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Abstract: This manuscript is focused on the role of convexity of the modular, and some fixed
point results for contractive correspondence and single-valued mappings are presented. Further,
we prove Nadler’s Theorem and some fixed point results on orthogonal modular spaces. We
present an application to a particular form of integral inclusion to support our proposed version of
Nadler’s theorem.
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1. Introduction

The fixed point results in modular spaces have several applications in various branches
of sciences. These results strongly depend on some assumptions which are more theoretic
and have no applications in normed vector spaces. Some recent research trends are
dedicated to the study of the well-known fixed point theorems by relaxing the assumptions
and considering the case of modular spaces.

S. Banach became one of the pioneers of fixed point theory by proving the well known
Banach contraction principle in 1922, see [1]. Fixed point theory plays an important role
both in the field of mathematics and in applied sciences. Fixed point theory in modular
spaces had been considered a starting point in the research field, after being identified as a
generalization of normed spaces. See [2–4]. The fixed point theorems in modular spaces
presented in the literature deal with rigorous statements and proofs of many interesting
problems that give some applications in a wide variety of fields, including machine learning,
programming, quantum mechanics, etc.

Fixed point theory in modular space has deep roots (see [5]) Khamsi used some con-
structive techniques for single-valued mappings to obtain the solutions of some fixed point
problems. This work is appreciated by several researchers, and it became an inspiration for
a variety of fixed point results. For details see [6,7]. These ideas were extended and general-
ized by several authors in a variety of ways. One successful approach is that of Nadler, who
in 1969, proposed the Banach contraction principle for multivalued mappings in modular
spaces [8]. Several authors extended and generalized the results by relaxing the strong
assumptions used in (for details, see [9–12]). Furthermore, Latif et al. (in [13]) focused on
a particular case for multivalued mappings in modular spaces with the additivity of the
modular. Later, the authors (in [14]) explored the existence of fixed points of a specific type
of G−contractive and G−nonexpansive mappings in modular function spaces.

Eshaghi et al. [15] introduced quite recently, the notion of orthogonal set and obtained
an extension of Banach’s fixed point theorem. They proved, providing an strong example,
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that their main result is a good generalization of Banach’s fixed point theorem. After that
in [16], orthogonal modular space is defined and a new generalized modular version of
the Meir-Keeler fixed point theorem with respect to an orthogonal relation is presented.
Nguyen Van Dung, in [17], talked about the importance of the results proved on orthogonal
set and showed that many existence results on fixed points in orthogonal complete metric
spaces can be proved by using the corresponding existence results in complete metric
spaces. For more information about orthogonal space, we refer to [15,18–20].

The aim of this paper is to prove some generalizations of fixed point results in an
orthogonal modular space by relaxing some strong assumptions for the modular spaces
case such as convexity, continuity and Fatou property.

This paper starts with a brief introduction into modular spaces and orthogonal modu-
lar spaces theory along with the relevant literature. Section 3 presents some techniques
and methods of improving some known fixed point results. An application to integral
inclusions is provided in the last section.

2. Notations and Background

This section can be considered as an introduction to fundamental concepts of modular
spaces and orthogonal modular spaces. For detailed information see [3,21–28].

2.1. Modular Spaces

Consider X a real linear space and ρ a real valued functional on X which satisfies the
following conditions:

1. ρ(x) = 0 if and only if x = 0,
2. ρ(−x) = ρ(x),
3. ρ(αx + βy) ≤ ρ(x) + ρ(y), for any α, β ∈ R≥0 with α + β = 1.

The functional ρ is called a modular on X and (X, ρ) is called a modular space. A
modular induces a vector space Xρ = {x ∈ X : ρ(αx) → 0 as α → 0} which is called
a modular linear space. Musielak and Orlicz in [2,29,30] provided the definitions of the
following key concepts in a modular space (X, ρ):

Definition 1. A sequence (xn) in B ⊆ X is said to be ρ−convergent to a point x ∈ B if ρ(xn −
x)→ 0 as n→ +∞.

Definition 2. A ρ−closed subset B ⊆ X is a set which has the limits of all its
ρ−convergent sequences.

Definition 3. A sequence (xn) in B ⊆ X is named to be ρ−Cauchy if ρ(xm − xn) → 0 as
m, n→ +∞.

Definition 4. A subset B of X is said to be ρ−complete if each ρ−Cauchy sequence in B is ρ−
convergent to a point of B.

