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Abstract: Heat transfer analysis can be studied efficiently with the help of so-called modern di-
mensional analysis (MDA), which offers a uniform and easy approach, without requiring in-depth
knowledge of the phenomenon by only taking into account variables that may have some influence.
After a brief presentation of the advantages of this method (MDA), the authors applied it to the
study of heat transfer in straight bars of solid circular section, protected but not thermally protected
with layers of intumescent paints. Two cases (two sets of independent variables) were considered,
which could be easily tracked by experimental measurements. The main advantages of the model
law obtained are presented, being characterized by flexibility, accuracy, and simplicity. Additionally,
this law and the MDA approach allow us to obtain much more advantageous models from an
experimental point of view, with the geometric analogy of the model with the prototype not being a
necessary condition. To the best knowledge of the present authors there are no studies reporting the
application of the MDA method as it was used in this paper to heat transfer.

Keywords: geometric analogy; similarity theory; dimensional analysis; model law; heat transfer;
straight bar

1. Introduction
1.1. General Considerations

The idea of dimensional analysis and its practical application dates from the end
of the 18th century. The introduction of fundamental units allowed for the creation of
some theoretical bases for the application of dimensional analysis in the verification of the
correctness of some obtained formulas.

The method of dimensional analysis was conceived and developed in the last century
by mathematicians and engineers in order to facilitate experimental investigations of
complex structures, as well as difficult to reproduce phenomena, through the easier study
of their small-scale models.

This method involves attaching a model (usually scaled down) to the actual structure,
called a prototype. The experimental and theoretical study will be carried out/performed
on the model, and the results obtained will be transferred to the prototype based on the
rigorous application of the model law, specific to dimensional analysis.

The law of the model consists of a finite and well-determined number of dimensionless
variables, established by Buckingham’s theorem, which have as a starting point precisely
the set of variables that intervene in the description of the respective physical phenomenon.

In the classical version (classical dimensional analysis—CDA), obtaining the model
law, involves following one of the following paths:

• by the direct application of Buckingham’s theorem, presented in detail in the papers
mentioned in the paper;

Mathematics 2021, 9, 1875. https://doi.org/10.3390/math9161875 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3242-4604
https://doi.org/10.3390/math9161875
https://doi.org/10.3390/math9161875
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9161875
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9161875?type=check_update&version=2


Mathematics 2021, 9, 1875 2 of 24

• by applying the method of partial differential equations on the fundamental dif-
ferential relations, which describe the phenomenon, when the initial variables are
transformed into dimensionless quantities (through a normalization process) and by
their appropriate grouping the desired dimensionless groups will result;

• identification of the complete form, but also the simplest of the equation (equations)
that describe the phenomenon, which we will transform into dimensionless forms,
from which the desired dimensionless groups will be identified.

These ways of obtaining the desired dimensionless groups, which in fact constitute
the law of the model, represent quite a difficult and at the same time arbitrary method,
which also presuppose the thorough knowledge of the pursued phenomenon.

Compared to these, the method called modern dimensional analysis (MDA) offers a
unique and simple way to obtain the model law, requiring only the consideration of all
variables that could have an influence on the phenomenon, which is a clear advantage to
the MDA. In this case, the complete set of dimensionless groups is obtained, and thus the
complete version of the model law.

From this complete variant, based on the exclusion of some physical or dimensional
variables irrelevant to the studied phenomenon, will result the model law, which most
accurately describes the model–prototype correlation. Thus, based on a unique and simple
approach, those correlations will be established, i.e., the model law, which ensures the
transfer of the information obtained on the model to the prototype.

In this paper, the authors established that only the law of the model, as shown in
paragraph 3.2 (of the variant I studied), can be applied to a concrete case.

A series of papers present the advantages of dimensional analysis [1,2] and the limita-
tions of using this method [3,4]. The basic results in the application of this method have
been obtained in recent decades [5–8]. The fundamentals of the method are consistently
developed and used in applications [9–13].

From all the fields in which the method of dimensional analysis has been applied, we
referred only to its application to heat transfer, which will be the subject of this article.

Some particular cases of heat transfer have been used in the literature. The complexity
of a heat transfer problem is significantly reduced using the dimensional analysis method
and transforming the problem in a scale-free form. For example, this method is used
to study the dimensionless groups in irradiated particle-laden turbulence [14]. For such
systems it is concluded that two dimensionless groups are important in the system’s
thermal response.

An experimental study on the convection heat transfer coefficient and pressure drop
values of CO2 led to the use of the dimensional analysis technique to develop correlations
between Nusselt numbers and pressure drops [15]. Other example of the dimensional
analysis in the case of heat transfer are presented in the literature [16–20].

The complexity and nonlinearity of mechanical or thermal phenomena require a new
approach regarding the correlation of experimental results with theoretical data, which
requires the development of pertinent mathematical models [21]. The conventional analysis
usually involves many trials and diagrams with measurement results.

1.2. Dimensional Modelling, a Design Tool for Heat Transfer Analysis

Starting from the geometric analogy, a first more efficient approach is given by the
similarity theory [22,23], where alongside the prototype, the model—usually a small-scaled
model—is defined. The governing equations applied to the prototype are obtained by
means of the model’s behavior [24,25]. The model must accurately reflect the behavior of
the prototype. The similarity between prototype and model is structural or functional. The
structural similarity highlights mainly the geometric similarity between prototype and
model, while the functional similarity aims to find corresponding equations that describe
both prototype and model. Additionally, geometric similarity supposes proportionality
between length and angle equality for the prototype and model. Thus, homologous points,
lines, surfaces, and volumes of the prototype and model can be defined. Functional
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similarity involves similar processes in both systems, prototype and model, that take place
at similar times, i.e., the accomplishment of the similarity of all physical properties that
govern the analyzed process. This kind of similarity can be kinematic or dynamic, and the
phenomena occur so that, in homologous points, at homologous times, each dimension η
is characterized by a constant ratio between the values corresponding to the model and
prototype, Sη . These dimensionless ratios, which are constant in time and space, are scale
factors of the dimensions involved or similarity ratios. The scale factor Sη is defined as
the ratio between the value of the dimension corresponding to the model (η2) and the
prototype, respectively (η1):

Sη =
η2

η1
[−], (1)

The reverse of Sη represents the coefficient of transition from the original to the
model [21]. There are as many scale factors as dimensions describing the phenomenon.
Practically, the mathematical solution of the complex equations that theoretically describe
the actual phenomenon is replaced by correlations between dimensionless parameters,
which are obtained from the fundamental relations of the phenomenon by a suitable
grouping of dimensions, called similarity parameters, such as Nu, Re, St, Pr, etc. Therefore,
the dimensions are replaced by the corresponding scale factors, multiplied by constants,
and by an appropriate grouping, the similarity parameters are obtained, and correlations
among them, such as Nu = f (Re, Pr, Gr, . . .), are also obtained. By means of experimental
measurements, these correlations simplify the analysis performed and allow a reduction in
the number of measurements in order to obtain important parameters of the phenomenon.

Among the basic theorems of similarity, two of them can be highlighted:

• for two similar phenomena the homologous dimensionless groups are the same;
• the conditions that are necessary and sufficient for two phenomena to present similar-

ity are:

◦ to be of the same nature;
◦ to have the same determinant parameters of similarity;
◦ to have the same initial and boundary conditions.

In the case of complex phenomena, the number of dimensionless parameter scales
of involved variables and correlations increases very much and therefore the similarity
theory must be replaced by a more efficient method that is the dimensional analysis [26].
The main aspects concerning the similarity theory and dimensional analysis are indicated
in [27–30].

