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1. Introduction

Throughout this paper, we let H be a real Hilbert space with the norm | - || and
the inner product (-, -), respectively, C be a nonempty closed convex subset of H and
A : H — H be a mapping. We recall the variational inequality problem (VIP) is to find a
point x* € C such that

(Ax*,x —x*) >0, VxeC. 1)

We denote the solution set of VIP (1) by VI(C, A).

The variational inequality problem is one of the most important problems in nonlinear
analysis. Now, this problem has been studied by many scholars.

In 2000, Tseng [1] introduced the following method:

x1 € H,
Yn = Pc(xn — 0Axy,), ()
Xp1 = Yn — 0(Ayn — Axy),

where A is monotone and L-Lipschitzian (see in Section 2, Definition 1), VI(C, A) # @,
NS (0, %) . This algorithm has a weak convergence result.

In 2011, Censor et al. [2] proposed the subgradient extragradient method for solving
VIP (1), as follows:

x1 € H,

Yn = PC(xn - 5Axn)/

Ghn={weH: (xy—8Axy — Yy, w —yn) >0},
Xn1 = Pg, (xn — Ayn).

@)

The conditions of A and J are the same as those in Tseng’s method. Then the sequence
{xn} converges weakly to some point z € VI(C, A) under some conditions.

Mathematics 2021, 9, 2103. https:/ /doi.org/10.3390/math9172103

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4079-2850
https://doi.org/10.3390/math9172103
https://doi.org/10.3390/math9172103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172103
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172103?type=check_update&version=2

Mathematics 2021, 9, 2103

2 of 20

In recent years, some scholars have paid attention to the following hierarchical varia-
tional inequality problems (HVIP):

Find £ € VI(C, A) such that (F£,x — £) > 0, Vx € VI(C, A), )

where F : H — H is a strongly monotone and Lipschitzian mapping.

In 2020, Hieu et al. [3,4] proposed regularized subgradient extragradient method
(Algorithm 1 RSEGM) and regularized Tseng’s extragradient method (Algorithm 2 RTEGM)
for solving HVIP (4). Both of these two methods have strong convergence results.

On the other hand, in order to accelerate the convergence, the inertial methods have
been studied extensively by many scholars [5-12]. One of the important results is the
inertial Mann algorithm which is introduced by Maingé [5] in 2007:

{ Wy = Xn + an(xn - xn71>/ (5)
Xpi1 = (1 — Bn)wy + BnTwy.

Under some conditions, the sequence {x, } converges weakly to a fixed point of T.
In 2019, Dong et al. [7] proposed the multi-step inertial Krasnosel skii-Mann algorithm
for finding a fixed point of a nonexpansive mapping, as follows:

Yn = Xn + Lkes, ®kn(Xn—k — Xn—k-1),
Wy = Xp + Lkes, Prn(Xn—k — Xn—k-1), (6)
xn+1 - (1 - )\n)yn + AnTwn.

This algorithm has a weak convergence result under certain conditions.

In this paper, motivated by the results of [3,4,7], we construct a multi-step inertial
regularized subgradient extragradient method and a multi-step inertial regularized Tseng’s
extragradient method for solving HVIP (4) in a Hilbert space when F is a generalized
Lipschitzian and hemicontinuous mapping (see in Section 2, Definitions 2 and 3). Then, we
present two strong convergence theorems and give some numerical experiments to show
the effectiveness and feasibility of our new iterative methods.

Algorithm 1 Regularized subgradient extragradient method (RSEGM)

Initialization: Given A; > 0, u € (0,1). Choose xo, x; € H arbitrarily and a sequence
{Bn} C (0, +00) such that

li — [ — : ;Bn—i-l — ﬁn _
im B, =0, Z By =400, and lim =0.
n=1

n—s400 n—+o0 B2
Iterative step: Calculate x,,;1 for n > 1 as follows:
Step 1. Compute

}/n = Pc[xn - )\n(Awn + 'Ban”)].

Step 2. Compute
Xn4+1 = PG,, [xn - )\n(A]/n + ﬁann)L
and

: wllxn—yull :
Anp1 = { min{ A, (R L i A # Ay,

1 otherwise,

where G, = {z € H: (x — Ay(Axp + BuFxn) — Yn,z — yn) < 0}.

Set n :=n+ 1 and go to Step 1.
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Algorithm 2 Regularized Tseng’s extragradient method (RTEGM)

Initialization: Given A; > 0, u € (0,1). Choose xg, x; € H arbitrarily and a sequence
{Bn} C (0, +c0) such that

. o w o . ﬁnJrl — .Bn _
lim B, =0, Z By =40, and lim ———— =0.
n=1

n—+00 n—+oo 13%
Iterative step: Calculate x,, 1 for n > 1 as follows:
Step 1. Compute

Yn = Pclxn — Au(Axy + BuFxy)].

