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Abstract: In this paper, an adaptive double feedback fuzzy neural fractional order sliding control
approach is presented to solve the problem that lumped parameter uncertainties cannot be measured
and the parameters are unknown in a micro gyroscope system. Firstly, a fractional order sliding
surface is designed, and the fractional order terms can provide additional freedom and improve
the control accuracy. Then, the upper bound of lumped nonlinearities is estimated online using a
double feedback fuzzy neural network. Accordingly, the gain of switching law is replaced by the
estimated value. Meanwhile, the parameters of the double feedback fuzzy network, including base
widths, centers, output layer weights, inner gains, and outer gains, can be adjusted in real time in
order to improve the stability and identification efficiency. Finally, the simulation results display the
performance of the proposed approach in terms of convergence speed and track speed.

Keywords: micro gyroscope; double feedback fuzzy neural network; neural network; fractional
order; sliding mode control

1. Introduction

Gyroscope is the basic measurement element in an inertial navigation system, and it
can also be used in military [1], aviation, aerospace, bioengineering [2], and other fields.
Micro gyroscope with low cost, rapid development, and higher precision represents the
development direction of gyroscope technology. In order to satisfy the requirements of
different levels of precision in various fields, it is essential to reduce the error and improve
the precision of micro gyroscope. In [3], a temperature control system of silicon micro
gyroscope based on the fuzzy PID control method and BP neural network is proposed, and
it is combined with the temperature compensation method to reduce the error. A MEMS
gyroscope based on robust control of the sense mode is developed to improve the reliability
of the closed loop system in [4].

For micro gyroscope systems with a certain extent of uncertainty, adaptive control
has been widely used. In [5], the neural adaptive control scheme was designed to achieve
robust motion control. However, for the condition of parameter uncertainty, adaptive
control sometimes cannot achieve effective control performance. The advantages of sliding
mode control, which has been combined with adaptive control and widely applied to the
control of nonlinear systems, are fast response speed and superb insensitivity to the system
uncertainties. An adaptive fuzzy super twisting sliding control scheme is designed to
estimate the unknown parameters of micro gyroscope in [6]. In [7], a sliding code control
strategy based on adaptive perturbation estimation is proposed for compensating lumped
parametric uncertainties of micro tri-axial gyroscopes, and the perturbation observer is
employed to estimate the unknown perturbation.

Fuzzy control and neural networks have the ability to approximate unknown smooth
functions and have been used in identification and control [8–11]. The adaptive approxi-
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mation of the lumped parameter uncertainty of the micro gyroscope model is realized by
utilizing various neural networks [12,13], fuzzy system [14,15], and fuzzy neural network
approaches [16–19]. The combination of sliding mode control and a neural algorithm is also
used in an active power filter [20,21] and magnetic levitation system [22]. For the purpose
of suppressing the chattering phenomenon in sliding mode control, the fractional calculus
is introduced into sliding mode control to form a fractional order sliding controller and the
chattering is reduced by the genetic attenuation of the fractional order. In the past decade,
fractional order sliding mode controllers have been developed for micro gyroscope [23],
state of charge estimation of energy lithium-ion batteries [24], antilock braking systems [25],
multi-machine power systems [26], and resource systems [27].

Motivated by the above, an adaptive double feedback fuzzy neural network sliding
mode control strategy is investigated. This method is applied to solve the problems of
uncertain factors in the micro gyroscope system. By combining sliding mode method and
adaptive control, the system more effectively can achieve the purpose of system tracking.
The novelty and contribution of this work are as follows.

(1) By adding fractional terms to the sliding surface, the memory characteristics of the
fractional calculus operator are used to enhance the continuity of sliding mode control.
The switching gain is optimized for the purpose of weakening the system chattering.
The designed fractional sliding surface has higher robustness and higher tracking
accuracy; meanwhile, the tracking error converges to zero in a finite period of time.

(2) The combination of the fuzzy system and neural network is used to estimate the
upper bound of lumped parameter uncertainty, and the true value is replaced by
the estimated value as the gain of switching law. Two feedbacks are added to the
structure of fuzzy neural control, which has the characteristic of dynamic mapping
and can smooth the output of the neural network.

The remainder of the paper is organized as follows. Section 2 presents the dynamic
analysis of the micro gyroscope system. Section 3 presents the design of the adaptive
fractional order sliding mode controller. Section 4 introduces a double feedback fuzzy
neural network fractional order sliding mode control. Section 5 presents the simulation of
the proposed method. Finally, Section 6 provides a summary of the full text.

2. Dynamic Analysis of Micro Gyroscope

The micro gyroscope has two working modes: drive mode and sense mode. The
measurement accuracy is mainly affected by the stability of the drive mode control. The
sense mode is closely related to the measurement result. The simplified micro gyroscope
dynamic model is shown in Figure 1.