1.3. Classical Dimensional Analysis (CDA)

There is in this case a model that will be analyzed instead of the prototype, and as a
result of the experiments carried out on the model, by means of dimensionless relations
(dimensionless groups πj), the behavior of the prototype can be predicted, obviously in
conditions of similarity.

By using the πj groups, CDA simplifies very much the experimental investigations
and the graphical representations, and the results have a high degree of abstraction and
generality. The works [26,29] present in detail the main πj groups that describe thermal
energy processes.

CDA is not a substitute for experimental measurements and does not have the purpose
of explaining physical phenomena; it aims to simplify and optimize the design of exper-
iments by grouping measurable parameters of a phenomenon in dimensionless groups,
defined by Buckingham’s π theorem. Both model and prototype obey in their behavior the
conditions set out in the πj group.

By using CDA, the πj groups can be set in one of the following ways:

• by direct application of Buckingham’s π theorem;
• by applying the method of partial differential equations to fundamental differential

relations that describe the phenomenon; the initial variables are transformed into
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dimensionless quantities and then, by their suitably grouping, the πj groups are
obtained;

• by identifying the full form, but also the simplest equation(s) that describe the phe-
nomenon, which will be transformed into dimensionless forms from which the desired
πj groups will be selected.

According to [24,29] the Buckingham’s π theorem has the following statement: the
required number of independent dimensionless groups formed by combining the variables
of a phenomenon is equal to the total number of these quantities minus the number of
primary units of measurement that is necessary to express the dimensional relations of the
physical quantities.

Consider a process that can be described by a set of independent parameters yi ,
i = 1, 2, . . . , n by means of the general relation:

f (y1, y2, y3, . . . , yn) = 0, (2)

For describing the n quantities, m primary units of measurement are required and
thus, from Buckingham’s theorem, (n − m) independent πj dimensionless groups can be
formed that are able to describe the considered process. They are in a similar relation:

F(π1, π2, . . . , πn−m) = 0, (3)

The set of relations is given by:

πj = Fj(π1, π2, . . . , πn−m), j = 1, 2, . . . , (n−m) , (4)

The functional relationship among the πj groups is obtained from trials.
As mentioned in [21], CDA involves three steps, namely:

1. the selection of parameters and primary units that can most accurately describe the
phenomenon;

2. the determination of πj groups by identifying the exponents of the independent
variables;

3. the experimental determination of the functional relations among the πj groups.

Thus, the πj groups are defined as products of the representative quantities that are
involved in describing the phenomenon having unknown exponents (a, b, c, . . .). From the
condition that all the πj groups are dimensionless (the sum of the exponents of each primary
dimension must be zero), a system of equations will be obtained where the unknowns are
the exponents. It is a multiple indeterminate system, where convenient values are given
from the beginning to the exponents of the primary units, while the rest of the unknown
exponents are determined from the solution of the system. Finally, the total number of
πj groups will be obtained.

Unfortunately, all approaches of the CDA show several shortcomings. That is why
the original method described in [31,32], called modern dimensional analysis (MDA), is
according to the authors, the most efficient and easy way to approach dimensional analysis.

1.4. Objectives and Purpose of the Paper

This paper represents a theoretical and experimental study on the implementation of
modern dimensional analysis (MDA) in solving the problem of heat transfer, especially to
the metal structures used in civil and industrial constructions, protected or unprotected
with layers of intumescent paints. A fire protection, in addition to maintaining the flexibility
of the original structure, leads both to maintaining the initial load-bearing capacity of the
resistance structure for a longer time in case of fire and to increase the guaranteed time
for evacuation of persons and property subjected to fire. Other recent studies concerning
dimensional analysis are presented in [33–41].

In this article, the authors set out to achieve the following major objectives:
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• Comparative analysis of methods that use the analysis of the phenomenon on models
instead of prototypes, such as geometric analogy, theory of similarity, and classical
dimensional analysis;

• Brief presentation of the MDA method and its net advantages in the study of the
prototype-model correlation;

• Application of MDA to the study of heat transfer of straight metal bars of full circular
section (but with the possibility of extending these results to rings of annular section)
protected or unprotected by layers of intumescent paints;

• In this sense, the laws of the model are presented, which govern the heat transfer in
these thermally protected or unprotected bars, the application of which leads to a
significant simplification of the analysis of this complex and important phenomenon.

The aim of the manuscript is to apply modern dimensional analysis to the heat transfer
in a circular bar. The heat transfer in the bar is transitory. The bar is placed in air; therefore,
the boundary condition is convection. The heat transfer coefficients were considered among
the other variables in applying MDA. As indicated in the manuscript, when using MDA,
the relations of the model law are correlations among variables that are involved in the
phenomenon, and they must not be compared with the physical relations that describe
the phenomenon. In contrast with the classical dimensional analysis, MDA considers the
variables that might influence the phenomenon, without requiring a thorough knowledge
of the phenomenon and the governing relations. The relations of the model law can be
extended to bars with tubular section and structures of bars with annular cross-section.
This is also an advantage in using MDA. To the best knowledge of the authors, the heat
transfer in a circular bars described by MDA has not been reported before in the literature.

2. Method of Analysis in Modern Dimensional Analysis (MDA)

In a physical relation there is a single dependent variable and a finite number of
independent variables. The variables are denoted by (H1 , H2 , H3 , . . .), while their
dimensions are denoted by (h1 , h2 , h3 , . . .). The derived dimensions are obtained
from the combination of previously selected primary dimensions, such as hr1

1 · hr2
2 · h

r3
3 ·

. . . · hrn
n (where, r1 , r2 , r3 . . . are the exponents of the primary dimensions, while n

is the number of the involved primary dimensions). A variable Hj has the dimension

[Hj] = ϕj · h
r1 j
1 · hr2j

2 · h
r3j
3 · ··, where ϕj is a coefficient.

The author of works [31,32] indicates the following steps for analysis, which were
presented in [33]:

• the dimensional matrix (DM) is defined; it consists of the exponents of all involved
dimensions hi that describe all independent variables Hk and the dependent one. In
the case of four variables, among one is dependent (for instance H1), the dimensional
relations are:

H1 = hα1
1 · h

β1
2 · h

γ1
3 · h

δ1
4 ;H2 = hα2

1 · h
β2
2 · h

γ2
3 · h

δ2
4 ;H3 = hα3

1 · h
β3
2 · h

γ3
3 · h

δ3
4 ;H4 = hα4

1 · h
β4
2 · h

γ4
3 · h

δ4
4 . (5)

The dimensional matrix contains the exponents of these dimensions and is indicated
in rel. (6):

H1 H2 H3 H4
h1 α1 α2 α3 α4
h2 β1 β2 β3 β4
h3 γ1 γ2 γ3 γ4
h4 δ1 δ2 δ3 δ4

(6)

Matrix M, associated with the dimensional matrix, is:

M =


α1 α2 α3 α4
β1 β2 β3 β4
γ1 γ2 γ3 γ4
δ1 δ2 δ3 δ4

, (7)
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In the general case, there are NV total variables and Nd primary dimensions that define
both the dimensional matrix and the associated one, as a matrix consisting of Nd lines and
NV columns.

• it is to find the quadratic submatrix A, starting with the upper right elements of matrix
M, which has the highest rank, r and which will also be the rank of the dimensional
matrix RDM = r. For this purpose, some rows (dimensions that cannot be selected
arbitrarily, but will result from the model law) and columns (dependent variables)
are eliminated from matrix M, and those independent variables are set that have the
exponents of the dimensions included in matrix A. Matrix A must not be singular
(det|A| 6= 0), and the rows contain the exponents of the primary dimensions of
the remaining independent variables. The model law can comprise one or more
correlations among independent and dependent variables, as will later be indicated.

