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Abstract: In the paper, we present an extension of the truncated-exponential skew-normal (TESN)
distribution. This distribution is defined as the quotient of two independent random variables whose
distributions are the TESN distribution and the beta distribution with shape parameters q and 1,
respectively. The resulting distribution has a more flexible coefficient of kurtosis. We studied the
general probability density function (pdf) of this distribution, its survival and hazard functions, some
of its properties, moments and inference by the maximum likelihood method. We carried out a
simulation and applied the methodology to a real dataset.

Keywords: skew-normal distribution; slash distribution; kurtosis

1. Introduction

The Slash (S) distribution is a generalization of the normal model. Its stochastic
representation is given by

S =
Z

U
1
q

,

where Z ∼ N(0, 1) is independent of U ∼ U(0, 1) and q > 0.
q = 1 represents the canonical Slash model and the standard normal model is obtained

for q→ ∞. The pdf of the canonical S distribution is

p(x) =


φ(0)−φ(x)

x2 x 6= 0
1
2 φ(0) x = 0

(1)

where φ(·) represents the pdf of the standard normal model (see Johnson et al. [1]). This
distribution is characterized by having heavier tails than normal distribution, i.e. it has
greater kurtosis.

Properties of the S distribution are discussed by Rogers and Tukey [2] and Mosteller
and Tukey [3]. The ML parameters for location and scale in the S model are discussed
in Kadafar [4]. Wang et al. [5]studied a multivariate version of the S distribution and a
multivariate skew version. Gómez et al. [6] extended the S distribution using the family of
univariate and multivariate elliptical distributions also was extended by using the S model
in Gómez et al. [7].

Nadarajah et al. [8] proposed the idea of constructing biased distributions, motivated
by Azzalini [9], including asymmetry in these. A unified approach for the construction
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of models of this kind is given in Ferreira and Steel [10]. If X is a symmetrical random
variable around zero with pdf fX(·) and cumulative distribution function (cdf) FX(·), the
new random variable Y is defined with pdf given by:

fY(y) = fX(y)ω(FX(y)), y ∈ R, (2)

with ω(·) denoting a pdf in the interval (0, 1). Then Y is a skew version of the variable X.
The most commonly-used versions of (2) are the skew distributions proposed by Azzalini [9] in
the form:

fY(y) = 2 fX(y)FX(λy), y ∈ R, λ ∈ R. (3)

The skew-normal (SN) model is obtained as a particular case of (3) considering
fX(·) = φ(·) and FX(·) = Φ(·), where Φ(·) denotes the cdf of the standard normal model.

In the present paper, we extend the TESN model introduced by Nadarajah et al. [8],
based on the Slash methodology. The pdf of the TESN distribution is given by:

f (x; λ) =
λ

1− e−λ
φ(x)e{−λΦ(x)}, (4)

where x, λ ∈ R. Hereafter, we use the notation X ∼ TESN(λ) to indicate that X is a random
variable following a TESN distribution. According to Barreto-Souza and Simas [11], the
distribution presents different behavior for a large |λ|, suggesting that this is a rich class
of distributions. Furthermore, the parameter λ can be interpreted as a concentration
parameter. Figure 1 shows the graph of the TESN pdf function with variations of the
parameter λ.
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Figure 1. TESN pdf for different values of λ.

The extension of this model is based on the quotient of two independent random
variables, with TESN distribution and a power of the uniform distribution (0, 1), respectively,
obtaining a distribution with a more flexible coefficient of kurtosis and so generating an
appropriate model for fitting data. In practical terms, this generalization is based on the
search for distributions that are more flexible, which may provide a “better fit” than the TESN
distribution. For example, see the works by Gomes et al. [12], Maurya and Nadarajah [13]
and the references therein.

The article is organized as follows. In Section 2 we study the representation, pdf,
properties, and graphs. In Section 3, we present a Monte Carlo simulation experiment
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to evaluate the maximum likelihood estimates of the model parameters in Section 2. In
Section 4, we provide an application of the proposed distribution. In Section 5, we conclude
with some final comments.