The rotational coordinate system of the simplified micro gyroscope dynamic model is
established and, considering the effect of structural error, the basic dynamic equation can
be expressed as follows:

m
..
x + dxx

.
x + dxy

.
y + kxxx + kxyy = ux + 2mΩz

.
y (1)

m
..
y + dxy

.
x + dyy

.
y + kxyx + kyyy = uy − 2mΩz

.
x (2)

where m is the mass of the mass block, Ωz is the angular velocity of the z-axis, dxy is the
coupling damping coefficient, dxx and dyy are the damping coefficients, kxy is the coupling
stiffness coefficient, kxx is the x-axis stiffness coefficient, kyy is the y-axis stiffness coefficient,
and ux and uy are the control inputs.

The dynamic model is transformed into dimensionless form to reduce the complexity
of the controller design. Dividing both sides of Equations (1) and (2) by the mass block
m, the natural resonance frequency ω0 and the reference length q0 are used to obtain the
dimensionless dynamic model as follows:

..
q
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+
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where q =

[
x
y

]
,

.
q =

[ .
x
.
y

]
,

..
q =

[ ..
x
..
y

]
, Dd =

[
dxx dxy
dxy dyy

]
, K =

[
ωxx ωxy
ωxy ωyy

]
,

u =

[
ux
uy

]
, Ω =

[
0 −Ωz

Ωz 0

]
.

Equation (3) can be rephrased as follows:

..
q + D

.
q + Kq = u− 2Ω

.
q (4)
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Figure 1. Simplified micro gyroscope dynamic model. 
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Figure 1. Simplified micro gyroscope dynamic model.

3. Fractional-Order Sliding Mode Controller

In view of the lumped system nonlinearities, the micro gyroscope dynamic model can
be rephrased as follows:

..
q + (K + ∆K)q + (Dd + 2Ω + ∆D)

.
q = u + d (5)

where d represents the external disturbances, ∆K represents the uncertainties of unknown
parameters K, and ∆D represents the uncertainties of unknown parameters Dd + 2Ω.

The system model in Equation (5) can be rephrased as follows:

..
q + Kq + (Dd + 2Ω)

.
q = u + fd (6)

where fd is lumped parameter uncertainty, namely, the unknown external disturbances
and parameter uncertainties, defined as follows:

fd = d− ∆D
.
q− ∆Kq (7)

It is assumed that the lumped parameter uncertainty fd has an upper bound that
satisfies the following condition:

‖ fd‖ ≤ ρ ,

where ρ is an unknown positive constant.
We design a fractional-order sliding surface to carry out the tracking of the system

because of its looser degree of freedom.
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The Caputo fractional derivative of order α of a continuous function f (x) used in this
paper is expressed in the following form:

aDα
t f (t) =

 1
Γ(n−α)

t∫
a

f (n)(τ)
(t−τ)α−n+1 dτ, n− 1 < α < n

dn

dtn f (t), α = n
(8)

where t is the upper bound of the operator, a is the lower bound of the operator, and Γ(·)
represents the Gamma function. For ease of notation, the fractional derivative of order α
with the lower bound at 0 can be described as Dα instead of 0Dα

t .
The fractional order sliding surface is defined as follows:

s =
.
e + ce + λDα−1e (9)

where c and λ are the designed parameter matrices and they are the known position
constant; α − 1 is the order of the fractional order, and 0 < α < 1; e is defined as the
tracking error, and e = q− qr, where qr represents the actual position; and the expression
of

.
e is

.
e =

.
q− .

qr.
By derivatizing (9), we can obtain the following:

.
s =

..
e + c

.
e + λDαe (10)

Substituting the system model in Equation (6) into Equation (10) leads to the following:

.
s = c

.
e + λDαe + u− ..

qr − (Dd + 2Ω)
.
q− Kq + fd (11)

According to the hitting condition, the following equation can be obtained:

c
.
e + λDαe + u− ..

qr − (Dd + 2Ω)
.
q− Kq + fd = 0 (12)

The equivalent control law of sliding mode control can be obtained:

ueq = −c
.
e− λDαe +

..
qr + (Dd + 2Ω)

.
q + Kq (13)

The switching law is designed as follows:

usw = −ρ
s
‖s‖ (14)

Therefore, the fractional order sliding controller is received as follows:

u = −c
.
e− λDαe +

..
qr + (Dd + 2Ω)

.
q + Kq− ρ

s
‖s‖ (15)

4. Adaptive Double Feedback Fuzzy Neural Network Fractional-Order Sliding
Mode Controller
4.1. Double Feedback Fuzzy Neural Network

In the practical micro gyroscope system, the upper bound of system lumped parameter
uncertainties cannot be measured. This is because the system parameters are not constant
in different environments and the offline identification method is not applicable. Therefore,
the combination of the neural network and fuzzy system is used to estimate the upper
bound of the lumped parameter uncertainties in real time, in order to replace its truth value
as the switching gain. Compared with the large amount of data and workspace required for
offline identification, the fuzzy neural network can make use of the experience of experts
to induce learning, improve the efficiency of online identification, and have the capabilities
of self-learning and self-organization.