Step 2. Compute

Xn+1 = Yn — /\n(Ayn - Axn)/

and I Il
. Kl Xn—VYn .
Aup1 = min{ Ay, el |, i Ave # Ay,
"y otherwise.

Set n :=n+ 1 and go to Step 1.

2. Preliminaries

In this section, we present some necessary definitions and lemmas which are needed
for our main results.

Definition 1 ([13]). Let A : H — H be a mapping.
(i) A is {-strongly monotone ( > 0) if

(Ax— Ay, x —y) > {|lx —y||>, Vx,y€H.

(ii) A is monotone if
(Ax — Ay,x—y) >0, Vx,y€H.

(iii) A is L-Lipschitzian (L > 0) if
|Ax— Ayl < Lix—yl, VxyeH.

Let {x,} C H be a sequence. We use x, — z and x, — z to indicate that {x,}
converges strongly and weakly to z, respectively.

Definition 2 ([14]). Let A : H — H be a mapping. A is said to be hemicontinuous if Vx € H,
Yy € H, 6, — 0 implies A(x + 6,y) — Axasn — +oo.

It is obvious that a continuous mapping must be hemicontinuous, but the converse is
not true.

Lemma 1 ([14]). If A : H — H be a hemicontinuous and strongly monotone mapping in VIP (1),
then VIP (1) exists a unique solution.

Lemma 2 ([15]). If A : C — H be a monotone and hemicontinuous mapping. Then ¥ € VI(C, A)
if and only if (Ax,x — %) > 0,Vx € C.
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Definition 3 ([14]). Let A : H — H be a mapping. A is said to be L-generalized Lipschitzian
(L>0)if
[Ax — Ay|| < L(lx =yl +1), Vx,y € H.

Remark 1. We can easily see that a Lipschitzian mapping must be a generalized Lipschitzian
mapping, but the converse is not true. A generalized Lipschitzian mapping may even not be
hemicontinuous. For example, consider the sign function f : R — R, defined by

-1, x<0,
f(x) = 0, x =0,
1, x > 0.

Then f is generalized Lipschitzian but not hemicontinuous [14]. A continuous generalized
Lipschitzian mapping may not be Lipschitzian. For example, let g : R — R be defined by

x—1, x < -1,
(x) = x—/1—(x+1)2, -1<x<0,
g\ = x++/1—(x—1)2, 0<x<1,

x+1, x> 1.

We can see that g is continuous and generalized Lipschitzian but not Lipschitzian. In the past,
many scholars studied Lipschitzian mappings, but in this paper, we pay attention to generalized
Lipschitzian. Therefore, the research in this paper is meaningful.

Recall the metric projection operator Pc from H onto C, defined as follows:
Pex = argmin ||x —y||, x¢€ H.
yeC

Lemma 3 ([16,17]). Given x € H and q € C, we have

(i) q = Pcx ifand only if
(x—q9-y) >0, WeC

(ii)  Pc is firmly nonexpansive, i.e.,
(Pcy — Pcz,y —z) > ||Pcy — Pez|)?, Vy,z € H;
(iii) |x — Pex|[* < [lx —y|I> = [ly — Pex||?, VyeC.
The following lemma is important to prove the strong convergence.
Lemma 4 ([18,19]). Let {C,} be a sequence of nonnegative real numbers satisfying

Cnt1 < (T =9)8n +YnCn+0u, VneN,

where {7y, }, {6n} and {0y, } satisfy the following conditions:
@) {yn} € (0,1) with Y725 v = +o0;
(i) limsup, , . & <0
(ifi) o > O with Y7, 0 < +o,
Then limn%+oo gn = O.

Now, we focus on HVIP (4) when A and F satisfy the following conditions:

(CD1) A is monotone on C and L-Lipschitzian on H.

(CD2) F is #-strongly monotone, K-generalized Lipschitzian and hemicontinuous on H.
(CD3) VI(C, A) is nonempty.
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From Lemma 1, we know that HVIP (4) exists the unique solution if the conditions
(CD1)—(CD3) are satisfied. We denote this solution by £. Consider the following variational
inequality problem:

Find x* € C such that ((A + BF)x*,x —x*) >0, Vx € C, (7)

where § > 0, A and F satisfy conditions (CD1)-(CD3). It is obvious that (A + BF) : H — H
is strongly monotone and hemicontinuous, so VIP (7) has the unique solution according to
Lemma 1. We denote this solution by xg.

We have the following lemmas.