2. Incorporating Kurtosis

In this section, we introduce a new extension of the TESN distribution. We studied
its pdf, survival and hazard functions, moments, location and scale parameters, and their
log-likelihood equations.

2.1. Representation

Following the representation of the Slash distribution, the representation of this new
distribution is given by the following definition:

Definition 1. A random variable (r.v.) Z has a Slashed Truncated Exponential Skew-Normal
(STESN) distribution, denoted by Z ∼ STESN(λ, q) if it is represented by:

Z =
X

Y1/q , (5)

where X ∼ TESN(λ) and Y ∼ U(0, 1) are independent variables, λ ∈ R, q > 0.

2.2. Probability Density Function

The following proposition shows the pdf function for the STESN distribution, gen-
erated using the stochastic representation given in (5) and using the Jacobian method for
transforming the r.v.:

Proposition 1. If Z ∼ STESN(λ, q) the pdf of Z is given by:

fZ(z; λ, q) =
λ · q

1− e−λ
R(z; λ, q), (6)

where z ∈ R, λ ∈ R, q > 0 and R(z; λ, q) =
∫ 1

0 wq φ(zw) e{−λΦ(zw)} dw.

Proof. The pdf is generated using the representation given in (5). Using the Jacobian
method for transforming the r.v. we obtain X = Z ·W ; W = Y1/q, calculating the Jacobian,
we obtain:

J(z, w) =

∣∣∣∣ w z
0 qwq−1

∣∣∣∣ = qwq ,

replacing the joint pdf fZ,W :

fZ,W(z, w) = qwq fX(zw) fY(wq)

= qwq λ

1− e−λ
φ(zw)e{−λΦ(zw)} ,

where z ∈ R, 0 < w < 1, and λ ∈ R. Hence, marginalizing with respect to variable W, we
obtain:

fZ(z) =
λ · q

1− e−λ
R(z; λ, q),

where z ∈ R, λ ∈ R, q > 0 and:

R(z; λ, q) =
∫ 1

0
wq φ(zw) e{−λΦ(zw)} dw.
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Proposition 2. Let Z ∼ STESN(λ, q). If q → ∞ the r.v. Z converges in law to the r.v.
X ∼ TESN(λ).

Proof. Let Z ∼ STESN(λ, q) and Z = X
Y1/q given by (5), where Y ∼ U(0, 1)⇒ T = Y1/q ∼

Beta(q, 1). We obtain:

E[(T − 1)2] =
2

(q + 1)2(q + 2)
,

where if q→ ∞⇒ E[(T− 1)2]→ 0⇒ T P→ 1 (see Lehmann [14]) here P→ denote converges
in probability. Applying Slutsky’s Lemma to Z = X

V , we have:

Z L→ X ∼ TESN(λ), q→ ∞,

where L→ denote converges in law, i.e., for increasing values of q, the r.v Z converges in law
to a TESN(λ) distribution.

Remark 1. The above proposition implies that if q→ ∞ then the pdf of the STESN distribution
approaches the pdf of a TESN distribution.

Figure 2a,b show the graphs for the pdf of this model for some parameter values.
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Figure 2. STESN for values of (a) λ = −2; (b) λ = 2; and (c) λ = 7 for different values of q.

2.3. Reliability Analysis

For the study of failure times, we need to consider a time y, where we have y ≥ 0.
Therefore, in our model we study the case of non-negative variables Y = exp(Z) where
Z ∼ STESN(λ, q), thus, the model must be transformed to obtain the following pdf:

fY(y) =
q · λ

y · (1− e−λ)
· R(log(y); λ, q), (7)

where y > 0, q > 0, λ ∈ R, and R(log(y); λ, q) =
∫ 1

0 wq φ(w log(y)) e{−λΦ(w log(y))} dw.
Figure 2c shows the graphs of the pdf for different parameter values. Once the transfor-
mation is complete, we obtain the survival and hazard functions. The survival function is
defined as the probability that a subject does not experience the event of interest before a
moment t, and in our model is given by:

S(y) = 1− 1
1− e−λ

∫ y

0
κ(t) dt, (8)
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where κ(t) = q·λ
t ·R(log(t); λ, q). It also gives the hazard function defined as the probability

of failure during a time interval given in our model by:

λ(y) =
κ(y)

1− e−λ −
∫ y

0
κ(t) dt

, (9)

where κ(a) = q·λ
a · R(log(a); λ, q). Figure 3a,b show the graphs of survival and hazard

functions respectively, for different parameter values.
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Figure 3. (a) Survival function and (b) hazard function for log-STESN model with different combina-
tions of values for λ and q.

2.4. Moments

Let Z be a r.v. where Z ∼ STESN(λ, q), the r-th moment for the variable is given by
the following proposition.

Proposition 3. Using the representation (5), the r-th moment of the r.v. Z is:

E[Zr] =
λ · q

(q− r)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[Xr

k+1:k+1], (10)

where q > r and Xk:n the k-th order statistic of a random variable with distribution N(0, 1).

Proof. The r-th moments of Z can be calculated as:

E[Zr] = E

[(
X

Y
1
q

)r ]
= E

[
Xr ·Y−

r
q
]
= E[Xr] · E

[
Y−

r
q
]
,

where E[Xr] is the r-th moment for the model proposed by Nadarajah et al. [8] given by:

E[X] =
λ

1− e−λ

∞

∑
k=0

(−λ)k

(k + 1)!
E[Xr

k+1:k+1],

where Xk:n the k-th order statistic of a random variable with distribution N(0, 1) and

E
[
Y−

r
q
]

the r-th moment of the r.v. Y−
1
q .

E[Y−r/q] =
q

q− r
.

Therefore the r-th moment for the variable is given by:
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E[Zr] =
λ · q

(q− r)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[Xr

k+1:k+1].

Using this proposition, the first four moments of the r.v. Z are given in the following
corollary.

Corollary 1. From the r−th moment of the r.v. Z ∼ STESN(λ, q) represented by (10), we obtain
the first four moments of the variable, given by:

E[Z] =
λ · q

(q− 1)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[Xk+1:k+1] , q > 1 , (11)

E[Z2] =
λ · q

(q− 2)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[X2

k+1:k+1] , q > 2 , (12)

E[Z3] =
λ · q

(q− 3)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[X3

k+1:k+1] , q > 3 , (13)

E[Z4] =
λ · q

(q− 4)(1− e−λ)

∞

∑
k=0

(−λ)k

(k + 1)!
E[X4

k+1:k+1] , q > 4 . (14)

2.5. Incorporation of Parameters

To produce a more flexible distribution, we will extend this model to location µ and
scale σ parameters as X = µ + σZ, where Z ∼ STESN(λ, q) obtaining the following
proposition.

Proposition 4. If X ∼ STESN(λ, q, µ, σ) the pdf of X is given by:

fX(x) =
q · λ

σ(1− e−λ)
R
(

x− µ

σ
; λ, q, µ, σ

)
, (15)

where x ∈ R; λ ∈ R; q > 0; µ ∈ R; σ > 0; and R(·) is presented in (6).

2.6. Log Likelihood Equations

Let x1, . . . , xn be a random sample of the r.v. X with STESN(λ, q, µ, σ) distribution,
the log-likelihood function can be written as:

l(θ; X) = n · log(q) + n · log(λ)− n · log(σ)− n · log(1− e−λ) +
n

∑
i=1

log(ρ(xi)), (16)

where θ = (λ, q, µ, σ) and ρ(xi) = R
(

xi − µ

σ
; λ, q, µ, σ

)
.

