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Abstract: The study develops the displacement error recovery method in a mesh free environment
for the finite element solution employing the radial point interpolation (RPI) technique. The RPI
technique uses the radial basis functions (RBF), along with polynomials basis functions to interpolate
the displacement fields in a node patch and recovers the error in displacement field. The global and
local errors are quantified in both energy and L2 norms from the post-processed displacement field.
The RPI technique considers multi-quadrics/gaussian/thin plate splint RBF in combination with
linear basis function for displacement error recovery analysis. The elastic plate examples are analyzed
to demonstrate the error convergence and effectivity of the RPI displacement recovery procedures
employing mesh free and mesh dependent patches. The performance of a RPI-based error estimators
is also compared with the mesh dependent least square based error estimator. The triangular and
quadrilateral elements are used for the discretization of plates domains. It is verified that RBF with
their shape parameters, choice of elements, and errors norms influence considerably on the RPI-based
displacement error recovery of finite element solution. The numerical results show that the mesh
free RPI-based displacement recovery technique is more effective and achieve target accuracy in
adaptive analysis with the smaller number of elements as compared to mesh dependent RPI and
mesh dependent least square. It is also concluded that proposed mesh free recovery technique may
prove to be most suitable for error recovery and adaptive analysis of problems dealing with large
domain changes and domain discontinuities.

Keywords: error estimation; effectivity; basis function; meshfree recovery technique; radial point
interpolation; radial basis function

1. Introduction

The finite element method (FEM) has become a widely accepted method for the
solution of solid mechanics problems. However, the error in finite element solutions is
introduced by the very process of discretization of the problem domain. The causes of errors
include error due to approximation made during mathematical modeling of the physical
situation, error due to rounding off, and error due to discretization. The discretization
error connected with the finite element mesh can be controlled with the choice of the type
and size of elements. The discretization errors are introduced when the displacement
interpolation polynomial does not accurately represent the behavior of the continuum.
The current research developments in the finite element method include the improvement
of the accuracy, effectivity, and reliability of FEM results of industrial problems [1]. The
recent developments in high-performance finite element methods are reviewed by Cen
et al. [2]. In the recovery-based error estimation, the difference between the values of
recovered more accurate displacements/stress and displacements/stress obtained by the
finite element solution provides a measure of the local error. The point-wise definitions
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are not only difficult to estimate and become meaningless at singularities. Therefore,
alternative scale measures or norms are preferable. A particularly useful one is given by
the energy norm, which represents the error in the rate of energy dissipation. The error
norms of the displacements, such as the L2 norm, representing straightforward physical
meaning, show for many finite elements super-convergence properties [3]. Zienkiewicz
and Zhu [4] presented a local projection technique, a super convergent patch recovery
technique, to recover the errors in stresses using the least square fit of the local polynomial
to the super convergent value of the derivatives over node patch. The post-processing
technique to recover the stresses and displacements from the finite element solution is
presented by Niu and Shephard [5]. The error post-processing technique for displacements
in the L2 norm is due to Li and Wiberg [6]. The recovery by equilibrium and compatibility
in patches is proposed by Ubertini [7] to recover the error in the FEM solution for stresses.
The traditional recovery techniques use the least square fitting of displacement/stress
over the mesh dependent patches. The mesh free methods are recently introduced for
recovery of FEM solutions errors through various mesh free support domains based
interpolating techniques. The mesh free approaches are developed for situations in which
distortion of elements occurs due to large domain changes and domain discontinuities. A
coupled element-free Galerkin method (EFG) Method and finite element method (FEM)
error recovery procedure based on local maximum entropy shape functions, for material
and geometrical nonlinearities problems, is proposed by Ullah et al. [8]. The Chung and
Belytschko [9] error estimations are used in the EFG regions and Zienkiewicz and Zhu (ZZ)
super convergent patch recovery is used for strains and stresses in the FE region of the
problem domain.

Nadal et al. [10] propose the explicit-type recovery error estimator in energy norm for
the linear elasticity problem using a smooth solution. The discontinuous Galerkin error
estimator-based hp-adaptive finite element analyses were carried out by Bird et al. [11].
The performances of the hp-adaptive scheme are compared with uniform and h-refinement
adaptive scheme achieving the exponential rates of convergence. Liu et al. [12] propose a
linear conforming point interpolation methodology-based meshfree Galerkin method for
two-dimensional solid mechanics problems. Liu and Zhang [13] have proposed a strain-
constructed point interpolation method (SC-PIM) for the analysis of static, free, and forced
vibration structures problems. A thorough analysis of error estimation considering moving
least square interpolation is presented by Mirzaei [14]. The study of factors affecting the
accuracy and reliability of smoothed radial point interpolation method (RPIM) is carried
out by Hamrani et al. [15]. A hybrid approach based on smoothed radial point interpolation
method (CS-RPIM) and FEM is proposed by Zhang et al. [16] for solving fracture problems.
Cao et al. [17] proposed a hybrid mesh free Galerkin RPIM and FEM to impose the essential
boundary conditions. The mesh free recovery method using support domains, i.e., zone
of influence of a node, was recently introduced by Ahmed et al. [18] to recover the FEM
solution errors. The comparison of error estimation behavior using meshfree methods,
RPI error recovery method, and MLS interpolation, and mesh dependent ZZ recovery
method was presented by Ahmed [19] and concluded that the quality of error estimation of
meshfree recovery methods was better than the mesh dependent error recovery methods.
A two-dimensional finite element model employing mesh free nodes interface model based
radial point interpolation method to simulate the interaction between soil and structure is
proposed by Gong et al. [20].

