
mathematics

Article

Obtaining Expressions for Time-Dependent Functions That
Describe the Unsteady Properties of Swirling Jets of
Viscous Fluid

Eugene Talygin * and Alexander Gorodkov

����������
�������

Citation: Talygin, E.; Gorodkov, A.

Obtaining Expressions for

Time-Dependent Functions That

Describe the Unsteady Properties of

Swirling Jets of Viscous Fluid.

Mathematics 2021, 9, 1860. https://

doi.org/10.3390/math9161860

Academic Editor: Mauro Malvè

Received: 23 June 2021

Accepted: 29 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Bakulev National Medical Research Center for Cardiovascular Surgery, 121552 Moscow, Russia;
euegene.talygin@skmenergy.com
* Correspondence: skalolom@gmail.com

Abstract: Previously, it has been shown that the dynamic geometric configuration of the flow channel
of the left heart and aorta corresponds to the direction of the streamlines of swirling flow, which can
be described using the exact solution of the Navier–Stokes and continuity equations for the class of
centripetal swirling viscous fluid flows. In this paper, analytical expressions were obtained. They
describe the functions C0(t) and Γ0(t), included in the solutions, for the velocity components of such
a flow. These expressions make it possible to relate the values of these functions to dynamic changes
in the geometry of the flow channel in which the swirling flow evolves. The obtained expressions
allow the reconstruction of the dynamic velocity field of an unsteady potential swirling flow in a
flow channel of arbitrary geometry. The proposed approach can be used as a theoretical method for
correct numerical modeling of the blood flow in the heart chambers and large arteries, as well as
for developing a mathematical model of blood circulation, considering the swirling structure of the
blood flow.

Keywords: potential swirling flow; Navier–Stokes equations; unsteady swirling flow; tornado-
like jets

1. Introduction

In our previous work, we investigated the dynamic geometry of the left heart and aorta
to find consistency between the configuration of the flow channel and the directions of the
swirling streamlines of the TLJ (Tornado-Like Jets) class [1–3]. The found correspondence
allowed us to assume that the blood flow in the heart and large vessels belong to the TLJ
class. These flows were described using the explicit solutions [4], which determine the
conditions for a swirling jet of Newtonian fluid in space to appear and evolve.

It has been experimentally proved that swirling flows of this class, under certain con-
ditions, are formed on a concave surface streamlined by the viscous medium. Apparently,
an important role in the formation of such a swirling flow is played by the vortex boundary
layer arising on the concave surface. This layer should consist of some small-scale vortex
structures such as Taylor–Görtler vortices and differ in their properties from the classical
shear boundary layer of L. Prandtl. These vortices are cylindrical structures, the axis of
rotation of which is parallel to the incoming flow. This shape allows the swirling flow to
rely on these vortex structures, conjugating with them only at one point. In this case, the
movement of the swirling flow relative to the concave surface causes the appearance of
rolling stresses, which are much less than the shear stresses in the boundary layer of L.
Prandtl. The geometric shape of the generatrix of the concave surface determines the shape
of the streamlines of the swirling flow. In this case, the vortex boundary layer is able to
change its thickness along the concave surface dynamically. This allows it to compensate
for local inconsistencies between the real surface and the geometric shape built along
streamlines. Such compensation is necessary when the swirling blood flow moves into a
section of the vascular bed with pathological geometry disorders.
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Obviously, blood has complex rheology and, in the general case, cannot be regarded
as a Newtonian fluid. However, the available experimental data allow us to assert that
in large-caliber vessels at relatively high speeds, the dynamic viscosity of blood hardly
changes, and blood can be considered a Newtonian fluid.