Definition 5. ρ−bounded subsets: A subset B ⊆ Xρ is called ρ−bounded if
sup

x,y∈B
ρ(x− y) < +∞.

Definition 6. ρ−compact subsets: A ρ−closed subset B ⊆ X is called ρ−compact if any sequence
(xn) ∈ B has a ρ−convergent subsequence.

For a modular space (X, ρ), the function ωρ which is said growth function [31] is
defined on [0,+∞) as follows:

ωρ(t) = inf{ω : ρ(tx) ≤ ωρ(x) : x ∈ X, 0 < ρ(x)}.
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It is clear that whenever (X, ρ) satisfying ωρ(2) < +∞, then every ρ−convergent
sequence in (X, ρ) is ρ−Cauchy. Also, we note that in this case every ρ−compact set is a
ρ−bounded and"ρ−complete set [32].

We recall that for any subset C of (X, ρ) a correspondence f on a set C, denoted by
f : C � C assigns to each a ∈ C a (nonempty) subset f (a) of C and if a ∈ f (a) for some
a ∈ C, then a ∈ C is said to be a fixed point. Also, it is called weakly Picard, if there exists a
sequence (xn) with x0 ∈ C, x1 ∈ f (x0) and xn+1 ∈ f (xn) for which is convergent to a fixed
point of f . For a correspondence f , we define distρ(a, f (b)) = inf{ρ(a− y) : y ∈ f (b)}.
Also, Hausdorff distance is defined as follows

Hρ(A, B) = max{max
a∈A

distρ(a, B), max
b∈B

distρ(A, b)},

where A and B are subsets of"C.

2.2. Orthogonal Modular Spaces

Now, we recall some definitions on orthogonal set and orthogonal modular space (for
more details see [33–36]).

Definition 7. Let B 6= ∅ and⊥⊂ B× B be a binary relation. If⊥ satisfies the following condition

there exists x0 ∈ B; ((for all x ∈ B; x ⊥ x0) or (for all x ∈ B; x0 ⊥ x)),

(where x0 is called an orthogonal element). Then B is called an orthogonal set (briefly O-set) which
is denoted by (B,⊥).

Definition 8. Let (X, ρ) be a modular space and (X,⊥) be an O-set. Then (X, ρ,⊥) is called an
orthogonal modular space.

Definition 9. A sequence (xn), n ∈ N is called an orthogonal sequence (briefly, O-sequence) if

((for all n; xn ⊥ xn+1) or (for all n; xn+1 ⊥ xn)).

Also it is called a strongly orthogonal sequence (briefly, SO-sequence) if

((for all n, k; xn ⊥ xn+k) or (for all n, k; xn+k ⊥ xn)).

It is clear that every orthogonal modular space is a modular space, so all Definitions
D1–D6 can be defined for (X, ρ,⊥). If a sequence (xn) is O-sequence (SO-sequence) then D7–
D9 in (X, ρ,⊥) can be defined as ρ−convergent O−sequence (ρ−convergent SO-sequence),
O-closed set (SO-closed set), Cauchy O-sequence (Cauchy SO-sequence), respectively.

Definition 10. Let (X, ρ,⊥) (shortly X) be an orthogonal modular space:

a. Then X is said to be O-complete (SO-complete) if every Cauchy O-sequence (Cauchy SO-
sequence) is convergent.

Clearly, every O-complete is SO-complete but if X is SO-complete then it is not necessary to
be O-complete. Also, there are O-complete spaces which are not complete.

b. Let B ⊂ X. A mapping T : B→ B is called:

(i) Orthogonal preserving mapping if x ⊥ y implies T(x) ⊥ T(y).
(ii) O-continuous (SO-continuous) at x ∈ B if T(xn)→ T(x), for each O-sequence (SO-

sequence) xn ∈ B which xn → x. Also, T is O-continuous (SO-continuous) on B if T
is O-continuous (SO-continuous) in each x ∈ B.

Definition 11. Let (X, ρ,⊥) be an orthogonal modular space and B ⊂ X. A correspondence
f : B � B is called:
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(i) Orthogonal preserving mapping if x ⊥ y implies z ⊥ w, for every z ∈ f (x) and w ∈ f (y).
(ii) Suppose that for any x ∈ B, any O−sequence (SO−sequence) (xn) ∈ B converging to x,

and any sequence (yn) in B such that yn ∈ f (xn) for each n, there is a z ∈ f (x) and a
subsequence of (yn) that converges to z. Then f is called orthogonal upper hemicontinuous
(strongly orthogonal upper hemicontinuous) and denoted as OUHC (SOUHC) at x ∈ B.