For each parameter we have the following likelihood equations:

n
λ
− n · e−λ

1− e−λ
+

n

∑
i=1

(
ρ1(xi)

ρ(xi)

)
= 0

n
q
+

n

∑
i=1

(
ρ2(xi)

ρ(xi)

)
= 0

− 1
σ

n

∑
i=1

(
ρ3(xi)

ρ(xi)

)
= 0

−n
σ
− 1

σ2

n

∑
i=1

(
(xi − µ) · ρ4(xi)

ρ(xi)

)
= 0,
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where ρ(xi) = R
(

xi−µ
σ ; λ, q, µ, σ

)
. Furthermore, ρ1(xi) =

dρ(xi)

dλ
, ρ2(xi) =

dρ(xi)

dq
,

ρ3(xi) =
dρ(xi)

dµ
, and ρ4(xi) =

dρ(xi)

dσ
.

As can be observed, this system can only be resolved by iterative procedures such
as Newton–Raphson. As an alternative, it is also possible is to use the optim routine
implemented in R software [15]. Standard errors for parameters can be estimated using the
hessian matrix of the log-likelihood function, which can be estimated, for instance, using
the pracma package (see Borchers [16]).

2.7. STESN or TESN Model?

In order to decide between the STESN and TESN models, we can use the traditional
Akaike (AIC, Akaike [17]) and Schwarz (BIC, Schwartz [18]) criteria. As the TESN model
corresponds to the STESN model with q + ∞, we can use the likelihood ratio test (LRT) to
decide between the two models considering H0 : q = +∞ (TESN model) versus H1 : q < ∞
(STENS model). This is a problem where the null hypothesis is exactly on the boundary
of the parameter space. This kind of problem was first discussed in Chernoff [19]. This
problem is also presented, for instance, in a random effects model when we are interested
in testing if the variance of such random effects is zero (see Stram and Lee [20] and Gallardo
et al. [21]) or in a cure rate model when we are interested in testing the presence of cured
individuals in the population (see Maller and Zhou [22]). In this particular case, the statistic
for the LRT, say dn, does not converge asymptotically to the usual χ2

(1) distribution, i.e., the

chi-squared distribution with 1 degree of freedom, but converges to 1
2 χ2

(0) +
1
2 χ2

(1), i.e., a

50-50 mixture between a point mass χ2
(0) in 0 and χ2

(1) distribution.

3. Simulation Study

In this section, we will study the behavior of ML estimators in finite samples, verifying
empirically whether these estimators have desirable properties (unbiased, asymptotically
efficient, verification of the normal asymptotic distribution of ML estimators).

The random variables of the TESN distribution and the Beta distribution were gen-
erated to obtain our new variable with pdf shown in (15). The initial values used for
optimization were obtained by a sequence of values which maximized this function. In
this sequence, λ takes values between −3 and 3, q between 1 and 5, µ between −2 and 2,
and σ between 2 and 10. This process was repeated 5000 times with sample size n = 25,
n = 50, n = 100 and 200 for different combinations of parameters. Table 1 presents the
empirical bias, the standard errors (SE), root of the mean squared error (RMSE), and 95%
coverage probabilities (CP) for the estimators of the parameters of the STESN distribution
with different combinations of parameters and sample sizes. From those tables, notice that
the biases SE and RMSE decrease as the sample size increases, suggesting that estimators
are consistent. Furthermore, the asymptotic confidence intervals have an empirical CP
differing from the nominal values, especially when the sample size is small. However, we
observe that the asymptotic confidence intervals converge to the nominal values when the
sample size is increased. Figure 4 shows the estimated pdf for the ML estimators of µ, σ, λ,
and q for two combinations of parameters, showing graphically that the skewness of the
estimators disappears progressively when the sample sizes increases. We also note that the
distribution of the estimators for λ and q are more asymmetric than the distribution of the
estimators for µ and σ, especially in small sample sizes.
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Table 1. Empirical bias, SE, RMSE, and 95% CP for the ML estimators of µ, σ, λ, and q with different combinations of
parameters and sample sizes.