Calculating the Reynolds number for the blood flow in the heart and great vessels,
we obtain a value that allows us to make an unambiguous conclusion about the turbulent
nature of the flow under consideration. However, a turbulent flow is characterized by
active mixing of the liquid volume and spontaneous vortex formation. It is obvious that
these properties of turbulent flows do not correspond to the physiological characteristics of
blood circulation. Considering the blood flow as TLJ, the flow structure can be preserved
without noticeable swirls and perturbations at such Reynolds numbers that, for other
principles of flow organization, would lead to flow turbulization. However, it was not
possible to take into account the nonstationarity blood flow because, in the exact solution,
it is determined by arbitrary time-dependent functions that do not have a formal analytical
record. At the same time, it is obvious that the real blood flow is strictly unsteady. A formal
description of the unsteady properties of the swirling blood flow in terms of analytical
functions would make it possible to construct a model of blood circulation with a higher
degree of accuracy.

Earlier it was found that the geometric characteristics of the bloodstream (if we assume
that they correspond to the geometric characteristics of the flow channel) are described
with a high degree of accuracy by quasi-stationary solutions [1–4]. In these solutions, the
non-stationary properties of the flow are determined by the behavior of the time-dependent
functions C0(t) and Γ0(t). These functions could be determined experimentally if measuring
the vector field of flow velocities. However, so far, making such a measurement with suffi-
cient accuracy is rather difficult. The task is complicated by the fact that the bloodstream at
all stages of its evolution interacts with the movable walls of the flow channel, taking the
direction of movement given by the instantaneous geometric configuration of the channel.
At the same time, the bloodstream is a submerged stream, and its structure changes upon
interaction and merging with residual blood volume that retains a certain movement after
the previous cardiac cycle.

In previous studies, we considered the swirling blood flow in the heart and great
vessels as quasi-stationary—a continuous set of values of the functions C0(t) and Γ0(t) on
a time interval was replaced by a discrete subset of values, each of which corresponded to
a certain configuration of the flow channel. This made it possible to replace the functions
C0(t) and Γ0(t) with a set of constants that reflect the nonstationarity behavior of the
flow. The analysis of the dynamic geometry of the left heart and aorta confirmed this
hypothesis; the values of some parameters of the swirling blood flow in this segment
of blood circulation were calculated. However, the accuracy of the obtained results was
limited by the resolution of discretization.

Obtaining formal relations for the functions C0(t) and Γ0(t) will make it possible to
unambiguously relate the structure of an unsteady swirling flow with the conditions that
form it—the dynamics of the inflowing blood flow, the geometry of the flow channel, and
the interaction with residual volumes at each stage of the evolution of the bloodstream
both in time and along the length of the flow channel.

Therefore, the aim of this work was to obtain formal mathematical expressions for the
functions C0(t) and Γ0(t), which describe in general form the unsteadiness of the swirling
flow. Due to the calculation difficulties, we could not validate the proposed equations with
the experimental results. This work will be conducted in the next stage of our study.

The presented paper has the following structure:

• Introduction;
• Materials and Methods;
• Results;
• Discussion;
• Conclusion;
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• References.

2. Materials and Methods

According to [1–4], velocity components of the TLJ in a cylindrical coordinate system
are expressed by the following relations:

uz = 2C0(t)z
ur = −C0(t)r

uϕ = Γ0(t)
2πr ∗

(
1 − e−

C0(t)r
2

2υ

) (1a)

where uz, ur, and uϕ are the velocity components, ν is the kinematic viscosity, and the un-
steadiness and evolution of the flow are determined by the behavior of the time-dependent
functions C0(t) and Γ0(t). C0(t) is an arbitrary function of time, which, by its meaning,
represents the gradient of the longitudinal component of the velocity (sec−1); Γ0(t) is an
arbitrary function of time, corresponding to the physical meaning of the circulation of the
medium (m2/sec).

It can be seen from the presented evidence that the unsteady properties of the flow
under study are determined by the behavior of the time-dependent functions C0(t) and
Γ0(t). While obtaining relations for the swirling flow velocity (1a) from the original system
of Navier–Stokes equations and continuity, the functions C0(t) and Γ0(t) were considered
as arbitrary functions of time.