2.3. Relevant Literature

Fixed point results for a single-valued mapping in modular spaces have been given
in [9,37,38]. Over the years, many authors have studied some conditions for proving
the existence of fixed points for some classes of functions in modular spaces. The Hy-
potheses (H1)–(H4) are declared as ones of the most common and popular conditions in
modular spaces:

Hypothesis 1 (H1). ∆2-condition [29,30]: A modular ρ is said to satisfy the ∆2-condition, if
ρ(2xn)→ 0, whenever sup

n
ρ(xn)→ 0 as n→ +∞.

Hypothesis 2 (H2). ∆2-type condition [29,30]: A modular ρ is said to satisfy the ∆2-type condi-
tion if there exists k > 0 such that ρ(2x) ≤ kρ(x) for all x ∈ Xρ.

Hypothesis 3 (H3). s̃-convex modular [39]: If condition (3) in the modular definition is replaced
by ρ(αx + βy) ≤ αs̃ρ(x) + βs̃ρ(y) for all α, β ∈ [0,+∞) with αs̃ + βs̃ = 1 with an s̃ ∈ (0, 1], the
modular ρ is called an s̃-convex modular. In particular, a 1-convex modular is simply called convex.

Hypothesis 4 (H4). Fatou property [40]: A modular ρ has the Fatou property if ρ(x) ≤
lim inf ρ(xn), whenever xn → x.

Some explicit overviews of (H1)–(H4) conditions are given in [5,28,39]. It is proven
that a modular ρ implies that

‖x‖ρ = inf
{

a > 0 : ρ(
x
a
) ≤ 1

}
,

i.e., it defines an F−norm on Xρ. Moreover, if ρ is convex, ‖ · ‖ρ is a norm and it is frequently
called the Luxemburg"norm [41]. Note that a modular space determined by a function
modular ρ will be called a modular function space and will be denoted by Lρ. Then,
it is not difficult to prove that ‖ · ‖ρ is an F−norm induced by ρ. Then, (Lρ, ‖ · ‖ρ) is a
complete space.

Since we are able to define such norm in a real vector space can lead to a simple proof
for many fixed point theorems in a specific modular spaces. For example, an earlier work
on this topic recall Theorem 2− 2 of [5] which was proposed in the early 1990s.

Theorem 1 ([5]). Let ρ be a function modular satisfying the ∆2-condition and let B be a
‖ · ‖ρ−closed subset of Lρ. Let k ∈ (0, 1) and T : B→ B be a single-valued mapping such that

ρ(T( f )− T(g)) ≤ kρ( f − g),

where f , g ∈ B. Then T has a fixed point if supn(2Tn( f0)) < 1.

Since then, there has been significant work on extending and improving this results
further in.

Ait Taleb and Hanebaly presented some examples proving that the Theorem 2 (Theo-
rem I-1 of [42]) tends to be more applicable than Theorem 1. However, Theorem 1 is not
generalized by Theorem 2.

Theorem 2 ([42]). Suppose that Xρ is a ρ−complete modular space where ρ is an s̃-convex modular
satisfying the ∆2-condition and has the Fatou property. Moreover, assume that B is a ρ−closed
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subset of Xρ and T : B → B is a single-valued mapping such that for some c, k ∈ R+ and
c > max{1, k} satisfies

ρ(c(T(x)− T(y))) ≤ ks̃ρ(x− y),

where x, y ∈ B. Then T has a fixed point.

As mentioned in [42], we can ask what if it is mentioned that they are unable to prove
whether the conclusion of Theorem 2 is true, if we have c = 1 and 0 < k < 1. We note
that our main result, Theorem 8, has replied to this open question, also it has generalized
Theorem 1, when wρ(2) < +∞.

Some extensions were subsequently proposed by various authors, taking into account
different relaxations that require. A new extension of Theorem 1, based on the cases of
correspondences, appeared in 2006 in Theorem 3-1 of [9] as follows.