• the remaining rows of matrix M represent the reduced dimensional matrix M1. They
contain the primary dimensions (i.e., the dimensions that can be arbitrarily selected).
The columns of matrix M1, which are not included in matrix A, represent matrix B.

• the dimensional set is defined; it comprises the reduced dimensional matrix (B + A),

matrix C = −
(

A−1 · B
)T and the unit matrix of order n, D ≡ Inxn, as indicated by (8)

and (9) [31,32,34].

The rows correspond to the
remaining primary dimensions
k = Nd after defining matrix A

1.

B A

2.
3.
4.
. . .
k.

The rows correspond to n columns
(dependent variables) that had
matrix B; the number of the rows is
the same as that of the πj , resulting
in dimensionless quantities

1.

D ≡ Inxn C = −
(

A−1 · B
)T

2.
3.
4.
. . .
. . .
n.

D ≡ Inxn, (8)

It should be mentioned that matrix C is obtained from the relation:

C = −
(

A−1 · B
)T

, (9)

Relation (9) is valid if the set of new variables contains only πj dimensionless quanti-
tates and matrix D is a unit matrix.

• the rows j = 1, 2, . . . , n of matrixes D and C define all πj dimensionless quantitates.
Thus, row j of the common matrix (D and C) contains the exponents that are involved in
defining πj, which is the product between a dependent variable (from matrix B, having
the exponent 1) and all involved independent variables (from matrix A, having the
exponents from the row j of matrix C). In order to find the model law, the expressions
of all πj dimensionless variables are equal to one. In all products of matrix D there is
only one dependent variable with exponent 1, while in those of matrix C there are all
independent variables with the exponents obtained from relation (9).

As mentioned before, in the matrices A, B and C the exponents (h1, h2, . . . , hm) of
the basic dimensions involved intervene, which helps us to describe the set of variables
involved (H1, H2, H3, . . . , Hn), and in matrix D (which is a unit matrix) these unit values
will also represent exponents of dependent variables.

The illustration of how to obtain the elements of the model law is given in Figure 1:
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Figure 1. The illustration of how to obtain the elements of the model law.

If considering, for example, the dimensionless variable π5, on its line there are the
exponents of all involved independent variables (H9, . . . , H14), the exponents of the
independent variables (a5 , . . . , f5), as well as the exponent of the dependent variable
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(H5), which is 1, being positioned on the main diagonal of matrix D. Consequently, π5 can
be written as:

π5 = (H5)
1 · (H9)

a5 · (H10)
b5 · (H11)

c5 · (H12)
d5 · (H13)

e5 · (H14)
f5 , (10)

As shown before, relation (10) is equal to the unit, and from this equality the dependent
variable is expressed (here being H5), i.e.,

π5 = (H5)
1 · (H9)

a5 · (H10)
b5 · (H11)

c5 · (H12)
d5 · (H13)

e5 · (H14)
f5 = 1 ⇒

⇒ H5 = 1
(H9)

a5 ·(H10)
b5 ·(H11)

c5 ·(H12)
d5 ·(H13)

e5 ·(H14)
f5

. , (11)

Then, the involved variables (H5, H9, . . . , H14) are replaced by the corresponding
scale factors (SHn), and finally, the desired expression of the fifth element of the model law
is obtained.

Obviously, some of the exponents involved being negative, the relationship obtained
will be in the form of an ordinary fraction, where both the numerator and the denominator
will have expressions of scale factors at certain powers.

Some observations can be formulated as:

• in this case, the model law will consist of eight elements, since eight dimensional
variables resulted from the calculations (π1, . . . , π8);

• at the same time, this law includes the complete set of dimensionless variables πk
involved in the description of the analyzed physical phenomenon, and the way to
obtain these dimensionless variables is the easiest and safest, which cannot be achieved
with the rest of the methods mentioned above;

• for simplification, πj variables can be further grouped.
• Some conclusions can be drawn from the previous MDA analysis, namely:
• as compared to CDA, the relations of the Model obtained from MDA are correlations

among variables that are involved in the phenomenon, which actually represent
connections between the scale factors of the involved variables. They must not be
compared with the physical relations that describe the phenomenon

• if opting for the case in which the set of new variables comprises only πj dimensionless
variables and matrix D is quadratic, but not a unit matrix, then matrix C is calculated
from relation (10) [31,32]:

C = −D ·
(

A−1 · B
)T

, (12)

the final expressions of the πj variables do not change;
• the order of introducing the dependent variables in matrix B and independent vari-

ables in matrix A and thus, their positioning in the reduced dimensional matrix (B-A)
and dimensional set (B-A-D-C), respectively, does not influence the πj relations and
model law;

• the new approach proposed by MDA has the following advantages [31,32]:

◦ all parameters that might have an influence upon the phenomenon are consid-
ered (total variables of the dimensional set). More information in defining the
relevant variables increases the degree of freedom in selecting the properties
of the model, and thus a more reliable description of the prototype is possi-
ble. Later, based on a careful analysis, the variables that have an insignificant
influence can be excluded.

◦ the πj variables can be easily and unitarily determined, which is impossible
if CDA or the theory of similarity are used. It means that the dimensional
set defined by Equation (8) represents the complete set of πj dimensionless
products of variables Hm, m = NV :

◦ the calculations required for the arbitrary grouping and analysis used by the
two previously mentioned methods, in order to obtain the πj groups, are
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eliminated. They require a thorough knowledge of the phenomenon, thus
making CDA difficult and inaccessible to many researchers;

◦ in contrast, MDA considers the variables that might influence the phenomenon
without requiring a thorough knowledge of the phenomenon and the govern-
ing relations;

◦ in order to determine the model law that consists of the constitutive expressions
of the πj variables, each πj variable is equal to one and each variable η is
replaced by the corresponding scale factor Sη . From these expressions, the
scale factors of the dependent variables are determined as function of the
independent ones, thus obtaining the components of the model law.

3. Application of MDA to the Heat Transfer in a Circular Bar. Case Study
3.1. General Approach

A metallic (steel) bar with a circular section is considered, being related to the reference
system xGrt (Figure 2).
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Generally, the set of variables that govern the transient heat transfer in a bar with
circular section that can be further analyzed in terms of dimensions are indicated in Table 1:

Table 1. The set of variables that govern the heat transient transfer in a beam with circular section.

Variable

Name Symbol/Formula Dimension

Heat * Q J = N ·m =
kg·mx

s2 ·mx =
kg·m2

x
s2

Heat rate
.

Q = dQ
dτ W = J

s =
kg.m2

x
s3

Time τ, ∆τ s

Density of material
(steel, air, paint/insulating material) ρ kg

m3 =
kg

mx ·m2
r

Constant-pressure
specific heat of air cp = 1

m ·
dQ
dt

1
kg ·

J
0C = 1

kg ·
kg·m2

x
s2·0C = m2

x
s2·0C ;

Specific heat capacity(steel, air) C = dQ
dT

J
0C =

kg·m2
x

s2·0C
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Table 1. Cont.