Lemma 5. Hxﬁ|| < %HPJ?H + || 2]
Proof. For each u € VI(C, A), since xg is the solution of VIP (2.1), we have
(Axg + BFxp,u —xg) >0

and

(Au,xg —u) >0

Adding the inequalities above, we obtain
(Axg — Au+ BFxg,u — xg) > 0. 8)
Since A is monotone on C, we get
(Au — Axg,u —xg) > 0. )
Adding (8) and (9), we obtain
<[%Fx,g,u - xﬁ> >0,

which means
(Fxg,u —xg) > 0. (10)

From the y-strongly monotonicity of F, we get
(Fu — Fxg,u —xg) > 1|xp — ul?. (11)
Adding (10) and (11), we obtain
(Fu,u —xg) > 17Hx5—u||2. (12)

Hence 1 1
[ —u? < —(Fu,u —xg) < 5”1:”“””_3(!3”'

=

which implies
1
g —ull < 2 I1Full (13)

So we obtain .
[xpll < [lxp — ull + [lul] < ;HFMH + [|ul]- (14)

Particularly, this is also true foru = £. O

Lemma 6. Foralla, B >0, ||x, — Xp I < @M, where M is a positive constant. More precisely,
M = L[(1+ K) P2l + 2K 2] + K.
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Proof. Since x, € VI(C, A +aF) and x4 € VI(C, A + BF), we have
(Axq + aFxy, xg — Xa) >0

and
(Axg + BFxp, xa — x5) > 0.

Adding the two inequalities above, we obtain
(Axy — Axg, xp — Xu) + a(Fxy, Xg — Xo) + B(Fxp, Xo — xg) >0,
which, by the monotonicity of A, implies that
a(Fxq, xg — Xo) + B(Fxpg, xo — xg) > 0.

Hence
(ﬁ—a)(Fxﬁ,x,x —xﬁ> > a(Fxﬂ — Fxg, xp — Xg)- (15)

From the #-strong monotonicity of F, we obtain
(Fxg — Fxo, xp — Xa) > 1|xa — xﬁHz.

Substituting the last relation into (15), we have

Hxa—xﬁHz
< ;(Fxﬁ—l-"x,x,xﬁ—x@
18—«
< U%(Fxﬁ,xa—xﬁ)
1|B—n
< Bl — 5l
which means 11 |
—u
—xgl < B2 .
[ X/z\|_17 T IExg] (16)

Since F is generalized Lipschitzian, by Lemma 5, we get

[[Fxgll
< lFxp — F2|| + |[F2|
< K([lxg = 2 +1) + [|F]|
< Kllxgll + K[[£]] + K+ [|F£]]
<

1,... . . .
K(W|Fx|| T ||x||) K|+ K+ 5

K
(1+17>||F32|+2K||3?||+K. (17)

Substituting (17) into (16), we obtain

10 = x]|

18— K
118—2 Kl + > |F2| +2K]|| 2| + K
noa 1

_ B4
= M, (18)

IN

where M = 1[(1+ X)||F2|| +2K||] + K|. O
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Lemma?7. limg .o+ x5 = £.

Proof. From Lemma 5, we know that {xg} is bounded. So there exists a sequence {B} C
(0,00) such that 8, — 0 and xg, — ¥ as m — +oo by the reflexivity of H. Since x4 is the
solution of VIP (7), we have

(Axﬁ + ,BFxﬁ,x — x5> >0, Vxedg,
which, by the monotonicity of A, implies that
(Ax + BFxg,x — xﬁ> >0, VxeC.
Replacing B with B, in the last relation, we get
(Ax + BmFxg,,, x — x/gm> >0, VxeC. (19)

Since {xg,, } is bounded and F is generalized Lipschitzian, {Fxg,, } is also bounded.
Taking limit in (19), we obtain

(Ax,x —%) >0, VxeC. (20)
It follows from Lemma 2 that ¥ € VI(C, A). From (12), we deduce
(Fu,u —xg,) >0, VueVI(C,A). (21)
Taking limit in (21), we obtain
(Fu,u—x) >0, YueVICA). (22)

It means that X is a solution of HVIP (6). Since HVIP (6) has the unique solution £, we
conclude ¥ = £. Thus, x5 — % as B — 0*. Replacing u with £ in (12), we get

—_

lxg — 2> < = (F%, % — xp). (23)

=

It follows from the fact xg — £ thatlimg_,o+ xg = £. [

3. Multi-Step Inertial RSEGM

In this section, we propose a new multi-step inertial method for solving HVIP (4)
based on Algorithm 1 (RSEGM). Under certain conditions, it has a strong convergence
result.

We need the following lemma to analyze the convergence of {x,} generated by
Algorithm 3.

Lemma 8 ([20]). The sequence {A, } generated by Algorithm 3 is non-increasing and

lim A, =A>0.

n—+0o0

More precisely, we have A > min{)\l, %} > 0.