Theorem 3 ([9]). Let ρ be a convex modular satisfying the ∆2-type condition, B be a nonempty
ρ−bounded ρ−closed subset of Lρ, and f : B � B be a ρ−closed valued correspondence such that
there exists a constant k ∈ [0, 1) that

Hρ( f ( f1), f ( f2)) ≤ kρ( f1 − f2),

where f1, f2 ∈ B. Then f has a fixed point.

Later, in 2009, this result is improved to Theorem 2-1 in [13] by the following result.

Theorem 4 ([13]). Let ρ be a convex modular satisfying ∆2-type condition and B ⊂ Lρ be a
nonempty ρ−closed ρ−bounded subset of the modular space Lρ. Then any closed valued correspon-
dence f : B � B such that for f1, f2 ∈ B and f3 ∈ f ( f1), there is f4 ∈ f ( f2) such that

ρ( f3 − f4) ≤ kρ( f2 − f1),

where k ∈ (0, 1), has a fixed point.

In both Theorems 3 and 4, it is assumed that the correspondence is defined on a
ρ−bounded subset of a modular space (X, ρ) with a convex modular. In [32] Theorem 2-5,
the correspondence has ρ−compact values.

Theorem 5 ([32]). Let B be a ρ−bounded subset of a ρ−complete space (X, ρ). Let f : B � B be a
correspondence with ρ−compact values that for each x, y ∈ C and z ∈ f (x), there exists w ∈ f (y)
such that

ρ(z− w) ≤ kρ(x− y),

where 2kwρ(2)2 < 1. Then f has a fixed point.

Our main result, Theorem 8, is a generalization of Theorems 3–5.
The main result of [15] is the following theorem.

Theorem 6 ([15]). Let (X,⊥, d) be an O-complete metric space. And let T : X → X be ⊥-
continuous mapping, ⊥ − Banach contraction and ⊥-preserving. Then, T has a unique fixed point
z ∈ X. Also, T is a Picard operator, that is, lim

n→+∞
Tn(x) = z for all x ∈ X.

In [16], the Meir−Keeler condition on orthogonal modular space was introduced and
the Meir−Keeler Theorem on orthogonal modular spaces was proven, see Theorem 7.
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Definition 12 ([16]). Let (X,⊥, ρ) be an orthogonal modular space. Let B be an SO−closed
subset of Xρ and c, l ∈ (0,+∞) with c > l. We say that a mapping T : B → B satisfies the
Meir−Keeler condition whenever for every ε > 0, there exists δ(ε) > 0 such that:

x 6= y, x ⊥ y and ε ≤ ρ(l(x− y)) < ε + δ(ε) implies ρ(c(Tx− Ty)) < ε.

Theorem 7 ([16]). Let (X ⊥, ρ) be an SO−complete orthogonal modular space with an orthogonal
element x0 and ρ satisfies the ∆2−condition. Suppose that B is an SO−closed subset of Xρ such
that x0 ∈ B and there exist c, l ∈ (0,+∞) with c > l. Assume that T : B → B is orthogonal
preserving, SO−continuous such that satisfying the Meir− Keeler condition. Then, T has a unique
fixed point z ∈ B. Also, T is a Picard operator, that is, for all x ∈ B, the sequence (Tn(x)) is
ρ−convergent to z.

Then, in the following sections, we provide some conditions for guarantee the ex-
istence of fixed points for myriad mappings and some strong assumptions such as the
convexity of the modular and the ρ−boundedness of the domain of the correspondence
are relaxed, also the ρ-completeness is replaced by SO-complete which can lead to making
our theorems much stronger and more applicable.

3. Main Results

In this section, we focus on an SO−complete space X (not necessarily ρ−complete
modular space) and consider the orthogonal preserving correspondence f : X � X with
SO− closed valued. Further, we assume ωρ(2) < +∞. Also, in order to simplify notation,
let us denote X = (X, ρ).

The following lemma is a handy tool that will be used in the sequel. By the definition,
every orthogonal modular space is a modular space too, so the following lemma remains
correct for an orthogonal modular space and we will use it in our results.

Lemma 1 ([43]). A sequence (xn) in a modular space (X, ρ) is a ρ−Cauchy sequence if there
exists k ∈ [0, 1) such that

ρ(xn − xn+1) ≤ kρ(xn−1 − xn),

for every n ∈ N.

The following theorem is an equivalent of Nadler’s theorem [8] on an orthogonal
modular space.