Variable

Name Symbol/Formula Dimension

Thermal conductivity(steel, paint),
along directions

λx (for steel)
W

mx ·0C = J
s ·

1
mx ·0C =

1
s ·

kg·m2
x

s2 · 1
mx ·0C =

kg·mx
s3·0C

λr (for steel or paint coat)
W

mr ·0C = J
s ·

1
mr ·0C =

1
s ·

kg·m2
x

s2 · 1
mr ·0C =

kg·m2
x

s3·mr ·0C

Thermal diffusivity of air, along
directions

ax = λx
ρ·cp

= 1
ρ ·

1
cp
· λx

ax = λx
ρ·cp

=

1
ρ ·

1
cp
· λx (mx ·m2

r
kg · s2·0C

m2
x
· kg·mx

s3·0C = m2
r

s )

ar =
λr

ρ·cp
= 1

ρ ·
1
cp
· λr

mx ·m2
r

kg · s2·0C
m2

x
· kg·m2

x
s3·mr ·0C = mx ·mr

s

Dynamic viscosity of air **
η = τ0x · 1

∇w0
= F0x

A ·
1
∇w0

kg
s2·mt

· 1
1/s =

kg
s·mt

ηr =
τ0r
∇w0

= F0r
A ·

1
∇w0

kg
s2·mr

· 1
1/s =

kg
s·mr

Kinematic
viscosity

of air

νx =
ηx
ρ = 1

ρ · ηx
mx ·m2

r
kg · kg

s·mt
= mx ·m2

r
s·mt

νy =
ηr
ρ = 1

ρ · ηr
mx ·m2

r
kg · kg

s·mr
= mx ·mr

s

Prandtl number
of air, along directions

Prx = νx
ax

= νx · 1
ax

mx ·m2
r

s·mt
· s

m2
r
= mx

mt

Prr =
νr
ar
∗∗∗ mx ·mr

s · s
mx ·mr

= 1 = m0
x ·m0

r · s0

Convection heat transfer coefficient
along directions

αnx

W
m2·0C = J

s ·
1

m2·0C =
kg·m2

x
s3 · 1

m2
r ·0C =

kg·m2
x

s3·m2
r ·0C

αnr (when the beam is protected (insulated) by a
paint coat, then: αn f = αnr)

W
m2·0C = J

s ·
1

m2·0C =
kg·m2

x
s3 · 1

mx ·mt ·0C =
kg·mx

s3·mt ·0C

Thickness of the paint coat along
the radial direction dr = δr mr

Beam volume V m3 = mx ·m2
r

Area of the beam cross section Atr m2
r

Lateral area Alat mx ·mt

Beam dimensions Lx, Lr, Lt mx , mr , mt

Shape factor of the cross-section ς = Alat
V = P

Atr
; P is the cross-section perimeter mt

m2
r

Gravitational acceleration g m
s2 = mx

s2

Temperature variation ∆T(K) or ∆t (
◦
C) ∆T(K) or ∆t (

◦
C)

Coefficient of volume expansion of
steel or of fluid/air β 1

0C

Nusselt number, along directions

Nux = αx ·lx
λ f , x

= αx · lx · 1
λ f , x

;

lx (mx)-characteristic length
kg·m2

x
s3·m2

r ·0C ·mx · s3·0C
kg·mx

= m2
x

m2
r

Nur =
αr ·lr
λ f , r

= αr · lr · 1
λ f , r

;

lr (mr)-characteristic length
kg·mx

s3·mt ·0C ·mr · s3·mr ·0C
kg·m2

x
= m2

r
mt ·mx

Reynolds number, along directions Rex = w0, x ·lx
νx

= w0, x · lx · 1
νx

; w0(
m
s ) is the fluid

velocity
mx
s ·mx · s·mt

mx ·m2
r
= mx ·mt

m2
r
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Table 1. Cont.

Variable

Name Symbol/Formula Dimension

Rer =
w0, r ·lr

νr
= w0, r · lr · 1

νr

mr
s ·mr · s

mx ·mr
= mr

mx

Péclet number, along directions
Pex = Rex · Prx mx ·mt

m2
r
· mx

mt
= m2

x
m2

r

Per =
mr
mx

Per = Rer · Prr
mr
mx
· 1 = mr

mx

Grashof number Grx =
g·β·∆t·l3

ζ

ν2
ζ

= g · β · ∆t · l3
x · 1

ν2
x

mx
s2 · 1

0C ·
0 C ·m3

x ·
s2·m2

t
m2

x ·m4
r
= m2

x ·m2
t

m4
r

Stanton number, along directions
Stx = Nux

Pex
= Nux · 1

Pex
∗∗∗ m2

x
mz ·my

· mz ·my

m2
x

= 1

Str =
Nur
Per

= Nur · 1
Per

m2
r

mx ·mt
· mx

mr
= mr

mt

Fourier number, along directions
Fox = ax ·τ

l2
x

= ax ·∆τ
l2
x

= ax · ∆τ · 1
l2
x

m2
r

s · s ·
1

m2
x
= m2

r
m2

x

For =
ar ·τ
l2
r

= ar ·∆τ
l2
r

= ar · ∆τ · 1
l2
r

mx ·mr
s · s · 1

m2
r
= mx

mr

Biot number, along directions
Bix = αx ·lx

λs, x
= αx · lx · 1

λs, x

kg·m2
x

s3·m2
r ·0C ·mx · s3·0C

kg·mx
= m2

x
m2

r

Bir = αr ·lr
λs, r

= αr · lr · 1
λs, r

kg·mx
s3·mt ·0C ·mr · s3·mr ·0C

kg·m2
x

= m2
r

mt ·mx

* Heat is numerically equal to the dimension of work; the work is conventionally considered a product between a force having the direction
along the bar, Fx (Nx = kg.mx

s2 ) and the displacement along the same direction x (mx). ** where the shear stress τ0 has one of the directions, x
or r, of the system xGrt, the applied force is F0, while the surface A where it occurs is in a plane that contains the direction of the shear
stress; the velocity w0 is normal to the plane where the shear stress is developed; ∇w0 represents its gradient. *** this is not suitable for
dimensional analysis (Therefore, it cannot be used in the dimensional analysis).

Having the dimensions of the variables involved in the transient heat transfer, the
MDA was applied as described by Szirtes in [31,32]. Additionally, for acquiring the simplest
relations of the model law, according to [31,32], the dimensions were duplicated (in this
case, the lengths were duplicated). This will contribute to the reduction in the number of
πj, j = 1, . . . , n dimensionless variables, once the dimensions of the variables involved
increase. Thus, the reduced number of expressions of the Model Law will be obtained.

According to the principles mentioned in [31,32], the following two sets of indepen-
dent variables were selected:

• for the first version (I): [(Q , Lt , ∆t, τ, λx steel , ζ];

• for the second version (II): [
.

Q, Lt , ∆t, τ, λx steel , ζ],

which are directly connected with the measurements that were performed and whose
magnitude can be controlled during experiments carried out on the model.

These sets are included in matrix A; the other quantities, representing dependent
variables, form matrix B.

It should be noted that the variables contained in matrix A are freely chosen, both for
the prototype and for the model. The advantage of choosing these two sets of independent
variables lies, inter alia, in the following:

• heating regimes can be chosen independently for prototype and model by:

◦ accepting convenient and well-determined values for the amount of heat intro-

duced into the system (Q or
.

Q);
◦ setting final temperatures compared to initial ones ( ∆t),
◦ defining/accepting individual heating times (τ) of the prototype and the

model;

• length scales can also be chosen independently (expressed here as Lt, which can be
extended to the rest of the dimensions, but it is not mandatory, because the rest of the
dimensions are also included in matrix B, which represents a significant reserve for
generalizing the model to the prototype);



Mathematics 2021, 9, 1875 12 of 24

• the factors ς (shape factor) of the cross sections can be chosen independently in the
prototype and for the model, respectively;

• one can define the materials of the prototype and the model by λx, which do not nec-
essarily have to be for both steel, which is also very important for the most favorable
experiments (costs, manufacturing time, test times etc).