Mathematics 2021, 9, 2124 5 of 20

In the fuzzy system, the design of membership functions, fuzzy rules, and fuzzy sets
is based on knowledge from experience. The self-learning ability of the neural network is
introduced into the fuzzy system, so that the membership functions and fuzzy rules can
be modified and improved in the continuous learning of the fuzzy system. In addition,
the inference ability of the fuzzy system is greatly improved. The system has dynamic
characteristics in practical work, so the dynamic fuzzy neural network (DFNN) is more
suitable for the micro gyroscope system. The double feedback fuzzy neural network
is established in the fuzzy neural network by adding a recurrent unit, fuzzy rules are
gradually formed in the learning process, and the free parameters of the membership
function are tuned. Thus, the network structure can be optimized and the prediction
accuracy and generalization ability can be enhanced.

The four-layer fuzzy neural network with two-layer closed-loop dynamic feedback
mainly includes an input layer, fuzzy layer, rule layer, and output layer, and the neural
network structure is shown in Figure 2. The output is the estimation value of the upper
bound ρ̂ of lumped parameter uncertainties. In its external feedback loop and internal
feedback loop, the output signal of the previous step will be stored and fed back to the layer
via the feedback channel, and the calculation will be performed again. Because the double
feedback fuzzy neural network has two feedback loops, it can store more information, so it
has a better effect on the unknown nonlinear model approximation. The parameters can be
adjusted adaptively according to adaptive laws to achieve the optimal values.
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Each layer of the double feedback fuzzy neural network is described as follows.
Layer I: Input Layer
It is composed of a signal receiving node to complete the transmission of input signal

X = [x1, x2, · · · , xm]
T ∈ Rm×1, and the neurons of this layer can receive the output signal

exY, which is fed back by the output layer neurons. The output of each node is described
as follows:

θm = xm ·Wrom · exY (16)
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The output layer and the input layer are connected by the weight Wro = [Wro1, Wro2,
· · · , Wrom]T ∈ Rm×1 of the outer layer feedback fuzzy neural network. The output is
θ = [θ1, θ2, · · · , θm]

T ∈ Rm×1 and the feedback signal of this layer is defined as exY.
Layer II: Fuzzy Layer
Gaussian function is used as the membership function to complete the calculation of

membership function and adjust the number of neurons according to the situation. The
center is defined as c = [c11, c12, · · · , c1i, c21, c22, · · · , c2i, · · · , cm1, cm2, · · · , cmi]

T ∈
Rm·i×1 and the base width is defined as b = [b11, b12, · · · , b1i, b21, b22, · · · , b2i, · · · , bm1,
bm2, · · · , bmi]

T ∈ Rm·i×1. There are feedback connection weights of the inner regression
fuzzy neural network in this layer. The inner regression fuzzy neuron will feed the
calculation results of the previous membership function back to its input end, and as a part
of this input, the Gaussian function is calculated together, thereby completing the feedback
of the signal, and setting the output of the layer as follows:

µmi= exp

[
−‖θm + rmi · exµmi − cmi‖2

b2
mi

]
(17)

The feedback signal of this layer is defined as exµmi.
Layer III: Rule Layer
The output of each node is the product of all input signals of the node, that is,

lk = µ1i · µ2i · · · · · µmi (18)

where the output is l = [l1, l2, · · · , lk]
T ∈ Rk×1.

Layer IV: Output Layer
Neurons in this layer are connected to neurons in the rule layer by weight W =

[W1, W2, · · · , Wk]
T ∈ Rk×1. After the calculation of the output Y, the output signal is fed

back to the input layer neurons.

Y = WT l = W1l1 + W2l2 + · · ·+ Wklk (19)

4.2. Design and Stability of the Adaptive Double Feedback Fuzzy Neural Network
Fractional-Order Sliding Mode Controller

The developed control law in (15) cannot be realized because of the unknown upper
bound of lumped parameter uncertainties. DFNN is adopted in this part to approximate
the unknown upper bound of the lumped uncertainty online. Figure 3 is a block diagram
of the adaptive double feedback fuzzy neural fractional sliding mode control system,
where the proposed controller is designed in the form of (15). Considering the strong
ability of estimating any smooth functions using the FNN, a DFNN approximator could
be considered to deal with the unknown part and used to estimate the upper bound of
the lumped uncertainty of lumped parameter uncertainties, which is used as the gain of
switching control law. An adaptive controller is utilized to update all unknown parameters
of the micro gyroscope system.
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The upper bound of lumped parameter uncertainties is approximated using double
feedback fuzzy neural networks, namely,

ρ̂ = ŴT l̂ (20)

where Ŵ is the estimated value of fuzzy neural network weight; l̂ is the function of
x, ĉ, b̂, r̂, Ŵro; the input of double feedback fuzzy neural network is x =

[
q

.
q
]T ∈ R2×1;

and q and
.
q are the measurable signals.