Theorem 8. Consider k ∈ [0, 1) and for every x, y ∈ X, such that x ⊥ y, there exists w ∈ f (y)
such that ρ(z− w) ≤ kρ(x− y) for every z ∈ f (x). Then SOUHC mapping f has a fixed point.

Proof. Suppose that x0 ∈ X is an orthogonal element and x1 ∈ f (x0), so x0 ⊥ x1. We know
from our assumption that there exists x2 ∈ X such that x2 ∈ f (x1) and

ρ(x2 − x1) ≤ kρ(x1 − x0).

Since f is orthogonal preserving, we have x1 ⊥ x2. By the same way, for every n ≥ 1,
we have xn−1 ⊥ xn, so by the contraction, there exists xn+1 ∈ X such that xn+1 ∈ f (xn) and

ρ(xn+1 − xn) ≤ kρ(xn − xn−1).

Note that by Lemma 1, (xn) is a Cauchy SO−sequence in the SO−complete space X.
Which means that there exists x ∈ X such that xn → x as n → +∞. Since f is SOUHC
and xn ∈ f (xn−1), there exists a subsequence of xn which is convergent to z ∈ f (x). Since
f is SO-closed, and the SO-sequence xn is ρ-convergent to x. This implies that z = x, so
x ∈ f (x).
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The following theorem generalizes Theorem 8.

Theorem 9. Consider for every x, y ∈ X that x ⊥ y and z ∈ f (x), there exists w ∈ f (y) such that

ρ(z− w) ≤ k max{ρ(x− y), αρ(x− z), αρ(y− w)},

where α ∈ [0, 1], and k ∈ [0, 1). Then f has a fixed point if one of the following assumptions satisfies:

(i) f is SOUHC.

(ii) ρ is continuous i.e., lim ρ(xn) = ρ(x) as xn → x.

Proof. Let us define a sequence (xn) that x0 is an orthogonal element, x1 ∈ f (x0) and
SO−sequence xn+1 ∈ f (xn) such that

ρ(xn+1 − xn) ≤ k max{ρ(xn − xn−1), αρ(xn − xn−1), αρ(xn+1 − xn)}, (1)

for every n ≥ 1. As it becomes clear by Equation (1), the right hand side of this equation is
not αρ(xn − xn+1) or αρ(xn − xn−1). Now it is easy to see that

ρ(xn+1 − xn) ≤ kρ(xn − xn−1), (2)

Thus it follows from Lemma 1 and SO−completeness of X that there exists x ∈ X
such that xn → x as n→ ∞.

The proof is obviously complete under assumption (i). Now assume (ii) holds. Let
yn ∈ f (x), since ρ is continuous, we have lim

n→+∞
ρ(xn − yn) = lim

n→+∞
ρ(x− yn) = 0. Now

from the facts that f (x) is SO−closed, x ∈ f (x).

Khan et. al. (in [44]) introduced the notion of altering distance function defined in the
following way.

Definition 13 ([44]). A functionψ : R+ → R+ is called an altering distance function if the
following conditions hold.

(1) ψ is continuous and nondecreasing,

(2) ψ(t) = 0 if and only if t = 0.

Theorem 10. Suppose that there exists w ∈ f (y) such that for all x, y ∈ X, that x ⊥ y

ψ(λρ(z− w)) ≤ ψ(S(x, y)) + Lψ(I(x, y)), (3)

where constants L ≥ 0, λ > 1, also

S(x, y) = max
{

ρ(x− y), distρ(x, f (x)), distρ(y, f (y))
1 + distρ(x, f (x))

1 + ρ(x− y)

}
, (4)

and

I(x, y) = min
{

distρ(x, f (x)) + distρ(y, f (y)), distρ(x, f (y)), distρ(y, f (x))
}

. (5)

and z ∈ f (x). Then f has a fixed point if and only if one of the following assumptions holds.

(i) f is weakly Picard.

(ii) f is SOUHC.