Theorem 1. Under the conditions (CD1)-(CD3), the sequence {x,} generated by Algorithm 3
converges strongly to £ € VI(C, A), where £ is the unique solution of HVIP (4).
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Algorithm 3 Multi-step inertial RSEGM (MIRSEGM)

Initialization: Given A; > 0, u € (0,1). Choose xg, x; € H arbitrarily and a sequence
{Bn} C (0, +c0) such that

li _ 0 +oo B +00 2 d li ‘Bn+1—an —0
anmﬁn* , n;lﬁn*-f—oo, Z,Bn<—|—oo an niTooTﬁ _

n=1 n

For eachi = 1,2,--- ,N (where N is a chosen positive integer), choose a sequence
{0in} C (0, +o0) satisfying

Oin oy
lim —/— =0 and Z Oipn < oo

n=1

Iterative step: Calculate x,,;1 for n > 1 as follows:

Step 1. Compute

min{N,n}

Wy = Xp + Z "‘i,n(xnﬂ#l - xnfi)/
i=1

where 0 < «; , < a; for some a; € H with

. Tin .
minq &;, —2—7 ifx,_; X_;
Xin = { { S BRI }’ n=it+1 7 Xn—is

w;, otherwise.

Step 2. Compute

Yn = Pclwy — An(Awy + BrFwy)).

Step 3. Compute

Xpn+1 = PT,, [wn — Ay (Ayn + ,B'rle'rl)]r

and

: pllwn =yl :
Apy1 = mln{An’ | Awn—Ayull J7 if Awy # AYn,
ns otherwise,

where T, = {z € H : (wy — Ap(Awy + BuFwn) — Yn,z — yn) < 0}.

Set n :=n+1and go to Step 1.

Proof. From Lemma 2, we know that for each n € N, there exists the unique element
xp, € C such that
((A+ ,BnF)xl;”,x - Xﬁn> >0, VxeC.
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From Lemma 7, we know that xp, — %, s0itis only to be shown that x, — xg, — 0.
According to Lemma 3, we have

12011 — xp, |7
|[wn — An(Ayn + BnFwy) — XBu ”2 — |lwn — Au(Ayn + BuFwn) — anHz
[ (wn — xp,) — Au(Ayn + BuFwn)|> = || (wn — xn11) — An(Ayn + BuFwn)|?
Jtom — 25012 — [t — 0l + 2An{ Ay + PP, x5, — Tnar)
= lwn — 2, 1> = %011 = wall* + 240 (Awy + BuFtwn, yn — Xu11)
+2An(Awn — AyYn, X1 — Yn) + 2An(Ayn + BuFwn, xp, — Yn)

= |lwn — XBy ||2 = [|xny1 — wn||2 +2(Wn = Yn, Yn — Xnt1)
+2(wn — Au(Awy + BuFwy) — Yn, Xpt1 — Yn)
+2/\n<Awn — Ay, Xy — ]/n> +2Ay <A]/n + BnFwy, Xg, — yn> (24)

Since x,, 11 € Ty, it follows from the definition of T,, that
(wyn — An(Awy + BnFwn) — Yn, X1 — Yn) < 0. (25)
It is easy to see that
2{wn = Yn,Yn — Xnt1) = [ X1 — Wn||? = [|wn *ynH2 — [[xn+1 *ynﬂz‘ (26)
Substituting (25) and (26) into (24), we obtain
2041 — XBy Hz

< lwn - XB ||2 — |lwn — yn”2 — llxnt1 — yn”2 + 2Au(Awn — AYn, X1 — Yn)
+2M, (Ayy + BnFwn, xp, — Yn)- (27)

From the computation of {A, }, we deduce

2Au(Awy — Ayn, Xug1 — Yn)

< 2M[|Awy — Ayal|l|xn 1 — yall
A
< 2uy —Nlwn = yallllxns1 = yall
n+1
2 A% 2 2
< M 2 |wn =y ll= + |xns1 — yull” (28)
n+1

Combining (27) and (28), we have

1 = xp,|I?