From the literature review, it is evident that most of the techniques proposed to
recover the discretization error introduced in the finite element solution are mesh-based,
i.e., dependent on element mesh connectivity, and the mesh free recovery technique in
finite element method is a recent interest. The existing mesh-based techniques may not
perform well or are difficult to implement in situations to deal with large domain changes
and domain discontinuities. Moreover, more attention has been paid to recover errors in
the field variable derivatives. Therefore, there is a need to develop mesh free recovery
techniques using the different mesh free procedures with special attention to recover errors
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in the field variable. The present study aimed to investigate the reliability and effectiveness
of RPIM-based displacement error recovery techniques in the mesh free environment.
The comparison of mesh free RPIM-based displacement error recovery techniques with
mesh dependent RPIM and least square based recovery techniques is also carried out.
The study also compares the performance of RPI-based error recovery techniques with
Zienkiewicz-Zhu (ZZ) recovery techniques presented in the literature [18]. The benchmark
elastic plates examples are analyzed to compare the rate of error convergence, effectivity,
and adaptively improved meshes with different displacement recovery procedures. The
linear triangular, quadratic triangular, and quadrilateral elements are used for problems
domain discretization. The errors of finite element solution are computed directly from
the recovered displacement in terms of energy and L2 norm. The influence of radial basis
functions in RPI-based recovery techniques is also assessed by considering three radial
basis functions, namely multi-quadrics, gaussian (exponential), and thin plate splint for
the RPI technique. The effect of radial basis functions with their shape parameters and
shape of node zones is also assessed on the quality of the error estimation obtained from
the RPI-based error recovery techniques.

2. Elastic Problem Statement

The elastic problems are considered with stress field, “σ” and unknown displacement
field “u”, defined over a domain Ω that is bounded by Γ = Γt ∪ Γu. The prescribed tractions
(t) and displacements (u) are imposed over boundary Γt and Γu, respectively.

The equilibrium conditions and boundary conditions are satisfied to find (σ,u).

LT σ + f = 0 in Ω, (1)

where f is the force vector, LT is the derivative operator.

σ·n = t on Γt, (2)

u = u on Γu, (3)

Constitutive relation:
σ = D ε, with ε = L u, (4)

where D is the elasticity matrix of linear isotropic material and ε is the strain vector.

3. Least Square Interpolation Technique for Displacement Recovery

The recovery of field variable (displacement) is obtained by least squares fit of the
computed nodal field variable using a higher order polynomial over an element neighbor-
hood patch consists of a union of the elements surrounding an element. To perform least
square fitting, the following functional is minimized.

πf (a) = 1/2∑i=1
np [di

h(xi, yi) − di (xi, yi)]
2 (5)

where ui (xi, yi) = Pi (xi, yi) . a

ui = [ui vi ]T , a = [au av ]T (6)

where ui and vi are the nodal parameters of field variables in x and y direction and a is the
vector of unknown parameters au and av.

pi = [1, xi, yi, xi
2, xiyi, yi

2, . . . . . . .], (7)

where (xi, yi) are the sampling points (np) coordinates.
Minimization condition of πf (a) implies that “a” satisfies the following relation.

∑i=1
np Pi

T(xi, yi). Pi (xi, yi). a = ∑i=1
np Pi

T(xi, yi). di
h(xi, yi) (8)
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Solving for “a”, the following relation is obtained.

a = A−1 b, (9)

where

A = ∑i=1
np Pi

T(xi, yi). Pi (xi, yi).a, and b = ∑i=1
np Pi

T(xi, yi). di
h(xi, yi) (10)

4. Radial Point Interpolation Method (RPIM) for Displacement Recovery

The radial point interpolation method (RPIM) considers both the radial basis functions
(RBF) and polynomials basis function for interpolation [21]. The approximation uh(x) for
the field variables u(x) at a point xq, assuming only the influencing nodes of a point xq have
an effect on u(x), is given by,

uh (x, xq) = ∑i=1
n Ri ai + ∑j=1

m pj bi = RT(x) a + pT(x) b, (11)

where Ri is the RBF computed at xi, the ith node in the support domain of xq, pj is the
monomial in the polynomial basis, ai and bj are the coefficient for the radial basis function
(Ri) and polynomial basis (pj) respectively, n is the number of nodes in the mesh free nodes
zones of xq, m is the number of monomials in the polynomial basis.

a = [a1, a2, . . . , . . . . . . ..an] (12)

b = [b1, b2, . . . , . . . . . . ..bn] (13)

R(x) = [R1(x), R2(x), . . . . . . , . . . . . . Rn(x)]T, (14)

p(x) = [p1(x), p2(x), . . . . . . , . . . . . . pn(x)]T, (15)

the text following an equation need not be a new paragraph. Please punctuate equations
The number of the radial basis ‘n’ and the order of polynomial basis ‘m’ is chosen

based on the reproduction requirement. Minimum terms of polynomial basis are often
adopted for better stability. The coefficients ai, and bj are determined in this way such that
Equation (12) passes through ‘n’ data nodes in the mesh free nodes zones and imposing
constraints on the polynomial basis functions to guarantee a unique solution [22]. Thus,
two intermediate matrices Sa and Sb result as follows,

Rb = [Pm
T Rq

−1 Ri]
−1 Pm

T Rq
−1, (16)

Ra = Pm
T − Rq

−1 Pm Sb, (17)

where Rq is the moment matrix associated to the radial basis function and Pm is the moment
matrix related to the polynomial terms. The solution of Equation (12) is only possible if the
number of unknown parameters a is smaller than, or at the most equal to, the number of
independent equations.

