Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application
Abstract
:1. Introduction
2. The Mathematical Model and the Rabinowitsch Fluid Equation
- Model of Fluid Phase
- Model of Particle Phase
- Rabinowitsch fluid equation
- Model of fluid phase
- Model of particle phase
3. Electroosmotic Flow
4. Non-Dimensional Physical Parameters
- Non-dimensional Rabinowitsch fluid equations
- Non-dimensional model of fluid phase
- Non-dimensional model of particle phase
5. Methodology
6. Theoretical Determination of Pressure Gradient and Pressure Rise Application in Blood Flows
7. Graphical Results and Discussion
8. Biomedical Application of the Problem
9. Deductions
- Unlike the effect of the radius of the channel for elasticity on the shear stress, it tends to reduce the axial velocity, pressure gradient, and pressure rise.
- The volume fraction boosts the shear stress and the axial velocity, whereas the effect is totally reversed with the pressure gradient and pressure rise.
- The Grashof number accelerates the flow and increases shear stresses along with the pressure gradient.
- The maximum axial velocity takes place at the centre of the conduit.
- The maximum electroosmotic velocity boosts the shear stress and pressure gradient but reduces the axial velocity.
- The influence of the Rabinowitsch and electroosmotic parameters is to enhance the shear stress, whereas their effect is totally reversed for the pressure gradient.
- The current model reduces to the case of dilatant fluid for K < 0, pseudoplastic fluid for K > 0.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- SherAkbar, N.; WahidButt, A. Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia. Results Phys. 2015, 5, 92–98. [Google Scholar]
- Singh, B.K.; Singh, U.P. Analysis of peristaltic flow in a tube: Rabinowitsch fluid model. Int. J. Fluids Eng. 2014, 6, 1–8. [Google Scholar]
- Vaidya, H.; Rajashekhar, C.; Manjunatha, G.; Prasad, K.V. Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall; variable liquid properties. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 52. [Google Scholar] [CrossRef]
- Sadaf, H.; Nadeem, S. Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid model. J. Bionic Eng. 2017, 14, 182–190. [Google Scholar] [CrossRef]
- Choudhari, R. Analysis of peristaltic flow of Rabinowitsch fluid in a non-uniform channel: Analytical approach. Lat. Am. Appl. Res. 2020, 50, 151–158. [Google Scholar]
- Mekheimer, K.; Zaher, A.; Hasona, W. Entropy of AC electro-kinetics for blood mediated gold or copper nanoparticles as a drug agent for thermotherapy of oncology. Chin. J. Phys. 2020, 65, 123–138. [Google Scholar] [CrossRef]
- Mekheimer, K.S.; Zaher, A.Z.; Abo-Elkhair, R.E. Electro-magnetohydrodynamic oscillatory flow of a dielectric fluid through a porous medium with heat transfer: Brinkman model. Bionanoscience 2018, 8, 596–608. [Google Scholar]
- Zaher, A.; Ali, K.K.; Mekheimer, K.S. Electroosmosis forces EOF driven boundary layer flow for a non-newtonian fluid with planktonic microorganism: Darcy Forchheimer model. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 2534–2559. [Google Scholar] [CrossRef]
- Reuss, F.F. Mémoires de la Société Impériale des Naturalistes de Moscou; Imperial Moscow University: Moscow, Russian, 1809; Volume 2, pp. 327–337. [Google Scholar]
- Mekheimer, K.S.; Zaher, A.; Abdellateef, A.I. Entropy hemodynamics particle-fluid suspension model through eccentric catheterization for time-variant stenotic arterial wall: Catheter injection. Int. J. Geom. Methods Mod. Phys. 2019, 16, 164–496. [Google Scholar] [CrossRef]