2 2 A 2
< lwn = xp, 17 = | 1= 4 7— | llwn = yall

2
/\n+1

+2A0 (Ayn + BunFwy, xp, — Yn)- (29)
According to the monotonicity of A, we get

200 (Ayn + BuFwy, xg, — Yn)
= 2A,(Ay, — Axg,, xp, — Yn) +2An<Axﬁn + BnFxg,, xp, — Yn)
+2Au B (Fwy — Fxg,,xp, — Yn)
2An(Axp, + BnFxp,, Xp, — Yn) + 2AnBn(Fwn — Fxp,, Xp, — Yn)- (30)

IN
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Since xg, € VI(C, A+ B,F) and y, € C, we have
<Ax/3n + BnFxg,, xp, — yn) <0,
which, by relation (30), yields that
2A4(Ayy + BuFwy, xp, — Yn) < 2AnBn(Fwy, — Fxg,, xp, — Yn)- (31)
Since F is 77-strongly monotone, we find

2A 4B (Fwy, — Fxg,, xp, — Yn)
= 2AuBn(Fw, — Fxg,, xp, — Wy) + 2AnBn(Fwy — Fxg,, wy — Yn)

—2AnBuip|lwn — X, % + 2An B (Fw, — Fxg,, Wy — Yn)- (32)

IN

Let €1, €3 and €3 be there positive real numbers such that
2n — Kep — €3 — €3 > 0.

From Lemma 8, we know that yz)l/z\—’% — yz € (0,1). Since B, — 0 and % — 0 for
n+1 n
eachi=1,2,--- ,N, there exist ¢4 > 0 and ny > N such that

>0, Vn>ny,

N
Z Tin < e3AyBu, Vn > ng.
i=1

Since F is K-generalized Lipschitzian, we deduce

2/\nﬁn<FWn - Fxﬁn,w” _]/n>

< 2AuBallFwy — Fxp, || [|wn — yal|
< 2MBuK(l|wn = xp, | + 1) [[wn — yall
= 2MuBuKllwy — xp,, [I[wn — ynl| +2AnBnK]|[wn — yal|
AnBuK
< erhuuKlon = xp, I+ 20 o, — i+ esl0n = yul?
TS
€4
AnBuK A2B2K?
< erAnBuK||wn — xg, I? + (nfln + €4) lwn — yall® + 1/3:. (33)
Combing (31)—(33), we obtain
Z)Ln <Ayn + ,Bi’lef’ll x’Bn - yn>
AnBnK
< —(27 — Key)AnBu||lwn — XBy H2 + (nfln + €4> l|[wn — yn”Z
282 K2
+L. (34)

€4
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Substituting (34) into (29), for all n > ny, we conclude

||x7’l+1 - x,Bn ||2
[1— (25 — Ke)AuBu]llwn — xg, |I°

A2 AnBnK A2B2 K2
—<1—€4_.”2 — - nPr >||wn_yn||2+1‘3n

IN

A%z—o—l €1 €4
A282K2
< 11— @y - Ke)uballlwn — x5, 2+ L2 @)
By Lemma 6, for all n > np, we have
%041 — xg,,, |12
= ||x1’l+1 - x.Bn H2 + ||xlgn+1 - x.Bn ||2 + 2<x”+1 - x.BH’x‘B" - x.Bn+1>
< Nxnpr — 2, 1P+ 128,40 — %8, 17 + 20| %01 — x5, 1 1%8,,, — %,
< xngr — xg, 17+ 1%, — %, 117 + €2AnBul|Xnr1 — xp, |7
TR T
€2 0P Bu+1 Bn
1+€2/\n,3n 2
= (1 _ 2 - T E2npPn _
( +€2/\H,Bn)‘|xn+l x/gn” + 62/\]1‘3” Hxﬁn+1 xﬁn”
1 +€2/\n,3n (.BnJrl — ﬂn)z 2
< (14+eA X —xg |7+ M
( 2 n‘Bn)H n+1 ﬁn” 62/\;1‘8;1 ,Bn 1
M?(1+4 e —B,)?
_ (1 +€2/\n,Bn>Hxn+l _xﬁn||2+ 1( /\2 n,Bn) (ﬁi’l-i—l - ;Bn) , (36)
62 n ﬁn

where M = % Kl + %) |F2|| + 2K||%|| + K} is a positive constant. Since p, — 0, we know
2x2

that {B,} is bounded. Hence {Alef(l + ez)tlﬁn)} is bounded. Substituting (35) into (36),

for all n > ny, we deduce

I xn41 — xg,,, |12

< (1 + €2/\n,3n)[1 - (271 - K€1)/\n‘3n] ||w71 - xﬁn ||2
M2(1+ €21Bn) (Bus1 — Bu)? MBK?
A— g el
< [1— (25 — Key — €2)Aun — (27 — Ker)eaA2 B3] [|wy — xg, |2
M2(1+ &) — Bu)? AMBRK®
L Mi(+ e2AnBn) (B . B 4 (14 epryp) 1P
62/\71 ,Bn
< [1 — (25 — Key — 62))\n/3n] Hwn — XB, H2
M%(l + 62/\}’1,8") (.BnJrl - ;BVI)Z 2
T €Ay ﬁ% + MoPr )
A2K2

€4

where M, = sup,, eN{ (1+ ey /Sn)} is a positive constant. Notice, for all n > ny,
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oo — xg, |12