The ‘n’ number of equations can be obtained using Equations (11), (16) and (17) as,

uh = Rq a + Pm b, (18)

The following constraints are imposed to obtain unique solutions of the equation,

pm
T a = 0, (19)

Combining Equations (18) and (19) yields.

a = Sa ue, (20)

b = Sb ue, (21)
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Substituting the Equations (20) and (21) into Equation (18), the interpolation function
ψ(x) can be obtained as.

uh(x, xq) = (RT Sa − pT Sb) ue = ψ(x) ue, (22)

4.1. Multi-Quadrics Radial Function (MQ)

The radial basis function performs an influential role on the behavior of RPI methods.
The various types of radial basis functions can be used for RPI technique. The formulation
of multi quadrics (MQ) radial basis function with dimensionless shape parameters is as
follows.

Ri (xj) = [(xj − xi)
2 + (yj − yi)

2 + (α0_dc)2]q, α0 ≥ 0 (23)

where α0 is a dimensionless coefficient and dc represents characteristic length that relates to
the nodal spacing in meshfree nodes zones or nodes patch of the point of interest x, which
is the shortest distance between the node i and neighborhood nodes.

4.2. Gaussian (Exponential) Radial Basis Function (Exp)

The formulation of Gaussian (Exponential) radial basis function with dimensionless
shape parameters is as follows.

Ri (xj) = exp {−α0 [(xj − xi )2 + (yj − yi)
2/dc

2]}, (24)

4.3. Thin Plate Splint (TPS) Radial Basis Function (Exp)

The formulation of thin plate splint (TPS) radial basis function is as follows.

Ri (xj) = {
√

[(xj − xi)
2 + (yj − yi)

2]}q, (25)

The α0, q and η are the shape parameters of the RBFs. In utilizing RBFs, the shape
parameters need to be determined for good performance. Effects of α0 and q on radial
basis functions have been widely investigated [23]. It was found that for 2D square plate
problem using MQ radial basis function and errors quantified in energy norm, α0 = 5.0
and q = 1.03 lead to good results while α0 should be less 1 for Gaussian RBF. Hence, these
values were used in the study. However, for L2 norm, α0 = 1 and q should be less than 0.5
for best performance with MQ. It was also observed that with increasing node zone size,
the value of α0 should also be increased for the best performance of RPI-based recovery
analysis. The value of α0 = 0.65 and q = 1.03 is taken in plate problem with opening for MQ
RBF. The value of α0 = 0.65 is taken with Gaussian RBF and η = 5 is taken with TPS RBF for
error quantified in the energy norm.

The second term in Equation (11) consists of polynomials. The linear polynomial
added into the RBF can ensure linear consistency and improve interpolation accuracy [23].
The linear polynomial basis with m as 3 is used in the RPI technique, which is given as

pT(xi) = [1, xi, yi,], (26)

The accuracy of interpolation for the point of interest depends on the nodes in the
mesh free nodes zones. The circular form of mesh free nodes zones is constructed using
the distance d = {x − xi{/dm. The (x − xi) is the distance from node x to point xi and dm
is the size of the influence domain of the point xi, the support size of the ith node, dmi, is
computed by dmi = dmax ci, in which dmax is a scaling factor called as dilation parameter,
the distance cI is determined by searching for sufficient neighbor nodes distance. The
dilation parameter (dmax) is taken as 3.0 in the present study. For the construction of the
rectangular form of meshfree nodes zones, the distance along two cartesian directions
are rx = {x − xi{/dmx and rx = {y − yi{/dmx, where dmx = dmax cxi and dmy = dmax cyi. For
uniformly distributed nodes, ci is simply the distance between two neighboring nodes. For
nonuniformly distributed nodes, ci can be taken as an average nodal spacing in the support
domain of xi.
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5. Measurement of Errors

The error in computed state variable or state variable derivative i.e., displacement (u)
or stress (σ), (eu* or eσ*) is defined as the difference between the exact (or numerical) values
of u (or σ) and respective computed values, uh (or σh).

eu = u* − uh, (27)

eσ = σ* − σh, (28)

The specification of local error in the above manner is generally not convenient
and may be occasionally misleading. For this reason, ‘norm’ representing integral scalar
quantities are introduced to measure the error. For example, the energy norm is evaluated
by computing the strain energy contained in the difference between the discontinuous
value σh and the recovered values σ*. The ‘energy norm’ for the error, also called as error
estimator can be written as in Equation (29).

{x − xi{E = [
∫

Ω eσ*T D−1 eσ* dΩ]0.5, (29)

where “D” is the elasticity matrix.
A more direct quantification measure is the so-called L2 norm, which can be associated

with the error in any quantity. For example, for the displacement u, the L2 norm of the
error is obtained as given in Equation (30).

{x − xi{L2 = [
∫

Ω eT e* dΩ]0.5, (30)

An estimator is asymptotically exact for a problem if the problem global and local
(element) effectivity index (θ), i.e., ratio of estimated error and actual error, converges to
one when the mesh size approaches to zero [24].