These ratios were analyzed using the methods of linear differential equations solving
and standard methods of differentiation for chain functions with several arguments.

3. Results

To obtain an analytical form of the functions C0(t) and Γ0(t), relations (1a) were
substituted into the Navier–Stokes equations.

For this, the equations for the three velocity components were considered separately
in a cylindrical coordinate system.

Azimuthal velocity component of the Navier–Stokes equation can be expressed as
follows [5]:

uruϕ

r +
∂uϕ

∂r ur +
1
r

∂uϕ

∂ϕ uϕ +
∂uϕ

∂z uz +
∂uϕ

∂t = Fϕ − 1
ρr

∂p
∂ϕ + υ

(
∆uϕ − uϕ

r2 + 2
r2

∂ur
∂ϕ

)
∆ = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂ϕ2 +
∂2

∂z2

(1b)

In the case of axial symmetry of the considered swirling flow (this condition means
that all partial derivatives with respect to ϕ must be equal to 0), the Equation (1b) has the
following form:

uruϕ

r
+

∂uϕ

∂r
ur +

∂uϕ

∂z
uz +

∂uϕ

∂t
= υ

(
∂2uϕ

∂r2 +
1
r

∂uϕ

∂r
+

∂2uϕ

∂z2 −
uϕ

r2

)
(1c)

It is seen from relations (1a) that uϕ does not depend on z. This means that the partial
derivative uϕ with respect to z equals 0. Then Equation (1c) can be changed as follows:

uruϕ

r
+

∂uϕ

∂r
ur +

∂uϕ

∂t
= υ

(
∂2uϕ

∂r2 +
1
r

∂uϕ

∂r
−

uϕ

r2

)
(1d)

We substitute relations (1a) into Equation (1d), writing out each term separately:

∂uϕ

∂t
=

dΓ0(t)
dt

∗ 1
2πr

∗
(

1 − e−
C0(t)r

2

2υ

)
+

Γ0(t)r
4πυ

∗ dC0(t)
dt

∗ e−
C0(t)r

2

2υ



Mathematics 2021, 9, 1860 4 of 8

uruϕ

r
= −C0(t)Γ0(t)

2πr
∗
(

1 − e−
C0(t)r

2

2υ

)
∂uϕ

∂r
ur = −C0(t)r ∗

(
C0(t)Γ0(t)

2πυ
∗ e−

C0(t)r
2

2υ − Γ0(t)
2πr2 ∗

(
1 − e−

C0(t)r
2

2υ

))

∂2uϕ

∂r2 =
Γ0(t)

πr
∗

1 − e−
C0(t)r

2

2υ

r2 +

C0(t) ∗ e−
C0(t)r

2

2υ ∗
(

1 − e−
C0(t)r

2

2υ

)
2υ

− C0(t) ∗ e−
C0(t)r

2

2υ

υ


1
r

∂uϕ

∂r
=

C0(t)Γ0(t)
2πυr

∗ e−
C0(t)r

2

2υ − Γ0(t)
2πr3 ∗

(
1 − e−

C0(t)r
2

2υ

)
uϕ

r2 =
Γ0(t)
2πr3 ∗

(
1 − e−

C0(t)r
2

2υ

)
Substituting the obtained relations into the original Equation (1d), the left-hand side

is transformed as follows:

dΓ0(t)
dt ∗ 1

2πr ∗
(

1 − e−
C0(t)r

2

2υ

)
+ Γ0(t)r

4πυ ∗ dC0(t)
dt ∗ e−

C0(t)r
2

2υ − C0(t)Γ0(t)
2πr ∗

(
1 − e−

C0(t)r
2

2υ

)
− C0(t)r

∗
(

C0(t)Γ0(t)
2πυ ∗ e−

C0(t)r
2

2υ − Γ0(t)
2πr2 ∗

(
1 − e−

C0(t)r
2

2υ

))
= dΓ0(t)

dt ∗ 1
2πr ∗

(
1 − e−

C0(t)r
2

2υ

)
+ Γ0(t)r

4πυ ∗ dC0(t)
dt ∗ e−

C0(t)r
2

2υ − C0
2(t)Γ0(t)r

2πυ ∗ e−
C0(t)r

2

2υ

Similarly, the right-hand side of Equation (1d) can be transformed as follows:

Γ0(t)υ
πr ∗

 1−e−
C0(t)r

2
2υ

r2 +
C0(t)∗e−

C0(t)r
2

2υ ∗
(

1−e−
C0(t)r

2
2υ

)
2υ − C0(t)∗e−

C0(t)r
2

2υ

υ

+ C0(t)Γ0(t)
2πr ∗ e−

C0(t)r
2

2υ

− Γ0(t)υ
2πr3 ∗

(
1 − e−

C0(t)r
2

2υ

)
− Γ0(t)υ

2πr3 ∗
(

1 − e−
C0(t)r

2

2υ

)
= −C0(t)Γ0(t)

2πr e−
C0(t)r

2

υ

The final Equation (1d) will be written as follows:

dΓ0(t)
dt

1
2πr

(
1 − e−

C0(t)r
2

2υ

)
+ dC0(t)

dt
Γ0(t)r
4πυ e−

C0(t)r
2

2υ − C0
2(t)Γ0(t)r

2πυ e−
C0(t)r

2

2υ =

= −C0(t)Γ0(t)
2πr e−

C0(t)r
2

υ

(1e)

The Navier-Stokes equation for calculating the radial velocity component is written as
follows [5]:

∂ur

∂t
+ ur

∂ur

∂r
−

uϕ

r
∂ur

∂ϕ
−

u2
ϕ

r
+ uz

∂ur

∂z
= −1

ρ

∂p
∂r

+ ν

(
∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2 +
∂2ur

∂z2

)
(2a)

Considering the axisymmetric flow, we have:

∂ur

∂t
+ ur

∂ur

∂r
−

u2
ϕ

r
+ uz

∂ur

∂z
= −1

ρ

∂p
∂r

+ ν

(
∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2 +
∂2ur

∂z2

)
Substituting the expressions for the velocity Components (1a) into this equation,

we get:

− r
dC0(t)

dt
+ C2

0(t)r −
Γ0(t)

2

4π2r3

(
1 − e−

C0(t)r
2

2υ

)2

= −1
ρ

∂p
∂r

(2b)
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The Navier-Stokes equation for calculating the longitudinal velocity component will
then be written as follows [5]:

∂uz

∂t
+ ur

∂uz

∂r
+

uϕ

r
∂uz

∂ϕ
+ uz

∂uz

∂z
= −1

ρ

∂p
∂z

+ ν

(
∂2uz

∂r2 +
1
r

∂uz

∂r
+

1
r2

∂2uz

∂ϕ2 +
∂2uz

∂z2

)
(3a)

In the case of axial symmetry of the considered swirling flow, Equation (3a) is written
as follows:

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p
∂z

+ ν

(
∂2uz

∂r2 +
1
r

∂uz

∂r
+

∂2uz

∂z2

)
Substituting relations (1a) into Equation (3a), writing out each term separately, we get:

2z
dC0(t)

dt
+ 4C2

0(t)z = −1
ρ

∂p
∂z

(3b)

Thus, finding the functions C0(t), Γ0(t) is reduced to solving the following system of
differential equations:

dΓ0(t)
dt

1
2πr

(
1 − e−

C0(t)r
2

2υ

)
+ Γ0(t)r

4πυ e−
C0(t)r

2

2υ

(
dC0(t)

dt − 2C0
2(t)

)
= −C0(t)Γ0(t)

2πr e−
C0(t)r

2

υ

−r dC0(t)
dt + C2

0(t)r −
Γ0(t)

2

4π2r3

(
1 − e−

C0(t)r
2

2υ

)2
= − 1

ρ
∂p
∂r

2z dC0(t)
dt + 4C2

0(t)z = − 1
ρ

∂p
∂z

(4)

It should be noted that the equations in the written system (4), in addition to the
sought-for time-dependent functions, also contain the derivatives of pressure with respect
to coordinates and these coordinates. Thus, the conditions for which the exact solutions
were derived are satisfied if and only if any function of the partial derivatives of pressure
with respect to coordinates and of the coordinates themselves is a function only of time.