N
= ||(x71 - x,Bn) + Z “i,n(xnfiJrl - xnfi)Hz

i=1

N 2
|0 — xp, || + Zﬂéi,n Xp—it1 — Xp—il]

Xp—it1 — xn—iH2

IN

i=1

N
= law—x, 1+ )_a?,
=1

1

N
2|20 — xp, | Y @inllXn—iv1 — Xn|
i=1
+2 Z ai,nlx]',n
1<i<j<N

N N N
= xp, 12 + 32 02 + [l — xp, 17 32 0 + ) 0
i=1 i=1 i=1

+2 Z OinOjn
1<i<j<N

N
(1 +) ffi,n> [l — xp, |17 + 03
i=1

(14 e3AuBn) || xn _xﬁnHZ“'(Tm (38)

Xp—it1 — Xn—il| ||xn—j+1 - x"—]'H

IN

IN

where 5, = YN, o2,

obviously see that Zf{z 7y < 4o00. Substituting (38) into (37), for all n > ny, we conclude

+ Zfil Tin + 2 Y1<icj<N 0iu0jn- From the condition of {c; , }, we can

%41 — xp,,,, |12

< [1— (27 — Key — €2)AnBn) (1 + €30 ) [|xn — XBy ||2
M%(l + 62)\11/311) (,Bn-s-l - ,Bn)z 2, =
+ Sy ﬁ;, + M2ﬁn + 0y
= [1— (27— Key — €, — €3)AnPu — (217 — Ker — €2)e3A%Ba] || xn — x, |12
M3(1 4 e2AnBn) (But1 — Bn)? 2, -
+ €2)Ln ﬁ% + MZﬁn + On
S [1— (277 —K€1 _€2_€3))\n187’l”|x” _x,511||2
M3 (1+ e274Pn) (Bus1— Bu)?
+(21 = Ker — &2 — €3)Aup (27 — Kep — €2 — €3)€2A2 B
+Myp% + 5y
- = Bui1 — B 2
< (= ulllnn s+ B (BB ) g 1,
n
= (1= Bu)llxn _xﬂn||2+,gn5n + MoBs + 0, (39)

M2(1+€2AnPn)
(2n—Kej—er—€3)eaMZ

where B, = (27 — Ke1 — €2 — €3)AnBn, M' = supneN{ } is a positive

2
constant and 6, = M’ (w) . By the conditions of {A,} and {B,}, we know that

O (Mo 4 0y) < +09, By — 0, 11 Bu = +o0 and 8, — 0. It follows from Lemma 4
that x, — x5, — 0asn — +oo. [
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Remark 2.

(i) In Algorithm 3, it is not neccecery to know 1 and K.

(i) In Algorithm 3, {By} can be taken as B, = n~P, where 1 < p < 1.

(iii) If F is strongly monotone and Lipschitz-continuous, then the condition Y B < oo can
be removed.

(iv) Let f : H — H be a contractive mapping. It is obvious that 1 — f is strongly monotone
and Lipschitz continuous. If F = I — f in Algorithm 3, then {x,} converges strongly to
X, where % is the unique fixed point of Pyyc a)f. Furthermore, if F = I in Algorithm 3,
then {x,} converges strongly to x¥, where x is the mini-norm element in VI(C, A), i.e.,
x* = PVI(C,A)O‘

4. Multi-Step Inertial RTEGM

In this section, we propose a new method for solving HVIP (6) based on Algorithm 2
(RTEGM). Under certain conditions, it has a strong convergence result.

Theorem 2. Under the conditions (CD1)-(CD3), the sequence {x,} generated by Algorithm 4
converges strongly to £ € VI(C, A), where £ is the unique solution of HVIP (4).

Proof. From Lemma 2, we know that for each n € N, there exists the unique element
xpg, € C such that
((A+BuF)xp,, x —xp,) >0, VxeC.

By Lemma 7, we need to prove that x,, — xg, — 0. From the expression of x,11, we
have

2041 — x,Bn”z

= |[(yn — xp,) — An(Ayn — Awy)|?

= llyn = xp, 117 + A%l Ay — Awnl|* — 240 (Ayn — Awy, yu — xp,)

= lyn— Xg, ||2 + /\%HA%Z - AwnHZ + 2A 0 (Awy, + BuFwn, yn — xﬁn>
—2M 0 (Ayn + BnFwy, yn — x,;n>

= lyn— XBn ||2 + /\%HAyn - AwnH2 +2(wWn — Yn, Yn — x,8n>
+2(wy — Ap(Awy + BnFwy,) — Yn, Xp, — Yn)
—2M 0 (Ayy + BnFwy, yn — x/;n>. (40)

By Lemma 3 and the expression of y,, we get
(wy — An(Awy + BuFwy) —yn, p —yn) <0, VpeC.