θ = {e{/{eex{, (31)

where {eex{ and {e{ are the actual error and the estimated error in the energy norm.
The accuracy (η) of a finite element solution may be defined as follows.

η = {e*{/{σ*{, (32)

{σ*{2 = {σh{2 + {e{E
2, (33)

{σh{2 = ∑i=1
n {σh{2

i, (34)

The solution is acceptable if η ≤ ηallow where ηallow is the allowable accuracy. If
η > ηallow, modification of element size is needed.

A 2-dimensional finite element code is developed incorporating the above described
mesh free/mesh dependent error recovery techniques and error estimators guided adap-
tive techniques. The program is run on intel core i7 with 2.6 GHz processor and 16 GB
RAM to obtain the numerical results of the following plate problems analysis. The flow
chart to show the adaptive finite element analysis using the error recovery techniques
implementation is shown in Figure 1.
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Figure 1. Least square and RPI recovery techniques coupled adaptive elastic finite element analysis flow chart.

6. Elastic Plate Problems

The quality of recovery method is obtained by adaptive finite element analysis of
two elastic plate problems, for which analytical solution is available [4], in terms of error
convergence rate, effectivity, and adaptive meshes employing above-discussed mesh free
and mesh dependent recovery techniques. The problem domains are discretized with
triangular (three nodes) and quadrilateral (four nodes) mesh. The RPI recovery-based
analysis considers multi-quadrics radial basis function and quadratic polynomial basis
function. The errors are quantified in both energy and L2 norms. The mesh free nodes
zones for RPI technique to interpolate the displacement/stress is shown in Figure 2. The
least square and RPI approach uses the nodal values in the mesh dependent element
patches consist of the union of the elements surrounding the element under consideration
to interpolate the displacement/stress as shown in Figure 3.
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6.1. Square Plate Problem

A 1 × 1 plane square plate problem was analyzed under the action of body forces
(bx, by) over the domain using various recovery techniques-based FEM in an adaptive
environment. The body forces in the form of polynomials are given in Equations (35) and
(36). The analytical solutions for displacements (u, v) are given in Equation (37). The
discretized domain of the plate using triangular and quadrilateral elements is depicted
in Figure 4. The analysis results for error convergence and effectivity for displacement
recovery in different norms are tabled in Tables 1–6.

u = 0; v = −x y(1 − x) x (1 − y), (35)

bx = (α + β) . (1 − 2x) . (1 − 2y), (36)

by = −2 β y.(1 − y) − (α + 2 β) 2x .(1 − x), (37)

The constants α and β are given as

α = E ν/[(1 − 2ν) (1 + ν)]; β = E/[2(1 + ν)]

where E, ν are Modulus of elasticity and Poisson’s ratio with a value of 1.0 N/mm2 and 0.3.
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Table 1. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (linear triangular, L2 norm).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh Dependent)

Error
(×10−3) Effectivity Error

(×10−3) Effectivity Error
(×10−3) Effectivity

1/4 5.365 3.084 0.63004 2.429 0.76209 3.791 0.70817
1/16 0.378 0.192 0.64754 0.140 0.83318 0.181 0.67755
1/32 0.0951 0.047 0.64615 0.034 0.84088 0.043 0.67375

Rate of Conv. 1.93939 2.01685 2.06494 2.15207
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Table 2. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (quadratic triangular, L2 norm).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh Dependent)

Error
(×10−3) Effectivity Error

(×10−3) Effectivity Error
(×10−3) Effectivity

1/4 0.24501 0.24755 1.30050 0.14612 0.95302 1.03015 4.24214
1/12 0.00842 0.00224 1.02195 0.00202 1.00023 0.01930 2.44485
1/24 0.00104 0.00014 1.01017 0.00014 1.00494 0.00132 1.58496

Rate of Conv. 3.04733 4.16168 3.86833 3.721499

Table 3. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (quadrilateral, L2 norm).

Mesh Size
(1/h)

FEM Error
(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh Dependent)

Error
(×10−3) Effectivity Error

(×10−3) Effectivity Error
(×10−3) Effectivity

1/4 2.032 2.280 1.64355 2.839 2.02455 1.840 1.83209
1/16 0.124 0.097 1.55565 0.176 2.28836 0.111 1.82651
1/32 0.031 0.028 1.51151 0.044 2.31024 0.028 1.82654

Rate of Conv. 2.01223 2.26171 2.00883 2.01729

Table 4. Error convergence and global effectivity (θ) obtained for RPI with radial basis function types and least square
based displacement recovery techniques (linear triangular, energy norm).

Mesh
Size
(1/h)

FEM
Error

(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh
Dependent)

MQ Exp TSP MQ Exp
Error

(×10−3) θError
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

1/4 93.749 17.114 0.9469 58.476 0.8568 30.079 0.92276 26.233 0.8933 51.106 0.9096 58.478 0.9300
1/16 24.441 1.307 0.9931 7.385 0.9389 1.563 0.98496 1.586 1.0038 8.298 1.0860 4.462 0.9896
1/32 12.248 0.335 0.9975 2.684 0.9310 0.561 0.98924 0.425 1.0092 3.847 1.1195 1.158 0.9970

Rate of
Conv. 0.97875 1.89163 1.48183 1.91524 1.98282 1.24389 1.89225

Table 5. Error convergence and global effectivity (θ) obtained for RPI with radial basis function types and least square
based displacement recovery techniques (quadratic triangular, energy norm).