In the following, the obtained results for these two variants are analyzed.

3.2. First Case Study

Version I is based on the above-described protocol of the MDA and the following
quantities were successively obtained:

• the dependent variables that define the heat transfer in the beam that is not coated

with intumescent paint, based on experimental research:
.

Q, Atr , Alat, rcyl , Lx, Lr

• the dependent variables that are useful for theoretical analyses:

cp air, Cair, Csteel , ax air, ar air, ρair, ρsteel , λr steel , νx air, vr air , αnx steel , αnr steel , ηx air, ηr air, βair/steel

• the dependent variables that are useful for setting convection heat transfer correlations
between dimensionless numbers (similarity criteria) Crit01, Crit02, Crit03, Prx ,
Grx air, Fox air, For air, Rer air, Str air where the mentioned dimensionless numbers
are:

Crit 01 = Rer = Per =
mx
mr

; Crit 02 = Nux = Pex = Bix = m2
x

m2
r
;

Crit 03 = Nur = Bir =
m2

r
mx ·mt

,

• the properties of the paint layer: ρpaint, λx paint, λr paint, αnr paint, δr paint

The components of the reduced dimensional matrix (B + A) are indicated in Tables 2–6,
where, as mentioned before, these elements represent exactly the exponents of the dimen-
sions involved in defining those variables.

Table 2. Matrix A, comprising independent variables.

Dimensions Q Lt ∆t τ λx steel ζ = P/A

mx 2 0 0 0 1 0

mr 0 0 0 0 0 −2

mt 0 1 0 0 0 1

kg 1 0 0 0 1 0

s −2 0 0 1 −3 0
◦C 0 0 1 0 −1 0

Table 3. The quantities required by experiments (part of matrix B).

Dimensions
.

Q Atr Alat rcyl Lx Lr

mx 2 0 1 0 1 0

mr 0 2 0 1 0 1

mt 0 0 1 0 0 0

kg 1 0 0 0 0 0

s −3 0 0 0 0 0
◦C 0 0 0 0 0 0
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Table 4. The quantities required by the theoretic analysis (part of matrix B).

Dimensions cp air Cair Csteel ax air ar air ρair ρsteel λr steel νx air νr air αnx steel αnr steel ηx air ηr air βair/steel

mx 2 2 2 0 1 −1 −1 2 1 1 2 1 0 0 0

mr 0 0 0 2 1 −2 −2 −1 2 1 −2 0 0 −1 0

mt 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 0

kg 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

s −2 −2 −2 −1 −1 0 0 −3 −1 −1 −3 −3 −1 −1 0
◦C −1 −1 −1 0 0 0 0 −1 0 0 −1 −1 0 0 −1

Table 5. The quantities required by the heat transfer correlations between dimensionless numbers (part of matrix B).

Dimensions Crit 01 Crit 02 Crit 03 Prx air Grx air Fox air For air Rex air Str air

mx 1 2 −1 0 −1 −2 1 −1 0

mr −1 −2 2 0 1 2 0 0 1

mt 0 0 −1 0 0 0 0 1 −1

kg 0 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 −2 0 0
◦C 0 0 0 −1 0 0 0 0 0

Table 6. The properties of the intumescent paint (part of matrix B).

ρpaint λx paint λr paint αnr paint δr paint

mx −1 1 2 1 0

mr −2 0 −1 0 1

mt 0 0 0 −1 0

kg 1 1 1 1 0

s 0 −3 −3 −3 0
◦C 0 −1 −1 −1 0

By performing the above-mentioned calculations, the elements of the Dimensional
Set were finally obtained, from where all dimensionless πj expressions were extracted as
corresponding lines of the Dimensional Set. In the following, this step-by-step procedure
is presented just for the first expression of the model law (related to the dimensionless
variable) and for the rest, only the final expressions of the model law are indicated. Thus,
the following were obtained:

(a) From experiments on uncoated structures (prototype and model) the following ex-
pressions of the Model Law were obtained (that is, the final expressions in which the
corresponding scale factors Sη of the dependent variables were defined in function of
the scale factors of the independent variables):

π1 =
.

Q ·Q−1 · L0
t · ∆t0 · τ1 · λ0

x steel · ς
0 =

.
Q · τ

Q
= 1 ⇒

S .
Q
· Sτ

SQ
= 1 ⇒ S .

Q
=

SQ

Sτ
, (13)

π2 : SAtr =
SLt

Sς
(14)

π3 : SAlat =
SQ · SLt

S∆t · Sτ · Sλx steel

(15)

π4 : Srcyl =

√
SLt

Sς
(16)



Mathematics 2021, 9, 1875 14 of 24

π5 : SLx =
SQ

S∆t · Sτ · Sλx steel

(17)

π6 : SLr =

√
SLt

Sς
(18)

(b) From experiments on coated structures (prototype and model) the set of previ-
ous expressions is completed with expressions specific to the coating paint, which
are (π31 . . . π35) . The following set of expressions of the Model Law is obtained
(π1 . . . π6) and (π31 . . . π35).

π1 S .
Q
=

SQ

Sτ
, (19)

π2 : SAtr =
SLt

Sς
, (20)

π3 : SAlat =
SQ · SLt

S∆t · Sτ · Sλx steel

, (21)

π4 : Srcyl =

√
SLt

Sς
, (22)

π5 : SLx =
SQ

S∆t · Sτ · Sλx steel

, (23)

π6 : SLr =

√
SLt

Sς
, (24)

π31 : Sρpaint =
(S∆t)

3 · (Sτ)
5 ·
(
Sλx steel

)3 · Sς(
SQ
)2 · SLt

, (25)

π32 : Sλx paint = Sλx steel , (26)

π33 : Sλr paint =
SQ

S∆t · Sτ
·
√

Sς

SLt

, (27)

π34 : Sαnr paint =
Sλx steel

SLt

, (28)

π35 : Sδr paint =

√
SLt

Sς
. (29)

(c) For theoretical investigations of parameters dependence (cp air, Cair, Csteel , ax air,
ar air, ρair, ρsteel , λr steel , νx air, vr air , αnx steel , αnr steel , ηx air, ηr air, βair/steel)
on the set of independent variables (of prototype and model), the following set of
expressions will be used (π7 . . . π21) :

π7 : Scp air =

(
SQ
)2

(S∆t)
3 · (Sτ)

4 ·
(
Sλx steel

)2 , (30)

π8 : SCair =
SQ

S∆t
, (31)

π9 : SCsteel =
SQ

S∆t
, (32)

π10 : Sax air =
SLt

Sτ · Sς
, (33)
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π11 : Sa r air =
SQ

S∆t · (Sτ)
2 · Sλx steel

, (34)

π12 : Sρair =
(S∆t)

3 · (Sτ)
5 ·
(
Sλx steel

)3 · Sς(
SQ
)2 · SLt

, (35)

π13 : Sρsteel =
(S∆t)

3 · (Sτ)
5 ·
(
Sλx steel

)3 · Sς(
SQ
)2 · SLt

, (36)

π14 : Sλr steel =
SQ

S∆t · Sτ
·
√

Sς

SLt

, (37)

π15 : Sνx air

SQ

S∆t · (Sτ)
2 · Sλx steel · Sς

, (38)

π16 : Sνr air =
SQ

S∆t · (Sτ)
2 · Sλx steel

, (39)

π17 : Sαnx steel =
SQ · Sς

SLt · S∆t · Sτ
, (40)

π18 : Sαnr steel =
Sλx steel

SLt

, (41)

π19 : Sηx air =
(S∆t)

2 · (Sτ)
3 ·
(
Sλx steel

)2

SQ · SLt

, (42)