Now
<wn - /\n(Awn + ﬁnPwn) —Yn, Xg, — ]/n> <0, (41)

which is due to the fact that x5, € C. It is easy to see that

I? -

2(wy — YnsYn — xﬁn> = [lwn — XB, |y, — ynHz - Hyn — XB, ||2 (42)

Substituting (41) and (42) into (40), we obtain

1 — xg, |12
< lwy — xﬂn”z — |lwn — ynHz "'/\%HAJ/H - Awn||2
+2An <Ayn + ﬁnFZUn, Xlgn - yn>. (43)
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From the computation of {1, }, we deduce
Al Ayn — Awy || < V ||yn wn |
Substituting the last inequality into (43), we have

%1 — xp, |12

2 2 An 2
< o =, 12 = | 1= 12 5" |lwn =yl

+2A 0 (Ayn + BunFwn, xp, — Yn)- (44)

The rest proof is the same as that in Theorem 1. [

Algorithm 4 Multi-step inertial RTEGM (MIRTEGM)

Initialization: Given A; > 0, u € (0,1). Choose xg, x; € H arbitrarily and a sequence
{Bn} C (0, +c0) such that

S [ ,B +1 — ,Bn
lim B, =0, 2 Bn = +oo, Z ﬁ% < 400, and lim &% —0.
n=1 n=1

n—r—4o00 M o ‘82
For eachi = 1,2,---,N (where N is a chosen positive integer), choose a sequence
{in} C (0, +00) satisfying
o; —+00
lim —*= =0 and } 0j,; < +oo.

n—-—+o00 [3” =1

Iterative step: Calculate x,,;1 for n > 1 as follows:
Step 1. Compute
min{N,n}

Wn = X + Z i (Xn—iv1 = Xn—i),
i=1

where 0 < «; , < a; for some a; € H with

. Tin .
minq &;, —2—7 ifx,_; X,_;
Déi/n = { { v Hxn i+1Xn— IH} n—it+l 7& L

w;, otherwise.

Step 2. Compute

Yn = Pclwy — An(Awy + BnFwy)).

Step 3. Compute

Xn4+1 = Yn — )\n(A]/n - Awn):

and o
. | Wn—Yn .
An1 = min{ A, (A5 Rly } i Awn £ Ay,
An, otherwise.

Set n :=n+1and go to Step 1.
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5. Numerical Experiments

In this section, we give two numerical examples to illustrate the effectiveness and
feasibility of our algorithms and compare with Algorithm 1 (RSEGM) and Algorithm 2
(RTEGM). We denote Algorithm 3 for N = 1, N = 2, N = 3 by IRSEGM, 2-MIRSEGM
and 3-MIRSEGM, respectively, denote Algorithm 4 for N =1, N = 2, N = 3 by IRTEGM,
2-MIRTEGM and 3-MIRTEGM, respectively. We write all the programmes in Matlab 9.0
and performed on PC Desktop Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz,
RAM 16.0 GB.

Example 1. Let H = Rand C = [—2,5]. Let A be a function defined as
Ax :=x+sinx,

for each x € R. It is easy to see that A is monotone and Lipschitz continuous. Let F = I.

Choose xg = 1, o; = 0.1 and 0;, = n—2 for IRSEGM, 2-MIRSEGM, 3-MIRSEGM,
IRTEGM, 2-MIRTEGM and 3-MIRTEGM. Choose u = 0.6 and B, = n~3/* for each algorithm.
It is obvious that VI(C, A) = {0} and hence x* = 0 is the unique solution of HVIP (4). We
use ||x, — x*|| < 107 for stopping criterion. We show the numerical results in Tables 1 and 2.
From these tables, we can easily see that the number of iterations of our algorithms is 10-40% less
than RSEGM and RTEGM. Convergence of our algorithms is also much faster than RSEGM and
RTEGM in term of elapsed time.

Table 1. Numerical results of RSEGM, IRSEGM, 2-MIRSEGM and 3-MIRSEGM as regards Example 1.

RSEGM IRSEGM 2-MIRSEGM 3-MIRSEGM
Iter. Timel[s] Iter. Timel[s] Iter. Timel[s] Iter. Time [s]

0.5 49 0.6557 44 0.6287 34 0.5419 28 0.4817
1 0.1 76 0.9035 69 0.8155 57 0.7259 42 0.6009
005 143 1.3715 128 1.3037 111 1.1908 87 0.9745

0.5 51 0.6835 46 0.6415 35 0.5482 28 0.4879
2 0.1 80 0.9425 73 0.8266 60 0.7397 37 0.5490
005 151 1.4822 136 1.3876 119 1.2319 97 1.0492

x1 M

Table 2. Numerical results of RTEGM, IRTEGM, 2-MIRTEGM and 3-MIRTEGM as regards Example 1.