Mesh
Size
(1/h)

FEM
Error

(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh
Dependent)

MQ Exp TSP MQ Exp
Error

(×10−3) θError
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

1/4 13.168 7.493 1.1596 35.032 2.8637 5.782 1.10655 3.941 1.0294 4.445 1.0548 12.258 1.2556
1/12 1.515 0.184 1.0135 0.560 1.0853 0.199 1.01836 0.174 1.0093 0.257 1.0162 0.529 1.0405
1/24 0.380 0.025 1.0057 0.0678 1.0275 0.023 1.00292 0.026 1.0053 0.0613 1.0116 0.070 1.0127

Rate of
Conv. 1.97848 3.1910 3.48633 3.09017 2.76963 2.39122 2.88449
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Table 6. Error convergence and global effectivity (θ) obtained for RPI with radial basis function types and least square
based displacement recovery techniques (quadrilateral, energy norm).

Mesh
Size
(1/h)

FEM
Error

(×10−3)

RPI (Mesh Free) RPI (Mesh Dependent) LS (Mesh
Dependent)

MQ Exp TSP MQ Exp
Error

(×10−3) θError
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

1/4 60.262 13.249 1.0541 52.222 0.8173 27.595 1.0121 23.053 1.0263 46.792 0.8560 13.667 1.0810
1/16 15.015 0.797 0.9967 7.272 1.0063 1.272 0.9805 1.294 1.0130 6.593 0.9669 0.813 1.0051
1/32 7.506 0.201 0.9967 2.536 1.0191 0.622 0.9615 0.323 1.0164 2.303 0.9782 0.201 1.0013

Rate of
Conv. 1.00169 2.01497 1.45472 1.82359 2.05275 1.44822 2.02723

6.1.1. Mesh Free and Mesh Dependent Displacement Recovery Techniques

The finite element errors quantified in terms of L2 norms and effectivity of error
estimation, using mesh free radial point interpolation (RPI) approach and mesh dependent
least square (LS) and RPI approach with triangular (3/6 Nodes) and quadrilateral (4 Nodes)
mesh for displacements recovery, are presented in Tables 1–3. The RPI approach considers
the multi-quadratics radial basis function for interpolation purpose, and structured mesh
are employed in the analysis.

6.1.2. RPI Recovery Technique and Radial Basis Function Type

The characteristics of error estimation using RPI-based recovery technique are ob-
tained considering Multi-quadrics (MQ), Gaussian or Exponential (Exp), and Thin plate
splint (TSP) radial basis functions. Tables 1–3 present Multi-quadrics (MQ) RBF-based RPI
recovery analysis results wherein errors are quantified in L2 norms. The finite element
errors in energy norms and effectivity of error estimation, using radial point interpolation
(RPI) approach considering Multi-quadrics (MQ), Gaussian (Exponential), and Thin plate
splint (TSP) RBFs, with triangular (3/6 Nodes) and quadrilateral (4 Nodes) structured
mesh are tabulated in Tables 4–6.

6.1.3. RPI Recovery Technique and Patch Configuration

In almost all adaptive finite element analyses, unstructured meshes are employed.
Therefore, it is of interest to test the robustness of RPI-based displacement recovery tech-
nique also in unstructured meshes. The finite element errors quantified in terms of L2 norm
and effectivity of error estimation, using mesh free radial point interpolation (RPI) ap-
proach and mesh dependent RPI approach with multi-quadratic radial basis function (MQ)
and least square (LS) approach considering circular and rectangular mesh free node zones
of triangular (3/6 Nodes) and quadrilateral (4 Nodes) unstructured mesh for displace-
ments recovery are presented in Tables 7–9. The computation results error estimation in
energy norm with circular and rectangular mesh free node zones of quadrilateral (4 Nodes)
unstructured mesh is shown in Table 10.

Table 7. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (linear triangular, L2 norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery

Circular Mesh Free
Patch

Rectangular Mesh
Free Patch

Mesh Dependent
Patch

Mesh Dependent
Patch

Elem. DOF
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ

103 136 1.534 0.630 0.83865 0.635 0.82329 0.603 0.83264 0.915 0.88585
470 530 0.282 0.117 0.93473 0.116 0.91067 0.115 0.97121 0.141 0.93646

1887 2004 0.070 0.029 0.94503 0.029 0.91226 0.028 0.99068 0.029 0.91340
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Table 8. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (quadratic triangular, L2 norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery

Circular Mesh Free
Patch

Rectangular Mesh
Free Patch

Mesh Dependent
Patch

Mesh Dependent
Patch

Elem. DOF
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ

103 476 0.056 0.039 0.95236 0.034 0.94796 0.032 0.87951 0.121 2.38461
470 1998 0.247 0.0028 0.96288 0.0025 0.96605 0.0025 0.90108 0.0073 1.66566

1887 7780 0.059 0.00033 0.98617 0.00030 0.98079 0.00031 0.93046 0.00054 1.27775

Table 9. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (quadrilateral, L2 norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery

Circular Mesh Free
Patch

Rectangular Mesh
Free Patch

Mesh Dependent
Patch

Mesh Dependent
Patch

Elem. DOF
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ

186 432 0.356 0.303 1.43564 0.298 1.43444 0.299 1.48273 0.249 1.40829
593 1282 0.133 0.094 1.38343 0.092 1.36857 0.093 1.38133 0.075 1.28740

1333 2806 0.054 0.040 1.37238 0.040 1.36711 0.041 1.38847 0.034 1.30001

Table 10. Error convergence and global effectivity (θ) obtained for RPI (MQ) and least square based displacement recovery
techniques (quadrilateral energy norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery

Circular Mesh Free
Patch

Rectangular Mesh
Free Patch

Mesh Dependent
Patch

Mesh Dependent
Patch

Elem. DOF
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ

186 432 22.764 8.269 1.04925 8.349 1.04267 8.579 1.08869 6.305 1.06260
593 1282 13.917 3.859 1.07186 4.348 1.05353 4.089 1.08202 1.821 1.01123

1813 3790 7.994 2.410 1.05454 2.452 1.03180 2.635 1.08825 1.011 1.00801

6.2. Square Plate with Opening Problem

A problem involving a square portion from an infinite elastic plate having a circular
opening with a radius (a) of 1 unit is also analyzed to demonstrate the effectiveness of
RPI-based displacement recovery technique in stress concentration conditions. The one-
quarter of the plate domain is modeled because of the symmetry of the plate. The plate
domain with an opening is discretized with triangular/quadrilateral elements, as shown in
Figure 5. Along the symmetry line, the normal displacement component and shear stress
are zero. A unit in-plane traction is applied in the x-direction. The close form solution of
stress field for an infinite plate with opening is given in Equations (38)–(40) [4].

σx = σ∞ {1 − [(a2/r2)(1.5 cos2θ + cos4θ)] + (1.5 a4/r4 cos4θ) (38)

σy = σ∞ {0 − [(a2/r2)(0.5 cos2θ − cos4θ)] + (1.5 a4/r4 cos4θ) (39)

σxy = σ∞ {0 − [(a2/r2)(0.5 sin2θ + sin4θ)] + (1.5 a4/r4 sin4θ) (40)

where r2 = y2 + x2 and σ∞ is the uniaxial traction applied at infinity.
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Figure 5. Triangular/quadrilateral elements mesh for plate with opening domain.

The finite element analysis of the problem is carried out incorporating mesh dependent
and mesh independent RPI-based displacement error recovery techniques. The error esti-
mation obtained with RPI recovery techniques is compared with least square displacement
recovery techniques. The analyses results are also obtained employing Zienkiewicz-Zhu
(ZZ) recovery techniques presented in the literature [18] for comparison with RPI-based error
recovery techniques. The recovery results are compared in terms of convergence errors and
global effectivity. The computational results obtained are tabulated in Tables 11–13.

Table 11. Error convergence and global effectivity (θ) for plate problem with hole using RPI (MQ) with various mesh free
node zones and least square based recovery techniques (linear triangular, energy norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery (Mesh Dependent)

Circular Zone Rectangular Zone Mesh Dependent
Patch Element Patch

Node Patch (ZZ)
[18]

Elem. DOF
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ
Error

(×10−3) θ

155 194 12.905 7.636 0.78552 7.768 0.78485 8.253 0.73122 11.206 0.80541 13.231 1.01807
548 618 8.504 4.442 0.91893 4.402 0.94074 4. 814 0.89851 5.495 0.90648 7.913 1.12593
1585 1700 5.171 2.251 0.93567 2.450 0.96781 2.244 0.93447 2.572 0.90042 4.672 1.14923

Table 12. Error convergence and global effectivity (θ) for plate problem with hole using exponential (Exp) and thin plate
splint (TPS) radial basis function-based RPI error recovery techniques (linear triangular, energy norm).

Mesh Size
FEM Error

(×10−3)

RPI (Exp) RPI (TPS)

Mesh Free Mesh Dependent Mesh Free Mesh Dependent

Elem. DOF Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

155 194 12.905 11.739 1.06061 10.845 1.20390 8.256 0.79118 13.611 0.92793
548 618 8.504 7.297 0.89907 6.587 1.29955 4.653 0.91835 5.926 0.88131

1585 1700 5.171 8.108 1.55389 4.783 0.95750 2.157 0.92439 4.095 0.95173

Table 13. Error convergence and global effectivity (θ) for plate problem with hole using RPI (MQ) and least square based
recovery techniques (quadrilateral, energy norm).

Mesh Size FEM
(Exact Error)

(×10−3)

RPI (MQ) Recovery LS Recovery (Mesh Dependent)

Circular Mesh free Mesh Dependent
Patch Element Patch

Node Patch (ZZ)
[18]

Elem. DOF Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

Error
(×10−3) θ

179 414 8.085 5.377 1.01183 5.377 0.92632 7.286 0.94018 9.262 1.40135
578 1254 4.291 2.196 0.94201 2.420 0.94167 2.949 0.99933 2.404 0.89920

1842 3854 2.882 1.604 0.94551 1.696 0.89699 1.703 0.94552 1646 0.91160
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The efficiency and reliability of recovery technique under different mesh free and
mesh dependent interpolation schemes is demonstrated through finite element analysis in
an adaptive environment. The initial meshes are adaptively refined to bring the solution
error below the target error limit. Table 14 shows the global error, number of elements,
and degree of freedom DOF in refined meshes at prescribed error limit of 2% using the
RPI error recovery employing Multi-quadrics (MQ), Gaussian (GS), and thin plate splint
radial basis functions, circular and rectangular support domain shapes. The adaptively
refined meshes at 2% target error using mesh free and mesh dependent RPIM, and mesh
dependent least square based error estimation employing different radial basis function
and node zone shapes are displayed in Figures 6–8.