True Values n = 25 n = 50 n = 100 n = 200
µ σ λ q bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

0 1 −3 1 µ 0.053 1.140 1.141 0.903 0.031 0.882 0.885 0.909 0.013 0.662 0.675 0.912 0.009 0.449 0.458 0.939
σ 0.084 0.489 0.496 0.972 0.069 0.367 0.373 0.965 0.052 0.278 0.287 0.961 0.042 0.197 0.203 0.959
λ −0.176 2.336 2.336 0.887 −0.093 1.914 1.936 0.892 −0.053 1.366 1.398 0.906 −0.042 0.892 0.910 0.921
q 0.195 0.587 0.618 0.973 0.119 0.350 0.370 0.972 0.082 0.220 0.235 0.965 0.057 0.151 0.161 0.961

0 1 −1 1 µ −0.099 1.473 1.473 0.918 −0.078 1.045 1.049 0.928 −0.051 0.704 0.711 0.935 −0.033 0.473 0.477 0.948
σ 0.159 0.532 0.555 0.970 0.111 0.372 0.388 0.965 0.075 0.252 0.263 0.958 0.044 0.179 0.184 0.953
λ −0.154 2.398 2.399 0.887 −0.117 1.810 1.822 0.889 −0.083 1.183 1.196 0.907 −0.060 0.765 0.770 0.915
q 0.214 0.555 0.594 0.962 0.163 0.479 0.506 0.960 0.080 0.229 0.243 0.958 0.041 0.147 0.152 0.953

0 1 3 1 µ −0.100 1.166 1.170 0.901 −0.091 0.907 0.913 0.928 −0.077 0.615 0.624 0.936 −0.047 0.448 0.458 0.945
σ 0.094 0.512 0.514 0.974 0.076 0.394 0.401 0.968 0.056 0.254 0.261 0.961 0.053 0.194 0.201 0.957
λ 0.251 2.300 2.299 0.871 0.192 1.843 1.875 0.896 0.167 1.295 1.322 0.917 0.094 0.864 0.887 0.925
q 0.168 0.657 0.678 0.965 0.115 0.376 0.393 0.961 0.071 0.220 0.231 0.960 0.045 0.148 0.154 0.959

0 1 −2 2 µ −0.061 1.140 1.139 0.905 −0.033 1.097 1.097 0.918 −0.031 0.941 0.950 0.929 −0.010 0.664 0.672 0.932
σ 0.053 0.386 0.389 0.986 0.042 0.343 0.357 0.979 0.034 0.297 0.318 0.971 0.025 0.189 0.200 0.964
λ −0.192 2.875 2.880 0.894 −0.151 2.778 2.783 0.901 −0.122 2.318 2.355 0.915 −0.097 1.625 1.652 0.921
q 0.362 1.301 1.350 0.971 0.278 1.254 1.341 0.969 0.226 1.008 1.094 0.963 0.180 0.510 0.541 0.959

0 1 3 2 µ −0.205 1.004 1.024 0.899 −0.079 0.915 0.918 0.910 −0.061 0.758 0.762 0.928 −0.044 0.580 0.581 0.936
σ 0.079 0.389 0.389 0.971 0.053 0.313 0.314 0.968 0.041 0.264 0.271 0.961 0.030 0.201 0.205 0.959
λ 0.278 2.655 2.668 0.896 0.212 2.570 2.569 0.906 0.144 2.100 2.127 0.917 0.100 1.566 1.578 0.929
q 0.213 1.256 1.273 0.965 0.192 1.035 1.075 0.961 0.119 0.880 0.926 0.959 0.099 0.507 0.529 0.958

0 1 2 2 µ 0.164 1.171 1.191 0.904 0.115 1.114 1.115 0.912 0.079 0.901 0.904 0.939 0.052 0.689 0.693 0.945
σ 0.099 0.369 0.369 0.986 0.082 0.335 0.350 0.982 0.074 0.280 0.299 0.971 0.040 0.204 0.215 0.960
λ 0.381 3.081 3.103 0.866 0.242 2.772 2.782 0.899 0.171 2.252 2.267 0.919 0.127 1.668 1.683 0.935
q 0.280 1.318 1.347 0.976 0.223 1.137 1.213 0.973 0.112 1.023 1.103 0.967 0.087 0.583 0.629 0.959