π20 : Sηr air =
(S∆t)

2 · (Sτ)
3 ·
(
Sλx steel

)2

SQ
·
√

Sς

SLt

, (43)

π21 : Sβair/steel =
1

S∆t
. (44)

(d) For investigations of the dependence of the parameters on the set of independent
variables and for setting of heat transfer correlations between dimensionless numbers
based on the expressions of the model law (by combining them favorably), the next
set of expressions (π22 . . . π30) will be used:

π22 : SCrit 01 =
S∆t · Sτ · Sλx steel

SQ
·
√

SLt

Sς
, (45)

π23 : SCrit 02 =

(
SQ
)2 · Sς

SLt(S∆t)
2 · (Sτ)

2 ·
(
Sλx steel

)2 , (46)

π24 : SCrit 03 =
S∆t · Sτ · Sλx steel

SQ · Sς
, (47)

π25 : SPrx air =
SQ

SLt · S∆t · Sτ · Sλx steel

, (48)

π26 : SGrx air =

(
SQ
)2 · (Sς)

2

(s∆t)
2 · (Sτ)

2 ·
(
sλx steel

)2 , (49)

π27 : SFox air =
SLt · (S∆t)

2 · (Sτ)
2 ·
(
Sλx steel

)2(
SQ
)2 · Sς

, (50)
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π28 : SFor air =
SQ

S∆t · Sτ · Sλx steel

·
√

Sς

SLt

, (51)

π29 : SRex air =
SQ · Sς

S∆t · Sτ · Sλx steel

, (52)

π30 : SStr air =
1√

SLt · Sς
. (53)

In order to show how the elements of the model law can be applied for correlating the
prototype with the model, the following variables were selected:

• heat rate
.

Q1;
• model length Lx 2;
• thickness of the paint layer used for the model δr 2 paint.

These variables are governed by relations (1), (17), and (35) of the model law.
As can be observed,

.
Q1 is a quantity that refers to the prototype and cannot be

measured, since experiments were carried out only on the model, while Lx 2 and δr 2 paint
are corresponding to the model and they can be determined only for the prototype; for the
model they are obtained strictly from the elements of the model law.

Considering the set of independent variables, having the dimensions determined for
both prototype and model, the scale factors (SQ , SLt , S∆t , Sτ , Sλsteel , Sς) are considered
to be known, as well.

In order to obtain
.

Q1, relation (1) is used, where the scale factor S .
Q

is the ratio between
.

Q2 and
.

Q1. Thus, the following is obtained:

π1 S .
Q
=

SQ

Sτ
⇔

.
Q2
.

Q1

=
SQ

Sτ
⇒

.
Q1 =

Sτ

SQ

.
Q2 (54)

The model length Lx 2 is obtained from relation (17), as:

π5 : SLx =
SQ

S∆t · Sτ · Sλx steel

⇔ Lx2

Lx1
=

SQ

S∆t · Sτ · Sλx steel

⇒ Lx2 =
SQ

S∆t · Sτ · Sλx steel

Lx1

(55)
The thickness of the paint layer that covers the model δr 2 paint is acquired from relation

(29):

π35 : Sδr paint =

√
SLt

Sς
⇔

δr 2 paint

δr 1 paint
=

√
SLt

Sς
⇒ δr 2 paint = δr 1 paint ·

√
SLt

Sς
. (56)

Considering the previous relations, some observations can be made:

(a) The dependent variable
.

Q1, which has to be determined for the prototype, cannot be
excluded from the dimensional set or the model law.

(b) The other dependent variables of the model (here Lx 2 and δr 2 paint) can be analyzed
without so many restrictions, considering the set of independent variables, namely:

• if the scale factor is the same for all lengths, then SLt = SLx , and consequently
the relation of the fifth element of the model law, π5 can be neglected.

• if the thickness of the paint is the same for the prototype and model, then the
relation of π35 to the model law can be omitted.

• if it is aimed to conceive a more flexible model, then the model law allows us
to consider different scales of the lengths along directions (x, r, t) or different
thicknesses of the paint layer, but strictly considering the elements of the model
law.

As can be noticed, this is another major advantage of MDA, which cannot be obtained
if the aforementioned methods are used.



Mathematics 2021, 9, 1875 17 of 24

3.3. Second Case Study

For the second significant version, II, where Q was substituted by
.

Q, the following
significant elements of the dimensional set were obtained, according to Tables 7–11:

Table 7. Matrix A, comprising independent variables.

Dimensions
.

Q Lt ∆t τ λx steel ζ = P/A

mx 2 0 0 0 1 0

mr 0 0 0 0 0 −2

mt 0 1 0 0 0 1

kg 1 0 0 0 1 0

s −3 0 0 1 −3 0
◦C 0 0 1 0 −1 0

Table 8. The quantities required by experiments (part of matrix B).

Dimensions Q Atr Alat rcyl Lx Lr

mx 2 0 1 0 1 0

mr 0 2 0 1 0 1

mt 0 0 1 0 0 0

kg 1 0 0 0 0 0

s −2 0 0 0 0 0
◦C 0 0 0 0 0 0

Table 9. The quantities required by the theoretical analysis (part of matrix B).

Dimensions cp air Cair Csteel ax air ar air ρair ρsteel λr steel νx air νr air αnx steel αnr steel ηx air ηr air βair/steel

mx 2 2 2 0 1 −1 −1 2 1 1 2 1 0 0 0

mr 0 0 0 2 1 −2 −2 −1 2 1 −2 0 0 −1 0

mt 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 0

kg 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

s −2 −2 −2 −1 −1 0 0 −3 −1 −1 −3 −3 −1 −1 0
◦C −1 −1 −1 0 0 0 0 −1 0 0 −1 −1 0 0 −1
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Table 10. The quantities required by the heat transfer correlations between dimensionless numbers (part of matrix B).

Dimensions Crit 01 Crit 02 Crit 03 Prx air Grx air Fox air For air Rex air Str air

mx 1 2 −1 0 −1 −2 1 −1 0

mr −1 −2 2 0 1 2 0 0 1

mt 0 0 −1 0 0 0 0 1 −1

kg 0 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 −2 0 0
◦C 0 0 0 −1 0 0 0 0 0

Table 11. The properties of the intumescent paint (part of matrix B).

ρpaint λx paint λr paint αnr paint δr paint

mx −1 1 2 1 0

mr −2 0 −1 0 1

mt 0 0 0 −1 0

kg 1 1 1 1 0

s 0 −3 −3 −3 0
◦C 0 −1 −1 −1 0

The corresponding elements of the model law are:

π1 : SQ = S .
Q
· Sτ , (57)

π2 : SAtr =
SLt

Sς
, (58)

π3 : SAlat =
S .

Q
· SLt

S∆t · Sλx steel

, (59)

π4 : Srcyl =

√
SLt

Sς
, (60)

π5 : SLx =
S .

Q

S∆t · Sλx steel

, (61)

π6 : SLr =

√
SLt

Sς
, (62)

π7 : Scp air =

(
S .

Q

)2

(S∆t)
3 · (Sτ)

2 ·
(
Sλx steel

)2 , (63)

π8 : SCair =
S .

Q
· Sτ

S∆t
, (64)

π9 : SCsteel =
S .

Q
· Sτ

S∆t
, (65)

π10 : Sax air =
SLt

Sτ · Sς
, (66)

π11 : Sar air =
S .

Q

S∆t · Sτ · Sλx steel

·
√

SLt

Sς
, (67)
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π12 : Sρair =
(S∆t)

3 · (Sτ)
3 ·
(
Sλx steel

)3 · Sς(
S .