(iii) ρ is continuous.
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Proof. Choose an orthogonal element x0 ∈ X then find x1 ∈ f (x0), continuing on the same
lines we can construct a sequence xn such that xn+1 ∈ f (xn) that xn−1 ⊥ xn and

ψ(λρ(xn − xn+1)) ≤ ψ(S(xn−1, xn)) + Lψ(I(xn−1, xn)), (6)

for every n ≥ 1. From (5), I(xn−1, xn) = 0. Now, from (4), we have

S(xn−1, xn) = max
{

ρ(xn−1 − xn), distρ(xn−1, f (xn−1),

distρ(xn, f (xn))
1 + distρ(xn−1, f (xn−1)

1 + ρ(xn−1 − xn)

}
,

≤ max
{

ρ(xn−1 − xn), ρ(xn−1 − xn),

ρ(xn − xn+1)
1 + ρ(xn−1 − xn)

1 + ρ(xn−1 − xn)

}
,

= max{ρ(xn − xn+1), ρ(xn−1 − xn)}. (7)

If max{ρ(xn − xn+1), ρ(xn−1 − xn)} = ρ(xn, xn+1) then using inequality (3) we"have

ψ(λρ(xn − xn+1)) ≤ ψ(ρ(xn − xn+1)) + Lψ(0).

Since ψ(0) = 0 and ψ is nondecreasing. Then above inequality can be written as

λρ(xn − xn+1) ≤ ρ(xn − xn+1),

which is a contradiction because λ > 1.
Hence max{ρ(xn − xn+1), ρ(xn−1 − xn)} = ρ(xn−1 − xn).
Then inequality (3) becomes ψ(λρ(xn − xn+1)) ≤ ψ(ρ(xn−1 − xn)).
So, we have λρ(xn − xn+1) ≤ ρ(xn−1 − xn), for all n ∈ N. Now, using Lemma (1) and

SO−completeness of B, there exists x ∈ B such that xn → x as n→ +∞.
The proof is obviously complete under assumption (i), (ii) and (iii).

Open Questions

Radenović et. al. in [45] considered the following open problem:

Problem 1. If T : B→ B is a single- valued mapping such that

ρ(T(x)− T(y)) ≤ k max{ρ(x− y), ρ(x− T(x)), ρ(y− T(y)), ρ(x− T(y)), ρ(y− T(x))},

for every x, y ∈ B where B ⊆ X and k ∈ R>0, then under what constraints does T have a
fixed point?

It can be answered under the constraints that T : B→ B is a single-valued mapping
and k ∈ (0, 1

wρ(2)(1+wρ(2))
). However, there is no answer to this question in the case of the

correspondence f or k ≥ 1
wρ(2)(1+wρ(2))

, with the matched definitions for correspondences.

Existence of a fixed point for T has been successfully shown if k ∈ (0, 1
wρ(2)(1+wρ(2))

)

(given by Radenović et al. in [45]). Interestingly, this question can be reformulated in the
next theorem and we prove it for correspondences with k ∈ [0, 1

2wρ(2)
].

Theorem 11. Let f be an SOUHC correspondence that for each x, y ∈ X that x ⊥ y and z ∈ f (x),
there exists w ∈ f (y) such that

ρ(z− w) ≤ k max{ρ(x− y), ρ(x− z), ρ(y− w), ρ(x− w), ρ(y− z)},

where 2kwρ(2) < 1. Then f has a fixed point.
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Proof. Let x0 be an orthogonal element and x1 ∈ f (x0) for an arbitrary x0 ∈ X. By
assumption, for every n ≥ 1 there exists xn+1 ∈ f (xn) such that xn ⊥ xn+1 and

ρ(xn+1 − xn) ≤ k max
{

ρ(xn − xn−1), ρ(xn+1 − xn), ρ(xn−1 − xn+1), ρ(xn − xn)
}

. (8)

It follow that

ρ(xn+1 − xn) ≤ k max
{

ρ(xn − xn−1), ρ(xn+1 − xn), wρ(2)(ρ(xn−1 − xn) + ρ(xn − xn+1))
}

,

≤ kwρ(2)(ρ(xn−1 − xn) + ρ(xn − xn+1)),

which implies that ρ(xn+1 − xn) ≤ k′ρ(xn−1 − xn), where k′ = kwρ(2)
1−kwρ(2)

. Note that k′ is not

greater than one, since k < 1
2wρ(2)

. In addition, from the fact that X is a SO−complete set
and xn is a Cauchy SO−sequence by Lemma 1, there exists x ∈ X such that xn → x. From
SOUHC, we have x ∈ f (x).