0 1 −1 3 µ 0.023 1.102 1.102 0.919 0.022 1.059 1.059 0.932 0.005 1.013 1.013 0.938 0.004 0.913 0.914 0.941
σ 0.102 0.321 0.321 0.979 0.071 0.246 0.256 0.975 0.068 0.222 0.251 0.971 0.057 0.191 0.224 0.961
λ −0.134 3.189 3.188 0.972 −0.116 3.001 3.002 0.965 −0.072 2.726 2.725 0.961 −0.049 2.414 2.417 0.955
q 0.386 1.835 1.837 0.974 0.320 1.526 1.582 0.970 0.202 1.420 1.484 0.965 0.170 1.258 1.244 0.961

0 1 2 3 µ 0.128 1.014 1.022 0.899 0.069 0.930 0.930 0.912 0.061 0.830 0.832 0.943 0.046 0.813 0.815 0.944
σ 0.134 0.324 0.325 0.984 0.079 0.274 0.278 0.977 0.052 0.246 0.266 0.962 0.049 0.209 0.227 0.959
λ 0.159 2.939 2.942 0.888 0.128 2.739 2.752 0.911 0.116 2.643 2.655 0.927 0.082 2.253 2.264 0.935
q 0.322 1.556 1.556 0.981 0.262 1.411 1.475 0.972 0.174 1.271 1.237 0.961 0.054 1.027 1.039 0.958

−5 4 −2 2 µ −0.354 4.484 4.495 0.900 −0.225 4.405 4.405 0.917 −0.137 3.562 3.600 0.927 −0.040 2.641 2.670 0.935
σ 0.317 1.550 1.553 0.970 0.281 1.311 1.365 0.964 0.237 1.070 1.132 0.958 0.170 0.793 0.837 0.957
λ −0.247 2.862 2.861 0.885 −0.223 2.808 2.817 0.906 −0.191 2.240 2.273 0.919 −0.130 1.631 1.658 0.929
q 0.309 1.292 1.328 0.974 0.245 1.155 1.237 0.966 0.222 0.851 0.909 0.961 0.157 0.581 0.617 0.955

10 16 1 3 µ 0.677 17.507 17.571 0.912 0.594 13.643 13.944 0.914 0.430 11.891 11.889 0.926 0.184 9.222 9.240 0.945
σ 1.237 4.948 4.951 0.904 0.957 4.159 4.205 0.927 0.651 3.454 3.827 0.937 0.480 2.030 2.113 0.949
λ 0.128 3.206 3.204 0.898 0.118 3.084 3.088 0.915 0.102 2.726 2.727 0.922 0.075 2.339 2.344 0.938
q 0.470 1.401 1.401 0.981 0.453 1.273 1.240 0.979 0.333 1.087 1.052 0.961 0.142 0.927 0.938 0.959
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Figure 4. Estimated pdf for the ML estimators of µ, σ, λ, and q in the TESN distribution for: µ = 0, σ = 1, λ = −3, q = 1
(upper panels), and µ = 10, σ = 16, λ = 1, q = 3 (lower panels).
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4. Application to a Data Set

In this section, we will present a real data application to illustrate the STESN model
compared with other models discussed in the literature. These data were presented by
Barlow et al. [23] and represent the fatigue fracture life of Kevlar 373/epoxi subjected to a
constant pressure of 90% stress until they all fail. To obtain the parameter estimations, the
optim command was used and its estimation errors were calculated by the Hessian matrix,
both in R software. Codes are available as supplementary material.

Table 2 shows a summary of the dataset, including the sample size n, the mean X,
the standard deviation S, the asymmetry coefficient

√
b1, the kurtosis coefficient b2, the

minimum min(X), and the maximum max(X). A high kurtosis value is observed.