Q

)2
· SLt

, (68)

π13 : Sρsteel =
(S∆t)

3 · (Sτ)
3 ·
(
Sλx steel

)3 · Sς(
S .

Q

)2
· SLt

, (69)

π14 : Sλr steel =
S .

Q

S∆t
·
√

Sς

SLt

, (70)

π15 : Sνx air =
S .

Q

S∆t · Sτ · Sλx steel · Sς
, (71)

π16 : Sνr air =
S .

Q

S∆t · Sτ · Sλx steel

·
√

SLt

Sς
, (72)

π17 : Sαnx steel

S .
Q
· Sς

SLt · S∆t
, (73)

π18 : Sαnr steel =
Sλx steel

SLt

, (74)

π19 : Sηx air =
(S∆t)

2 · (Sτ)
2 ·
(
Sλx steel

)2

S .
Q
· SLt

, (75)

π20 : Sηr air =
(S∆t)

2 · (Sτ)
2 ·
(
Sλx steel

)2

S .
Q

·
√

Sς

SLt

, (76)

π21 : Sβair/steel =
1

S∆t
. (77)

The mentioned dimensionless numbers have the same expressions:

Crit 01 = Rer = Per =
mx

mr
, (78)

Crit 02 = Nux = Pex = Bix =
m2

x
m2

r
, (79)

Crit 03 = Nur = Bir =
m2

r
mx ·mt

, (80)

The elements of the model law are:

π22 : SCrit 01 =
S∆t · Sλx steel

S .
Q

·
√

SLt

Sς
, (81)

π23 : SCrit 02 =

(
S .

Q

)2
· Sς

SLt · (S∆t)
2 ·
(
Sλx steel

)2 , (82)

π24 : SCrit 03 =
S∆t · Sλx steel

S .
Q
· Sς

, (83)

π25 : SPrx air =
S .

Q

SLt · S∆t · Sλx steel

, (84)



Mathematics 2021, 9, 1875 20 of 24

π26 : SGrx air =

(
S .

Q

)2
· (Sς)

2

(S∆t)
2 ·
(
Sλx steel

)2 , (85)

π27 : SFox air =
SLt · (S∆t)

2 ·
(
Sλx steel

)2(
S .

Q

)2
· Sς

, (86)

π28 : SFor air =
S .

Q

S∆t · Sλx steel

·
√

Sς

SLt

, (87)

π29 : SRex air =
S .

Q
· Sς

S∆t · Sλx steel

, (88)

π30 : SStr air =
1√

SLt · Sς
, (89)

The elements of the model law are:

π31 : Sρpaint =
(S∆t)

3 · (Sτ)
3 ·
(
Sλx steel

)3 · Sς(
S .

Q

)2
· SLt

, (90)

π32 : Sλx paint = Sλx steel , (91)

π33 : Sλr paint =
S .

Q

S∆t
·
√

Sς

SLt

, (92)

π34 : Sαnr paint =
Sλx steel

SLt

, (93)

π35 : Sδr paint =

√
SLt

Sς
. (94)

4. Discussion and Conclusions

The relations deduced in the paper for the case of the straight bar of the full circular
section can be applied without problems to the tubular (ring) bars, both to the resistance
structures formed/constituted by them, as well as the reticular structures used in the roofs
of industrial halls, gyms, etc.

In these cases, of the structures made of straight bar elements, on the prototype and
on the model, the homologous points (and sections) will be identified, with the help of
which the thermal stresses on the model will be transferred to the prototype using of the
model law.

It is clear that the internationally recognized work and achievements of Sedov [23],
as well as other notable scientists [1–5,8,13,22,25–28,30], are not disputed in any way
by the authors of this paper. However, a number of difficulties need to be highlighted
in addressing the issue of dimensional analysis by them and other illustrious authors
compared to the methodology developed by Szirtes, the author of the works [31,32] namely:

• the direct analysis of the differential relations that describe the phenomenon, in order
to establish the dimensionless groups, does not always allow the unitary establishment
of the complete set of these dimensionless groups;

• also, the classical methodology (CDA) is usually cumbersome and non-unitary, allow-
ing different researchers to obtain different sets of dimensionless variables;

• in order to obtain these dimensionless groups, the authors of different works use, based
on the application of Buckingham’s theorem, either the normalization of the terms of
the differential relations related to the phenomenon describing the phenomenon, or a
rather arbitrary and unambiguous combination of variables involved in describing
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the phenomenon of the main measure (dimensions), which takes place in each author
according to his own logic, so it is a non-unitary approach to the phenomenon. Thus,
based on these approaches, different sets of dimensionless variables may result, which
may even represent combinations of those deduced by other authors [36,38–47].

• the classical methodology, i.e., CDA, presupposes from the very beginning a deep
knowledge of the phenomenon and of the differential relations that govern the phe-
nomenon, which for an ordinary researcher represents an impediment;

• the classical methodology, including those presented in the papers [22,23,25,27–30],
does not explicitly allow highlighting from the very beginning of the set of inde-
pendent variables or dependent variables, but applies a hard-to-follow (and often
unexplained) logic of how these two sets were chosen;

• the involvement from the very beginning, in approaching with the help of the dimen-
sional analysis of the phenomenon, of some very complicated differential relations
whose analysis will eventually lead to the establishment of these dimensionless groups,
discourages the vast majority of researchers/engineers from using a safe, unified, and
simple way to approach the problem, as will happen with MDA;

On the contrary, the methodology, called MDA, developed by Szirtes [31,32], rep-
resents a unified approach, easy and particularly accessible to any engineer, without
requiring deep/grounded knowledge of the phenomenon, but only reviewing all parame-
ters/variables that could have any influence on it.

Here, they are defined, in a unitary and unambiguous way, on the basis of a clear and
particularly accessible protocol/procedure:

• the set of main dimensions;
• the main variables (i.e., the independent ones), i.e., those that can be chosen a priori

for both the prototype and the model;
• the dependent variables, i.e., those that can be chosen a priori only for the prototype,

and for the model will result exclusively only through the rigorous application of the
model law;

• the variables sought for the prototype, which cannot be obtained by direct mea-
surements of the prototype, but only on the basis of the results of experimental
investigations performed on the model and by the rigorous application of the model
law;

• the complete set of dimensionless variables, without the existence of ambiguous
variants, is unitary;

• here the independent variables of the dependent ones are clearly delimited from the
very beginning, based on rigorous mathematical criteria, as well as on some practical
criteria regarding the quantities that deserve and that can be determined/controlled
by experimental measurements.

In the works [36–40,42,46,47] the classical approach is applied to determining the
exponents, which will define the dimensionless groups. Thus, they are used either for the
normalization of the known differential relations or the evaluation of the main dimensions
and later the establishment of some combinations of the variables in order to obtain
dimensionless groups.

In the paper [41], the dimensionless groups are arbitrarily defined, based on a combi-
nation, according to their own logic.

The only paper in which approaches closer to MDA were found is paper [35], where
the determination of exponents was based on the methodology presented in [43], but does
not specify how to choose independent or dependent variables, which is a deficiency of the
methodology presented in [43] by Langhaar. In contrast, in Szirtes’s work, i.e., in [31,32],
each time, these independent variables are rigorously chosen, taking into account how an
experiment of the model can be conducted more easily, allowing the model to be designed
as favorably as possible for the experiments.
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The author of the paper [44] uses the choice of independent and dependent variables
but applies the standard methodology for determining exponents by solving the system of
linear equations, which describes the phenomenon.