4. Application to Integral Inclusions

A modular fixed point theorem can be used for providing sufficient (but not neces-
sary) conditions for existence of a real continuous function u defined on [a, b] such that

u(t) = v(t) + γ
∫ b

a
G(t, s)g(s, u(s))ds, t ∈ [a, b], (9)

where γ is a constant, g : [a, b]× R � [a, b] is OUHC, G : [a, b]× [a, b] → [0,+∞) and
v : [a, b]→ R are given continuous functions.

For simplicity, we introduce the following shorthand notations. We use X = C[a, b]
to denote all real continuous functions defined on [a, b], gu : [a, b]→ [a, b], where gu(s) =
g(s, u(s)) and a modular ρ defined on X as

ρ(u) = max
a≤t≤b

| u(t) |2 .

It is not difficult to prove that (X, ρ) is a ρ−complete modular space. Now the
aforementioned integral inclusion problem (9) can be reformulated as u and is a solution of
problem (9) if and only if it is a fixed point of f : X � X defined as

f (u) =
{

x ∈ X : x(t) ∈ v(t) + γ
∫ b

a
G(t, s)g(s, u(s))ds

}
.

Now, we show under the following mild assumptions,

1. | γ |≤ 1,

2. max
a≤t≤b

∫ b
a G2(t, z)dz ≤ 1

b−a ,

3. for all x, y ∈ X and wx(t) ∈ gx(t), there exists hy(t) ∈ gy(t) such that

|wx(t)− hy(t)|2 ≤
1
s
| x(t)− y(t) |2, t ∈ [a, b],

where s > 1,

the correspondence f has a unique fixed point. So, we assume that x, y ∈ X and w ∈ f (x)
by definition, we have

w(t) = v(t) + γ
∫ b

a
G(t, s)g(s, x(s))ds.
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By Michael’s selection theorem, (in [46] Theorem 1), it follows that there exists a
continuous single- valued mapping wx(s) ∈ gx(s) that w(t) = v(t) + γ

∫ b
a G(t, s)wx(s)ds.

According to assumption 3, for wx(s) ∈ gx(s), there is an hy(s) ∈ gy(s)"such that

|wx(s)− hy(s)|2 ≤
1
s
| x(s)− y(s) |2 .

We define

h(t) = v(t) + γ
∫ b

a
G(t, s)hy(s)ds

i.e.,

h(t) ∈ v(t) + γ
∫ b

a
G(t, s)gy(s)ds.

Therefore h ∈ f (y). Using the Cauchy-Schwarz inequality and conditions 1 − 3,
we have

ρ(w− h) = max
a≤t≤b

|w(t)− h(t)|2,

= max
a≤t≤b

| v(t) + γ
∫ b

a
G(t, s)wx(s)ds− (v(t) + γ

∫ b

a
G(t, s)hy(s)ds) |2,

= | γ |2 max
a≤t≤b

|
∫ b

a
G(t, s)(wx(s)− hy(s))ds |2,

≤ | γ |2 max
a≤t≤b

{ ∫ b

a
G2(t, s)ds

∫ b

a
| wx(s)− hy(s) |2 ds

}
,

= | γ |2
{

max
a≤t≤b

∫ b

a
G2(t, s)ds

}
.
{ ∫ b

a
| wx(s)− hx(s) |2 ds

}
,

≤ | γ |2
b− a

{1
s

∫ b

a
| x(s)− y(s) |2 ds

}
,

≤ | γ |2
s(b− a)

∫ b

a
max

a≤s≤b
| x(s)− y(s) |2 ds,

=
| γ |2

s
max

a≤s≤b
| x(s)− y(s) |2,

=
1
s

ρ(x− y).”

Theorem 8 implies that f has a unique fixed point u ∈ X, that is, the integral inclusion (9)
has a solution which belongs to C[a, b].

5. Conclusions

In this paper, we defined some contractive correspondences and obtained fixed point
results in orthogonal modular spaces. As a consequence of our main result, we obtained
the Banach contraction principle in the orthogonal modular space for correspondences.
Also, we improved the interval of contraction (proposed in an open problem) which shows
that our results are still valid if we choose contractive constant k in (0, 1). As an application
of our result, we obtained a solution to integral inclusions in the orthogonal modular space.
Further, we provide examples that further elaborate the usability of the obtained results.
It is worth mentioning that we identify the relationship between orthogonal modular
spaces and modular spaces which will be helpful to prove various results in orthogonal
modular spaces.
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