Table 2. Descriptive statistics for kevlar dataset.

n X S
√

b1 b2 min(X) max(X)

76 1.959 1.573 1.979 8.161 0.025 9.096

Table 3 shows the results of the fit; the TESN distribution was compared with the
STESN distribution by AIC and BIC criteria. It is concluded that the distribution which
achieves the best fit for this dataset is the STESN distribution, since it presents a lower value
in the criteria. Furthermore, Table 3 provides the Kolmogorov–Smirnov statistic (KSS), a
formal goodness-of-fit test to verify which distribution gives a better fit for these data. Small
values of this statistic suggests a better fit. Thus, according to the Kolmogorov–Smirnov
test, the STESN model fits the current data better than the TESN model.

Table 3. Estimated parameters and standard errors (in parentheses), log-likelihood, AIC and BIC
values, and KSS with p-values for TESN and STESN models in kevlar dataset.

Estimations TESN STESN

µ 3.374(0.384) −0.870(0.790)
σ 1.668(0.166) 1.077(0.247)
λ 3.939(1.052) −15.562(11.223)
q – 2.873(0.896)

log-likelihood −133.846 −122.052
AIC 273.693 250.103
BIC 280.685 261.426

KSS 0.122 0.077
p-value 0.191 0.728

Figure 5a,b present a histogram of the data with the densities fitted for the data set
and Figure 6a,b present the QQ-plot of the densities fitted for the dataset, showing the
good fit given by the new distribution.

In our problem, the observed statistic dn for the LRT to decide between the TESN and
STESN models, discussed in Section 2.7, is dn = 23.59 with an associated p-value < 0.001.
Therefore, the H0 is rejected under any usual level of significance and the STESN model is
preferred over the TESN model.
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Figure 5. Estimated pdf for STESN and TESN for kevlar data set (a) and a zoom for the right tail (b).
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Figure 6. QQ-plot for the (a) TESN and (b) STESN distributions for the dataset.

5. Final Comments

In this paper, we introduced an extension of the TESN distribution from which we
obtained a distribution that showed greater flexibility in the coefficient of kurtosis. Some
mathematical properties of the new distribution were studied. Note that the formulae
derived easily implemented in different softwares. Inference was implemented based on
the ML approach, and its performance was assessed by Monte Carlo simulations using R
software. An application to a real dataset showed that the new model produced a better
fit than the TESN model. This application demonstrated the practical importance of the
new model, and also showed the advantage of STESN over TESN. We hope this new
distribution may attract wider applications.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
math9161894/s1.

https://www.mdpi.com/article/10.3390/math9161894/s1
https://www.mdpi.com/article/10.3390/math9161894/s1


Mathematics 2021, 9, 1894 11 of 11

Author Contributions: Conceptualization, P.A.R. and D.I.G.; methodology, H.W.G.; software, D.I.G.; val-
idation, P.A.R., D.I.G., and H.W.G.; formal analysis, O.V.; investigation, O.V. and M.B.; writing—original
draft preparation, P.A.R.; writing—review and editing, O.V. and M.B.; funding acquisition, M.B. All
authors contributed equally to this work. All authors have read and agreed to the published version
of the manuscript.

Funding: The research of Pilar A. Rivera and Héctor W. Gómez was supported by SEMILLERO
UA-2021 (Chile). The research of O. Venegas was supported by Vicerrectoría de Investigación y
Postgrado of the Universidad Católica de Temuco, Projecto interno FEQUIP 2019-INRN-03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in Section 4 can be obtained from the corresponding
reference.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley Series in Probability and Statistics;

Wiley: New York, NY, USA, 1995.
2. Rogers, W.H.; Tukey, J.W. Understanding some long-tailed symmetrical distributions. Stat. Neerl. 1972, 26, 211–226. [CrossRef]
3. Mosteller, F.; Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics; Addison-Wesley: Reading, MA, USA, 1977.
4. Kadafar, K. A biweight approach to the one-sample problem. J. Am. Stat. Assoc. 1982, 77, 416–424. [CrossRef]
5. Wang, J.; Boyer, J.; Genton, M.G. A skew-symmetric representation of multivariate distributions. Stat. Sin. 2004, 14, 1259–1270.
6. Gómez, H.W.; Quintana, F.A.; Torres, F.J. New family of slash-distributions with elliptical contours. Stat. Probab. Lett. 2007 77,

717–725. [CrossRef]
7. Gómez, H.W.; Olivares-Pacheco, J.F.; Bolfarine, H. An extension of the generalized Birnbaum-Saunders distribution. Stat. Probab.

