Valdinoci, E. Optimizing the fractional power in a model with stochastic PDE constraints. Adv. Nonlinear Stud.

2018, 18, 649–669. [CrossRef]
21. Babaniyi, O.; Jadamba, B.; Khan, A.A.; Richards, M.; Sama, M.; Tammer, C. Three optimization formulations for an inverse

problem in saddle point problems with applications to elasticity imaging of locating tumor in incompressible medium. J. Nonlinear
Var. Anal. 2020, 4, 301–318.

22. Debnath, I.P.; Qin, X. Robust optimality and duality for minimax fractional programming problems with support functions.
J. Nonlinear Funct. Anal. 2021, 2021, 5.

23. Saunders, D.J. The Geometry of Jet Bundles; London Mathematical Society Lecture Note Series, 142; Cambridge University Press:
Cambridge, UK, 1989.
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