Table 14. Global errors using various recovery-based finite element analysis and number of elements (N) with DOF in
adaptively improved meshes for 2% target error.

Recovery Type

Linear Triangle (Uniform Mesh Having 548
Elements and 618 DOF)

Linear Quadrilateral (Uniform Mesh
Having 179 Elements and 414 DOF)

FEM
Error

Proj.
Error

Adaptive Mesh (2%) FEM
Error

Proj.
Error

Adaptive Mesh (2%)
N DOF N DOF

LS (Mesh Dependent) 6.84 6.22 781 866 6.50 6.14 1444 3032
LS (Mesh Dependent-ZZ) 6.84 7.66 922 1012 6.50 9.25 1816 3784
RPI (Mesh Free-MQ-Cir.) 6.84 6.32 1004 1098 6.50 6.42 1468 3082
RPI (Mesh Free-MQ-Rec.) 6.84 6.47 1050 1140 6.50 5.96 1422 2990

RPI (Mesh Dependent-MQ) 6.84 6.18 1175 1274 6.50 6.39 1452 3028
RPI (Mesh Free-Exp.-Cir.) 6.84 6.14 417 486

RPI (Mesh Dependent-Exp.) 6.84 8.90 1155 1242
RPI (Mesh Free-TSP-Cir.) 6.84 6.31 945 1038

RPI (Mesh Dependent-TSP) 6.84 6.06 1100 1200
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7. Discussion

The reliability and effectiveness of RPIM-based displacement error recovery tech-
niques in a mesh free environment is studied. The comparison of mesh free RPIM-based
displacement error recovery techniques with mesh dependent RPIM and least square based
recovery techniques is also carried out. The performance of Zienkiewicz-Zhu ZZ recovery
techniques [18] is also compared with RPI-based error recovery techniques. The RPI tech-
nique uses the nodal values in the local support domain to interpolate the field variable
or field variable derivatives. The elastic square plate problems under the action of body
forces and unit in-plane traction are analyzed using finite element method coupled with
RPI-based error recovery considering mesh free circular/rectangular support domains and
mesh dependent node patches. The RPIM-based displacement error recovery techniques
employ Multi-Quadrics (MQ) and Gaussian or Exponential (Exp) radial basis functions.
The problem domain is discretized using linear/quadratic triangular and quadrilateral
shape elements. The error analysis is further utilized for adaptive improvement of domain
mesh. The quality of discretization error obtained using recovery techniques is compared in
terms of error convergence characteristics, error effectivity, and adaptively refined element
meshes with specified target error. The errors are computed in L2 norm as well as in
energy norm. The computation results obtained with increasing fineness order, radial basis
functions, mesh free node zones shapes, and error norms, for elastic plate problem under
the action of body forces, are depicted in Tables 1–10. The results of error convergence
rate, effectivity index, and adaptive refined meshes for 2% target accuracy obtained for an
infinite plate with an opening are given in Tables 11–14 and Figures 6–8.



Mathematics 2021, 9, 1900 16 of 19

The finite element analysis results of benchmark problems using the mesh free RPI,
mesh-based RPI and least square recovery techniques with increasing order of mesh
fineness, show that the RPI recovery techniques predict lower order of error and higher
convergence rate of the error, than that of the finite element solution and mesh dependent
least square based recovery techniques with better effectivity. The mesh free RPI recovery
techniques predict lower order of error with higher convergence rate than that of the
mesh dependent RPI error recovery techniques. It may be due to the possibility of less
accurate recovery for boundary nodes in mesh dependent recovery technique since a
smaller number of nodes are available. Such difficulty does not arise with mesh free
RPI-based displacement recovery technique. The effect of choice of element for domain
discretization on error convergence of RPI recovery techniques and least square recovery
techniques is clearly observed in the recovery analysis results. The performance of linear
quadrilateral elements discretization used in mesh free and mesh dependent RPI-based
recovery techniques and mesh dependent least square recovery techniques is found better
than the linear and quadratic triangular element discretization as the higher convergence
rate, lesser order of error and effectivity index, in general, near to one. From the error
quantified in energy and L2 norms, it is found that it is better to employ the L2 norm for
error representation for higher order elements as effectivity converge to nearly one and
with a higher convergence rate as compared to lower order element. The convergence rate
for linear triangular, quadratic triangular, and linear quadrilateral structured mesh, for
finite element solution of plate problem using mesh free RPI (MQ), mesh-based RPI (MQ),
and least square recovery techniques, in L2 norm are obtained as (1.93939, 2.01685, 2.06494,
2.15207), (3.04733, 4.16168, 3.86833, 3.721499), and (2.01223, 2.26171, 2.00883, 2.01729),
respectively. The corresponding error convergence rate for 3/6/4 node elements in energy
norm are found as (0.97875, 1.89163, 1.98282, 1.89225), (1.97848, 3.19100, 2.769632, 2.88449),
and (1.00169, 2.01497, 2.05275, 2.02723), respectively. There is a pronounced effect of the
kind of radial basis function on the RPI recovery-based error estimation. It is found that
the characteristics of error recovery considering the Multi-Quadrics radial basis function
are much superior to the Gaussian or Exponential radial basis functions in both mesh free
and mesh dependent RPI recovery analysis. The convergence rate with Multi-Quadrics,
Exponential, and Thin plate splint radial basis functions in mesh free RPI recovery analysis
for 3/6/4 node elements in energy norm are, respectively, obtained as (1.89163, 1.48183,
1.91524), (3.19100, 3.48633, 3.09017), and (2.01497, 1.45472, 1.82359). The convergence
rate with Multi-Quadrics and Exponential RBF in mesh dependent RPI recovery analysis
for 3/6/4 node elements in energy norm are respectively obtained as (1.98282, 1.24389),
(2.769632, 2.39122), and (2.05275, 1.44822). The shape of the support domains, i.e., circular,
or rectangular, has no significant influence on the RPI-based error estimation provided that
enough nodes are enclosed in the support domain. Similar results are also confirmed from
the mesh free and mesh dependent RPI-based displacement error recovery analysis of an
infinite plate with an opening as shown in Tables 11–14, giving rate of convergence and
effectivity index. It implies from the discussion that the type of element, the norm used
to quantify the errors, and radial basis functions influence considerably on the RPI-based
displacement error recovery of finite element solution.