The last equation of system (4) contains only one unknown function—C0(t); therefore,
such an equation is most conveniently solved using the method of Lie groups. The solution
to this equation gives the following expression for the desired function:

C0(t) = − α1

2tanh(α1 ∗ (C1 − t))
(5a)

where C1 is the constant of integration and can be taken as 0.
Then the resulting expression for C0(t) was substituted into the second equation of the

system (4). After this, the equation is a differential equation from one unknown function
Γ0(t). Its solution gives the following result:

Γ0(t) =

π

√
α3∗tanh2(α1∗(C1−t))+α4

exp
(

α2
4ν∗tanh(α1∗(C1−t))

)
−1

tanh(α1 ∗ (C1 − t))
(5b)

The following notations are introduced in Expressions (5a) and (5b):

α1 =
√
− 1

ρz ∗
∂p
∂z

[
1
s

]
α2 = r2 ∗

√
− 1

ρz ∗
∂p
∂z

[
m2

s

]
α3 = 4r3

ρ
∂p
∂r − 2r4

ρz ∗ ∂p
∂z

[
m4

s2

]
α4 = 3r4

ρz ∗ ∂p
∂z

[
m4

s2

] (5c)
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If the pressure change along the longitudinal and radial coordinates is constant,
the parameters (α1, . . . , α4) show only the change in the geometric configuration of
the jet over time. If the jet is enclosed in a flow channel that takes its shape, then the
parameters (α1, . . . , α4) can be determined experimentally by measuring the dimensions
of the channel.

In [6,7], the empirical dependences on time of Γ0(t) and of C0(t)/Γ0(t) were obtained.
Comparing these dependencies, the approximate order of values of the constants was
determined as (α1, . . . , α4) = (10−1, 10−6, 10−4, 10−2).

Using the suggested values of the parameters, the graphs of the dependence of the
functions C0(t) and Γ0(t) on time were plotted (Figures 1 and 2).
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Figure 2. Plot of the Γ0(t) function.

4. Discussion

As a result, we managed to obtain a general analytical form of the functions C0(t)
and Γ0(t). The ratios for these functions contain several parameters, the exact value of
which should be determined within the framework of a specific problem. As can be seen
from the graphs, the studied functions C0(t) and Γ0(t) are strictly positive and decrease
monotonically with time. This behavior expresses the fulfillment of the energy conservation
law for the considered swirling flow. Indeed, solution (1a) shows that if the values of the
functions under study could increase in absolute value over time, the kinetic energy
of the swirling flow would have increased in the absence of external action, which is
impossible. The dynamics of the functions C0(t) and Γ0(t) approximately corresponds to
the experimental curves plotted, based on studies of the blood flow structure in the left
ventricle [7].



Mathematics 2021, 9, 1860 7 of 8

Analysis of the constants (α1, . . . , α4) allows the following statements:
The dimensions of the constants correspond to the dimensions of the studied functions

C0(t) and Γ0(t). In particular, the dimension α1 coincides with the dimension C0(t), the
dimension α2 coincides with the dimension Γ0(t) and the dimensions α3, α4 coincide with
the dimensions Γ0(t)

2.
The swirling flow belongs to the TLJ class and can be described by exact solutions (1a)

if and only if the form of the dynamic pressure dependence on the channel coordinates
does not change with time.