- Zeeshan, A.; Ijaz, N.; Bhatti, M.M. Flow analysis of particulate suspension on an asymmetric peristaltic motion in a curved configuration with heat and mass transfer. Mech. Ind. 2018, 19, 401. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, S.I.; Vafai, K. Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: Blood flow model. Math. Biosci. 2017, 283, 91–105. [Google Scholar] [CrossRef]
- Khan, A.A.; Tariq, H. Influence of wall properties on the peristaltic flow of a dusty Walter’s B fluid. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 368. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Developments and Applications of Non-Newtonian Flows; Siginer, D.A., Wang, H.P., Eds.; ASME: New York, NY, USA, 1995; pp. 99–105. [Google Scholar]
- Sadaf, H.; Abdelsalam, S.I. Adverse effects of hybrid nanofluid in a wavy nonuniform annulus with convective boundary conditions. RSC Adv. 2019, 10, 15035–15043. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Ellahi, R.; Zeeshan, A.; Marin, M.; Abdelsalam, S.I. Swimming of motile gyrotactic microorganisms and movement of nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 2020, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, S.I.; Bhatti, M.M. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Appl. Math. Mech. 2020, 41, 711–724. [Google Scholar] [CrossRef]
- Mekheimer, K.; Hasona, W.; Abo-Elkhair, R.; Zaher, A. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys. Lett. A 2018, 382, 85–93. [Google Scholar] [CrossRef]
- Sohail, M.; Naz, R.; Abdelsalam, S.I. On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows. Phys. Scr. 2020, 95, 045206. [Google Scholar] [CrossRef]
- Abdelsalam, S.I.; Bhatti, M.M. The study of non-newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Adv. 2018, 8, 7904–7915. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Thoi, T.; Sheikholeslami, M.; Hamid, M.; Haq, R.-U.; Shafee, A. CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation. Phys. A Stat. Mech. Appl. 2019, 534. [Google Scholar] [CrossRef]
- Khan, Z.H.; Usman, M.; Zubair, T.; Hamid, M.; Haq, R.U. Brownian motion and thermophoresis effects on unsteady stagnation point flow of eyring–powell nanofluid: A Galerkin approach. Commun. Theor. Phys. 2020, 72, 125005. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Haq, R.; Usman, M.; Hamid, M. Effects of volume fraction on water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based analysis. Int. Commun. Heat Mass Transf. 2020, 116, 104640. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Hamid, M.; Liu, H. Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid driven square cavity with Y-shaped obstacle. Phys. Fluids 2020, 32, 093609. [Google Scholar] [CrossRef]
- Sochi, T. The flow of Newtonian and power law fluids in elastic tubes. Int. J. Non-Linear Mech. 2014, 67, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Jayaraman, G. Non-linear analysis of oscillatory flow in the annulus of an elastic tube: Application to catheterized artery. Phys. Fluids 2001, 13, 2901–2911. [Google Scholar] [CrossRef]
- Pedrizzetti, G. Fluid flow in a tube with an elastic membrane insertion. J. Fluid Mech. 1998, 375, 39–64. [Google Scholar] [CrossRef]
- Rubinow, S.I.; Keller, J.B. Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theor. Biol. 1972, 35, 299–313. [Google Scholar] [CrossRef]