Lett. 2009, 79, 331–338. [CrossRef]
8. Nadarajah, S.; Nassiri, V.; Mohammadpour, A. Truncated-exponential skew-symmetric distributions. Statistics 2014, 48, 872–895.

[CrossRef]
9. Azzalini, A. A Class of Distributions Which Includes the Normal Ones. Scand. J. Stat. 1985, 12, 171–178.
10. Ferreira, J.T.A.S.; Steel, M.F.J. A constructive representation of univariate skewed distributions. J. Am. Stat. Assoc. 2006, 101,

823–829. [CrossRef]
11. Barreto-Souza, W.; Simas, A.B. The exp- G family of probability distributions. Braz. J. Probab. Stat. 2013, 27, 84–109. [CrossRef]
12. Gomes, A.E.; Da-Silva, C.Q.; Cordeiro, G.M. The Exponentiated G Poisson Model. Commun. Stat.-Theory Methods 2015, 44,

4217–4240. [CrossRef]
13. Maurya, S.K.; Nadarajah, S. Poisson Generated Family of Distributions: A Review. Sankhya B 2020, 1–57. [CrossRef]
14. Lehmann, E.L. Elements of Large-Sample Theory; Springer: New York, NY, USA, 1999.
15. R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2021.
16. Borchers, H.W. Pracma: Practical Numerical Math Functions; R package version 2.3.3. 2021. Available online: https://CRAN.R-

project.org/package=pracma (accessed on 24 June 2021).
17. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [CrossRef]
18. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
19. Chernoff, H. On the distribution of the likelihood ratio. Ann. Stat. 1954, 54, 573–578. [CrossRef]
20. Stram, D.O.; Lee, J.W. Variance components testing in the longitudinal mixed effects model. Biometrics 1994, 50, 1171–1177.

[CrossRef] [PubMed]
21. Gallardo, D.I.; Bolfarine, H.; Pedroso-de-Lima, A.C. A clustering cure rate model with application to a sealant study. J. Appl. Stat.

2017, 44, 2949–2962. [CrossRef]
22. Maller, R.; Zhou, S. Testing for the Presence of Immune or Cured Individuals in Censored Survival Data. Biometrics 1995,

51, 1197–1205. [CrossRef] [PubMed]
23. Barlow, R.E.; Toland, R.H.; Freeman, T. A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels. In

Procedings Conference on Applications of Statistics; Marcel Dekker: New York, NY, USA, 1984.

http://doi.org/10.1111/j.1467-9574.1972.tb00191.x
http://dx.doi.org/10.1080/01621459.1982.10477827
http://dx.doi.org/10.1016/j.spl.2006.11.006
http://dx.doi.org/10.1016/j.spl.2008.08.014
http://dx.doi.org/10.1080/02331888.2013.821474
http://dx.doi.org/10.1198/016214505000001212
http://dx.doi.org/10.1214/11-BJPS157
http://dx.doi.org/10.1080/03610926.2013.793351
http://dx.doi.org/10.1007/s13571-020-00237-8
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aoms/1177728725
http://dx.doi.org/10.2307/2533455
http://www.ncbi.nlm.nih.gov/pubmed/7786999
http://dx.doi.org/10.1080/02664763.2016.1267116
http://dx.doi.org/10.2307/2533253
http://www.ncbi.nlm.nih.gov/pubmed/8589219

	Introduction
	Incorporating Kurtosis
	Representation
	Probability Density Function
	Reliability Analysis
	Moments
	Incorporation of Parameters
	Log Likelihood Equations 
	STESN or TESN Model?

	Simulation Study
	Application to a Data Set
	Final Comments
	References