Two swirling flows belonging to the TLJ class and having different geometric charac-
teristics can be determined by the same functions C0(t) and Γ0(t) and, accordingly, have
an identical dynamic structure if the set of constants (α1, . . . , α4) is the same for both.

Therefore, the obtained relations (5a) and (5b) make it possible to describe in a general
form the unsteady swirling flow of a viscous fluid, the velocity components of which are
expressed by solution (1a). Considering the obtained expressions for the functions C0(t)
and Γ0(t), the exact solution can be used for numerical modeling of the swirling blood flow
in the heart and large vessels without considering the non-Newtonian properties of blood.

Attempts to formally describe the unsteady blood flow have been undertaken earlier
by many researchers [8–11]. Computational fluid dynamics methods were mainly used
in these works. With the development of computing power, it has become possible to
simulate the geometry of heart cavities using neural networks [12]. However, despite great
advances in the field of numerical modeling, these models turn out to be rather complex
and lose the necessary clarity. This is even more true for models based on neural networks.

In this work, based on the well-studied non-stationary equations of hydrodynamics,
relatively simple relations were obtained that describe the non-stationary properties of the
swirling blood flow in the heart and great vessels. The use of the obtained ratios in CFD
models and for calculating initial approximations of the geometry of flow channels for
training neural networks will enable the development of relatively simple and effective
blood circulation models.

5. Conclusions

Most modern circulatory models are based on numerical modeling of blood flow
and based on methods of computational hydrodynamics and deep learning [8–12]. This
approach simplifies the calculations but does not allow derivation of the physical and
mathematical meaning of the functional dependencies, which are included in the ratios
for the components of the blood flow velocity. So, it was possible to obtain analytical
relations for functions reflecting the unsteady properties of the swirling blood flow. These
relations, on the one hand, make it possible to perform a more accurate analysis of the
physical characteristics of an unsteady swirling blood flow. On the other hand, they allow
formulating characteristic flow parameters that can be verified by experiment. Thus, the
results of this study allow us to deepen the physical understanding of the peculiarities of
the evolution of the swirling blood flow, as well as to provide convenient characteristic
parameters for validating experimental data.

It should be noted that the obtained ratios do not consider the pulsating nature of the
blood flow in the heart and large vessels. The necessary improvements are planned to be
added to the model at subsequent stages of the study.

The next steps in the development of this study will be to carry out experimental
measurements of the field of velocities and pressures and to validate the obtained results
using the functional relationships obtained in this work.

Author Contributions: Development of the concept of the article and collection of the material, E.T.;
Development of a research algorithm, finding suitable mathematical methods for solving the assigned
tasks, E.T. and A.G.; Carrying out mathematical transformations, solving equations, E.T., Description
of the physiological side of the study, A.G.; Supervision and Project Administration, A.G.; Writing,
E.T. and A.G. Both authors have read and agreed to the published version of the manuscript.



Mathematics 2021, 9, 1860 8 of 8

Funding: The study was supported by the Russian Scientific Foundation (grant No. 16-15-00109).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Talygin, E.; Kiknadze, G.; Agafonov, A.; Gorodkov, A. Application of the Tornado-Like Flow Theory to the Study of Blood Flow

in the Heart and Main Vessels: Study of the Potential Swirling Jets Structure in an Arbitrary Viscous Medium. In Proceedings of
the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019.
[CrossRef]

2. Talygin, E.A.; Zhorzholiani, S.T.; Agafonov, A.V.; Kiknadze, G.I.; Gorodkov, A.Y.; Bokeriya, L.A. Quantitative Evaluation of
Disorders of the Swirled Blood Flow Structure in the Aorta with Pathological Alteration of Its Channel Geometry Using Numerical
Simulation of the Aorta. Hum. Physiol. 2019, 45, 527–535. [CrossRef]