The performance of error estimation using mesh free and mesh dependent RPI dis-
placement error recovery technique and least square recovery technique is also demon-
strated in terms of adaptively improved meshes with target error limits. The adaptive
finite element results for the plate problem with an opening are presented in Table 14 and
Figures 6–8 at a prescribed error limit of 2% for different radial basis functions and node
zones. The adaptively improved meshes indicate the error distribution pattern in the
domain as the meshes become finer in areas of high errors to obtain a uniform accuracy
throughout the domain. It is concluded that the RPI-based mesh free error estimation
technique can be used to predict the zones of high computational errors. The number
of elements required to achieve target accuracy, in general, is smaller in RPI error esti-
mations as compared to mesh dependent RPI and mesh dependent least square error



Mathematics 2021, 9, 1900 17 of 19

estimation for both triangular and quadrilateral elements discretization. The characteristics
of adaptive mesh obtained using the mesh free RPI-based error recovery technique using
Multi-Quadrics radial basis function are superior to mesh free RPI-based error recovery
technique using Gaussian and thin plate splint radial basis function. It is also observed
that the performance of RPI-based displacement recovery technique is superior to ZZ
stress recovery technique [18]. The numerical results show that the mesh free RPI-based
displacement recovery technique is more effective and achieves target accuracy in adaptive
analysis with a smaller number of elements as compared to mesh dependent RPI and mesh
dependent least square. It is also concluded that the proposed mesh free recovery technique
may prove to be most suitable for error recovery and adaptive analysis of problems dealing
with large domain changes and domain discontinuities.

8. Present Study Limitations and Future Research Work

The accuracy and the performance of the RPIM techniques depend on suitable and
optimized values of shape parameters of radial basis functions. Therefore, the performance
is limited to the shape parameters taken in the study. The present study is limited to the
performance of mesh free RPI-based error recovery technique for two-dimensional linear
elastic problems. The study could be extended the application of mesh free RPI-based
error recovery to incompressible elastic problems. The study could also be conducted by
applying mesh free recovery techniques to large deformation problems or plastic problems.
The different adaptive procedures could also be tested using RPI-based error estimators.

9. Conclusions

The present study is a contribution towards the development of a reliable and cost-
effective displacement recovery-based error estimation technique using RPIM in mesh
free and mesh dependent environments. The study considers three radial basis functions,
namely Multi-Quadrics, Gaussian, or Exponential and thin plate splint RBF, and circular
and rectangular support domain shape for error recovery analysis. Finite element analysis
on test examples is carried out using linear and higher order triangular and quadrilateral
elements for discretization and employing RPI-based recovery technique. The finite element
solution errors in energy/L2 norms are calculated directly from the recovered displacement.
The characteristics of RPI-based error recovery with different radial basis function is
compared in terms of error convergence properties, effectivity, and adaptively refined
meshes. It is found from the results that the L2 norm for error representation is better for
higher order elements, while the energy norm is equally good for all types of elements. It
is concluded that the multi-quadrics radial basis function found to perform better in RPI-
based error recovery of finite element solution and radial basis functions shape parameters
can be optimized for better performance. It is verified that radial basis functions with their
shape parameters, choice of elements for discretization, and norm used to quantify the
errors influence considerably on the RPI-based displacement error recovery of finite element
solution. The study concludes that mesh free RPI-based displacement error recovery
technique with multi-quadrics radial basis function is more effective and efficient than
the mesh dependent least square based displacement recovery technique. The numerical
results show that the mesh free RPI-based displacement recovery technique is more effective
and achieves target accuracy in adaptive analysis with a smaller number of elements as
compared to mesh dependent RPI and mesh dependent least square. The study concludes
that mesh free RPI-based displacement recovery technique is more effective and efficient,
and the number of elements required to achieve target accuracy is smaller in RPI error
estimations as compared to mesh dependent RPI and mesh dependent least square error
estimation. It is also concluded that the proposed mesh free recovery technique may prove
to be most suitable for error recovery and adaptive analysis of problems dealing with large
domain changes and domain discontinuities.
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