RTEGM IRTEGM 2-MIRTEGM 3-MIRTEGM
Iter. Timel[s] Iter. Time[s] Iter. Timel[s] Iter. Time [s]

0.5 49 0.6543 44 0.6119 34 0.5208 34 0.5178
1 0.1 76 0.8435 69 0.7972 57 0.7043 38 0.5724
005 143 1.4172 123 1.2759 111 1.1249 88 0.9873

0.5 51 0.6771 46 0.6325 35 0.5372 34 0.5230
2 0.1 80 0.9263 73 0.8278 61 0.7532 43 0.6107
0.05 151 1.4739 137 1.3962 119 1.2103 98 1.0871

x1 M

Example 2. Let H = R°. We consider the HpHard problem [20,21]. Let A : R® — R® be a
mapping defined by
Ax := Mx +q,

for each x € R®, where
M= BBT+5+D,



Mathematics 2021, 9, 2103

16 of 20

B is a matrix in R%*%, S is a skew-symmetric matrix in RS*®, D is a diagonal matrix in R
whose diagonal entries are positive, and q € R® is a vector. Thus, M is positive definite. Let C be a
set defined by

C= {(x(l),x(z)l... ,x(s))T ERS: —2< x(i) <5,i=12,--- ,S}.

It is clear that A is monotone and Lipschitz continuous. Let F = 1. It is obvious that
VI(C, A) = {(0,0,---,0)T} and hence x* = (0,0, - - - ,0)T is the unique solution of HVIP (1.6).

For the experiments, all the entries of B and S are generated randomly and uniformly in (—2,2),
the diagonal entries of D are generated randomly and uniformly in (0,2), g = (0,0,---,0)T. We
choose xg = (1,1, - -, 1)T, a; = 0.1and 0;, = n_zfor IRSEGM, 2-MIRSEGM, 3-MIRSEGM,
IRTEGM, 2-MIRTEGM and 3-MIRTEGM, choose x; = (1,1, -, 1)T, u=0.6, A\; = 0.01 and
By = n=3/% for each algorithm. We show the numerical results in Figures 1-6. From these figures,
we see that the algorithms we proposed have advantages over RSEGM and RTEGM.

% T T T T T T
) —— RSEGM
—*— IRSEGM
100F —+— 2-MIRSEGM | 1
F —e— 3-MIRSEGM | 1
10_1 E ?
5
X
c
x
T
N 10°F ?
10_3 E ?
107 :
0 50 100 150 200 250 300 350

Iteration Number

Figure 1. Comparison of RSEGM, IRSEGM, 2-MIRSEGM and 3-MIRSEGM in Example 2 with s = 20.
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Figure 2. Comparison of RTEGM, IRTEGM, 2-MIRTEGM and 3-MIRTEGM in Example 2 with s = 20.
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1

1

T

—— RSEGM
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1

Figure 3. Comparison of RSEGM, IRSEGM, 2-MIRSEGM and 3-MIRSEGM in Example 2 with s = 30.
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Figure 4. Comparison of RTEGM, IRTEGM, 2-MIRTEGM and 3-MIRTEGM in Example 2 with s = 30.
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Figure 5. Comparison of RSEGM, IRSEGM, 2-MIRSEGM and 3-MIRSEGM in Example 2 with s = 40.
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| —— RTEGM
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Figure 6. Comparison of RTEGM, IRTEGM, 2-MIRTEGM and 3-MIRTEGM in Example 2 with s = 40.

6. Conclusions

In this paper, we constructed a multi-step inertial regularized subgradient extragra-
dient method and a multi-step inertial Tseng’s extragradient method for solving HVIP
(6) in a Hilbert space when F is a generalized Lipschitzian and hemicontinuous mapping,
which are based on the multi-step inertial methods, Algorithm 1 (RSEGM) and Algorithm 2
(RTEGM). We presented two strong convergence theorems. Finally, we gave some numer-
ical experiments to show the effectiveness and feasibility of our new iterative methods.
From the numerical results, we can obviously see that our methods have advantages over
Algorithms 1 and 2.

Our Algorithms 3 and 4 extend and improve Algorithms 1 and 2 in the following
ways:

(i) The inertial method is used in Algorithms 3 and 4.
(i) The Lipschitzian mapping F is generalized to a generalized Lipschitzian and hemi-
continuous mapping.

In other words, if we let #; = 0 and L be a Lipschitzian mapping, then Algorithm 3 (or
Algorithm 4) reduces to Algorithm 1 (or Algorithm 2).
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