The main advantage of MDA in setting the content of these groups of variables is
that the elimination of some variables from this whole set does not influence the ones that
remain. In other words, the expressions of a certain set will not be influenced if some of the
dependent variables are considered or not.

Accordingly, if the whole set of the variables specific to the beam coated with intu-
mescent paint was conceived, representing 35 expressions that define the model law, a
certain number of dependent variables can be neglected without affecting the rest of the
expressions.

In the above-described protocols, the general cases are indicated, from which several
particular cases can be obtained.

Moreover, if for the prototype and model, a certain variable has identical values, then
they can be ignored due to the fact that their scale factor became Sη = 1 and consequently
one will resolve useful particular cases similarly with the following:

• if both prototype and model are made of the same material (here: steel), then one has
Sαnx steel = Sαnr steel = Sλx steel = Sλr steel = Sρsteel = SCsteel = Sβsteel = 1;

• if environmental conditions for experiments are the same (the experiments are per-
formed in the same environments) then: Scp air = SCair = Sax air = Sar air = Sρair =
Sηx air = Sηr air = Sνx air = Sνr air = Sβair = 1;

• if the coating materials are identical for both prototype and model, then Sρpaint =
Sλx paint = Sλr paint = Sαnr paint = 1, i.e., the expression corresponding to the dimensionn-
less variables π31, . . . , π35 are eliminated, maintaining only the last one, π35;

• if the same scales for lengths are adopted, other simplifications of the expressions of
the model law will be obtained

It is also important to mention that, using the MDA, the model can be differently
conceived from the prototype (another material, another coat of paint, etc.), which reveals
once again the incontestable advantages of the method proposed in [30,31] as compared to
the classical dimensional analysis;

Another conclusion is that for tubular sections, where the thickness of the tube is
δr, the expression of the model law corresponding to length Lr, which is identical to rcyl ,
can be applied to the thickness of the tube too. Therefore, the model law is valid also for
tubular sections if the same scale is adopted as for Lr and rcyl .

To the best knowledge of the present authors there are no studies reporting the
application of the MDA method to the heat transfer in circular bars.
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33. Trif, I.; Asztalos, Z.; Kiss, I.; Élesztős, P.; Száva, I.; Popa, G. Implementation of the Modern Dimensional Analysis in Engineering

Problems; Basic Theoretical Layouts. Ann. Fac. Eng. Hunedoara 2019, 17, 73–76.
34. Száva, I.; Szirtes, T.H.; Dani, P. An Application of Dimensional Model Theory in The Determination of the Deformation of a

Structure. Eng. Mech. 2006, 13, 31–39.
35. Allamsettya, S.; Mohapatro, S. Prediction of NO and NO2 Concentrations in Ozone Injected Diesel Exhaust after NTP Treat-

ment Using Dimensional Analysis. In Proceedings of the 10th International Conference on Applied Energy (ICAE2018),
Hong Kong, China, 22–25 August 2018; pp. 4579–4585.

36. Phate, M.R.; Toney, S.B. Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional
analysis and artificial neural network. Eng. Sci. Technol. Int. J. 2019, 22, 468–476. [CrossRef]

37. Zhang, X.; Taira, H.; Liu, H. Error of Darcy’s law for serpentine flow fields: Dimensional analysis. J. Power Sources 2019, 412,
391–397. [CrossRef]

38. He, Q.; Suorineni, F.T.; Ma, T.; Oh, J. Parametric study and dimensional analysis on prescribed hydraulic fractures in cave mining.
Tunn. Undergr. Space Technol. 2018, 78, 47–63. [CrossRef]

39. Ashikhmin, V.N.; Kugaevskii, S.S. Dimensional Analysis in the Machining of Housing Components with Cast Holes. Russ. Eng.
Res. 2013, 33, 509–513. [CrossRef]

http://doi.org/10.1115/1.3269533
http://doi.org/10.1021/ed070p40
http://doi.org/10.1016/0004-3702(90)90038-2
http://doi.org/10.1007/BF00537647
http://doi.org/10.1109/TSMC.1984.6313242
http://doi.org/10.1061/(ASCE)0733-9399(1984)110:9(1357)
http://doi.org/10.1119/1.13468
http://doi.org/10.1016/0016-0032(81)90475-0
http://doi.org/10.1088/0305-4470/15/7/011
http://doi.org/10.1007/BF00678423
http://doi.org/10.1007/BF00247739
http://doi.org/10.1088/0305-4470/13/1/010
http://doi.org/10.1016/j.ijmultiphaseflow.2019.103198
http://doi.org/10.1007/s00231-011-0795-7
http://doi.org/10.1016/j.ijmultiphaseflow.2010.09.004
http://doi.org/10.1016/j.ijrefrig.2008.10.004
http://doi.org/10.2298/TSCI0904183N
http://doi.org/10.1016/0016-0032(71)90161-X
http://doi.org/10.1103/PhysRev.4.345
http://doi.org/10.1016/j.jestch.2018.12.002
http://doi.org/10.1016/j.jpowsour.2018.11.071
http://doi.org/10.1016/j.tust.2018.04.012
http://doi.org/10.3103/S1068798X13090049


Mathematics 2021, 9, 1875 24 of 24

40. Almeida, R.S.M.; Al-Qureshib, H.A.; Tushteva, K.; Rezwan, K. On the dimensional analysis for the creep rate prediction of
ceramic fibers. Ceram. Int. 2018, 44, 15924–15928. [CrossRef]

41. Yao, S.; Yan, K.; Lu, S.; Xu, P. Prediction and application of energy absorption characteristics of thinwalled circular tubes based on
dimensional analysis. Thin-Walled Struct. 2018, 130, 505–519. [CrossRef]

42. Ferro, V. Assessing flow resistaance law in vegetated channels by dimenisonal aalysis and self-similarity. Flow Meas. Instrum.
2019, 69, 101610. [CrossRef]

43. Langhaar, H.L. Dimensional Analysis and Theory of Models; John Wiley & Sons Ltd.: New York, NY, USA, 1951.
44. Kivade, S.B.; Murthy, C.S.N.; Vardhan, H. The use of Dimensional Analysis and Optimisation of Pneumatic Drilling Operations

and Operating Parameters. J. Inst. Eng. India Ser. D 2012, 93, 31–36. [CrossRef]
45. Pankhurst, R.C. Dimensional Analysis and Scale Factor; Chapman & Hall Ltd.: London, UK, 1964.
46. Khan, M.A.; Shah, I.A.; Rizvi, Z.; Ahmad, J. A numerical study on the validation of thermal formulations towards the behaviours

of RC beams. Sci. Mater. Today Proc. 2019, 17, 227–234. [CrossRef]
47. Yen, P.H.; Wang, J.C. Power generation and electrical charge desnity with temperature effect of alumina nanofluids using

dimensional analysis. Energy Convers. Manag. 2019, 186, 546–555. [CrossRef]

http://doi.org/10.1016/j.ceramint.2018.06.012
http://doi.org/10.1016/j.tws.2018.06.015
http://doi.org/10.1016/j.flowmeasinst.2019.101610
http://doi.org/10.1007/s40033-012-0001-1
http://doi.org/10.1016/j.matpr.2019.06.423
http://doi.org/10.1016/j.enconman.2019.03.005

	Introduction 
	General Considerations 
	Dimensional Modelling, a Design Tool for Heat Transfer Analysis 
	Classical Dimensional Analysis (CDA) 
	Objectives and Purpose of the Paper 

	Method of Analysis in Modern Dimensional Analysis (MDA) 
	Application of MDA to the Heat Transfer in a Circular Bar. Case Study 
	General Approach 
	First Case Study 
	Second Case Study 

	Discussion and Conclusions 
	References