- Marin, M.; Ellahi, R.; Chirila, A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 2017, 33, 219–232. [Google Scholar] [CrossRef]
- Marin, M.; Ellahi, R.; Vlase, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 2020, 14, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Öchsner, A.; Ellahi, R.; Bhatti, M.M. A semigroup of contractions in elasticity of porous bodies. Contin. Mech. Thermodyn. 2021, 33, 2027–2037. [Google Scholar] [CrossRef]
- Ijaz, N.; Zeeshan, A.; Bhatti, M. Peristaltic propulsion of particulate non-newtonian Ree-eyring fluid in a duct through constant magnetic field. Alex. Eng. J. 2018, 57, 1055–1060. [Google Scholar] [CrossRef]
x | Shear Stress of Rabinowitsch Fluid τ | |||||
---|---|---|---|---|---|---|
C = 0.248 | C = 0.28 | C = 0.426 | C = 0.4325 | C = 0.4331 | C = 0.632 | |
Hb SS (Sickle Cell) | Plasma Cell Dyscrasias | Normal Blood | Hypertension (Controlled) | Hypertension (Uncontrolled) | Polycythemia | |
0. | 0.508917 | 0.538364 | 0.707973 | 0.717319 | 0.718192 | 1.15146 |
0.2 | 0.505563 | 0.534945 | 0.704064 | 0.713379 | 0.714249 | 1.14586 |
0.4 | 0.495578 | 0.524771 | 0.69247 | 0.701695 | 0.702557 | 1.12931 |
0.6 | 0.479179 | 0.508091 | 0.673581 | 0.682663 | 0.683511 | 1.10248 |
0.8 | 0.456697 | 0.485281 | 0.64801 | 0.656909 | 0.657739 | 1.0665 |
1. | 0.428523 | 0.456801 | 0.616547 | 0.625236 | 0.626047 | 1.02282 |
1.2 | 0.395056 | 0.423142 | 0.580099 | 0.588575 | 0.589366 | 0.973144 |
1.4 | 0.35665 | 0.384766 | 0.539639 | 0.54792 | 0.548692 | 0.919356 |
1.6 | 0.313594 | 0.34209 | 0.496165 | 0.504294 | 0.505052 | 0.86342 |
1.8 | 0.266209 | 0.295542 | 0.450704 | 0.458753 | 0.459502 | 0.807327 |
2. | 0.215192 | 0.245805 | 0.404386 | 0.41245 | 0.4132 | 0.753059 |
2.2 | 0.162415 | 0.194396 | 0.358613 | 0.3668 | 0.367561 | 0.702604 |
2.4 | 0.111854 | 0.144497 | 0.315318 | 0.323729 | 0.324509 | 0.657972 |
2.6 | 0.0690173 | 0.101038 | 0.277209 | 0.285898 | 0.286704 | 0.621209 |
2.8 | 0.038254 | 0.0688821 | 0.24769 | 0.256637 | 0.257466 | 0.594302 |
3. | 0.0213037 | 0.0508044 | 0.23019 | 0.2393 | 0.240144 | 0.578956 |
3.2 | 0.0183903 | 0.0476728 | 0.227071 | 0.236211 | 0.237058 | 0.576266 |
3.4 | 0.029497 | 0.0595737 | 0.238779 | 0.247809 | 0.248646 | 0.586434 |
3.6 | 0.0546015 | 0.0860756 | 0.26368 | 0.272484 | 0.2733 | 0.608713 |
3.8 | 0.0927918 | 0.125329 | 0.298654 | 0.307178 | 0.307969 | 0.641609 |
4. | 0.140811 | 0.173205 | 0.340168 | 0.348438 | 0.349206 | 0.683216 |
4.2 | 0.19328 | 0.22449 | 0.385186 | 0.393288 | 0.394041 | 0.731496 |
4.4 | 0.245362 | 0.275183 | 0.431472 | 0.439514 | 0.440263 | 0.78442 |
4.6 | 0.294386 | 0.323171 | 0.477437 | 0.485523 | 0.486276 | 0.839995 |
4.8 | 0.339291 | 0.367516 | 0.521865 | 0.530076 | 0.530841 | 0.896238 |
5. | 0.379664 | 0.407729 | 0.563701 | 0.572092 | 0.572875 | 0.95116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, S.I.; Zaher, A.Z. Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application. Mathematics 2021, 9, 2008. https://doi.org/10.3390/math9162008
Abdelsalam SI, Zaher AZ. Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application. Mathematics. 2021; 9(16):2008. https://doi.org/10.3390/math9162008
Chicago/Turabian StyleAbdelsalam, Sara I., and Abdullah Z. Zaher. 2021. "Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application" Mathematics 9, no. 16: 2008. https://doi.org/10.3390/math9162008
APA StyleAbdelsalam, S. I., & Zaher, A. Z. (2021). Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application. Mathematics, 9(16), 2008. https://doi.org/10.3390/math9162008