3. Zhorzholiani, S.T.; Talygin, E.A.; Krasheninnikov, S.V.; Tsigankov, Y.M.; Agafonov, A.V.; Gorodkov, A.Y.; Kiknadze, G.I.; Chvalun,
S.N.; Bokeria, L.A. Elasticity Change along the Aorta is a Mechanism for Supporting the Physiological Self-organization of
Tornado-like Blood Flow. Hum. Physiol. 2018, 44, 532–540. [CrossRef]

4. Kiknadze, G.I.; Krasnov, Y.K. Evolution of a spout-like flow of viscous fluid. Sov. Phys. Dokl. 1986, 31, 799–801.
5. Sedov, L.I. Solid Mechanics. Nauka. Moscow. 1973, 1, 178–180. (In Russian)
6. Bockeria, L.; Kiknadze, G.I.; Gachechiladze, I.A.; Gorodkov, A.Y. Application of Tornado-Flow Fundamental Hydrodynamic

Theory to the Study of Blood Flow in the Heart: Further Development of Tornado-Like Jet Techology. In Proceedings of the
ASME IMECE, Denver, CO, USA, 11–17 November 2011. [CrossRef]

7. Talygin, E.A.; Zazybo, N.A.; Zhorzholiany, S.T.; Krestinich, I.M.; Mironov, A.A.; Kiknadze, G.I.; Bokerya, L.A.; Gorodkov,
A.Y.; Makarenko, V.N.; Alexandrova, S.A. Quantitative Evaluation of Intracardiac Blood Flow by Left Ventricle Dynamic
Anatomy Based on Exact Solutions of Non-Stationary Navier-Stocks Equations for Selforganized tornado-Like Flows of Viscous
Incompresssible Fluid. Uspekhi Fiziologicheskikh Nauk 2016, 47, 48–68. [PubMed]

8. Doost, S.N.; Ghista, D.; Su, B.; Zhong, L.; Morsi, Y.S. Heart blood flow simulation: A perspective review. Biomed. Eng. Online 2016,
15, 1–28. [CrossRef] [PubMed]

9. Khalafvand, S.S.; Ng, E.Y.-K.; Zhong, L.; Hung, T.-K. Three-dimensional diastolic blood flow in the left ventricle. J. Biomech. 2017,
50, 71–76. [CrossRef] [PubMed]

10. Pedrizzetti, G.; Domenichini, F. The Long Way from Theoretical Models to Clinical Applications. Ann. Biomed. Eng. 2014, 40.
[CrossRef]

11. Habibi, M.; D’Souza, R.M.; Dawson, S.T.; Arzani, A. Integrating multi-fidelity blood flow data with reduced-order data
assimilation. Comput. Biol. Med. 2021, 135, 104566. [CrossRef] [PubMed]

12. Liao, X.; Qian, Y.; Chen, Y.; Xiong, X.; Wang, Q.; Heng, P.-A. MMTLNet: Multi-Modality Transfer Learning Network with
adversarial training for 3D whole heart segmentation. Comput. Med Imaging Graph. 2020, 85, 101785. [CrossRef] [PubMed]

http://doi.org/10.1115/IMECE2019-11298
http://doi.org/10.1134/S0362119719050190
http://doi.org/10.1134/S0362119718050171
http://doi.org/10.1115/IMECE2011-63769
http://www.ncbi.nlm.nih.gov/pubmed/27149823
http://doi.org/10.1186/s12938-016-0224-8
http://www.ncbi.nlm.nih.gov/pubmed/27562639
http://doi.org/10.1016/j.jbiomech.2016.11.032
http://www.ncbi.nlm.nih.gov/pubmed/27939353
http://doi.org/10.1007/s10439-014-1101-x
http://doi.org/10.1016/j.compbiomed.2021.104566
http://www.ncbi.nlm.nih.gov/pubmed/34157468
http://doi.org/10.1016/j.compmedimag.2020.101785
http://www.ncbi.nlm.nih.gov/pubmed/32898732

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