The following reasonable assumptions are made for the established double feedback
fuzzy neural network to prove the stability of the proposed system:

Assumption 1. There are optimal weights W∗ of neural network, optimal center c∗ of Gaussian
function, optimal base width b∗ of Gaussian function, optimal inner feedback weights r∗, and
optimal outer feedback weights W∗ro, which make the following inequalities valid:

|ε| =
∣∣∣W∗T l∗ − ρ

∣∣∣ < ε∗ (21)

where ε is the mapping error, the upper bound of the error is defined as ε∗, and both ε and ε∗ are
small positive constants.

Assumption 2. ρ, ‖ fd‖, and ε∗ satisfy the following relationship:

ρ− ‖ fd‖ > ε∗ (22)

Therefore, the control law u of Equation (15) can be adjusted as follows:

u′ = −c
.
e− λDαe +

..
qr + (Dd + 2Ω)

.
q + Kq− ρ̂

s
‖s‖ (23)

Using the Lyapunov stability theory, the unknown real values are replaced by the
estimates of parameter matrices, weights, and center. The estimates of parameter matrix
D̂d, K̂, and Ω̂; the estimates of neural network weight Ŵ; the estimates of center ĉ; the
estimates of base width b̂; the estimates of inner feedback weight r̂; and the estimates of
outer feedback weight Ŵro are designed. Online real-time updating can thus be realized.

The parameters’ estimated errors are defined as follows:

D̃d = Dd
∗ − D̂d Ω̃ = Ω∗ − Ω̂ K̃ = K∗ − K̂

W̃ = W∗ − Ŵ c̃ = c∗ − ĉ b̃ = b∗ − b̂
r̃ = r∗ − r̂ W̃ro = W∗ro − Ŵro l̃ = l∗ − l̂

(24)
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Substituting (24) into (23), the estimated control law is obtained:

u′′ = −c
.
e− λDαe +

..
qr +

(
D̂d + 2Ω̂

) .
q + K̂q− ρ̂

s
‖s‖ (25)

That is, the adaptive double feedback fuzzy neural fractional-order sliding controller.
Because Dd

∗, Ω∗, K∗, W∗, l∗, b∗, c∗, r∗, and W∗ro are constant values,

.
D̃d = −

.
D̂d

.
Ω̃ = −

.
Ω̂

.
K̃ = −

.
K̂

.
W̃ = −

.
Ŵ

.
c̃ = −

.
ĉ

.

b̃ = −
.
b̂

.
r̃ = −

.
r̂

.
W̃ro = −

.
Ŵro

.

l̃ = −
.
l̂

(26)

Substituting Equations (24) and (25) into micro gyroscope expression (6) generates the
following:

c
.
e + λDαe +

..
q− ..

qr =
(

D̂d + 2Ω̂
) .
q− (Dd + 2Ω)

.
q− Kq + K̂q− ∆Kq− ∆Dd

.
q− ρ̂

s
‖s‖ + d (27)

Using Equation (11) yields the following:

.
s =

(
D̂d + 2Ω̂

) .
q− (Dd + 2Ω)

.
q− Kq + K̂q− ∆Kq− ∆Dd

.
q− ρ̂

s
‖s‖ + d (28)

Substituting the lumped parameter uncertainties of the system, and simplifying
Equation (28), we obtain the following:

.
s = −

(
D̃d + 2Ω̃

) .
q + K̃q + f − ρ̂

s
‖s‖ (29)

The Lyapunov function is selected as follows:

V = 1
2 sTs + 1

2 tr
{

D̃d M−1D̃d
T
}

+ 1
2 tr
{

K̃N−1K̃T
}

+ 1
2 tr
{

Ω̃P−1Ω̃
T}

+ 1
2η1

W̃TW̃ + 1
2η2

c̃T c̃ + 1
2η3

b̃T b̃ + 1
2η4

r̃T r̃ + 1
2η5

W̃ro
TW̃ro

(30)

where M = MT > 0, P = PT > 0, N = NT > 0; η1, η2, η3, η4, and η5 are positive constants
and represent the learning rate of the fuzzy neural network. Let

ξ = 1
2 tr
{

D̃d M−1D̃d
T
}

+ 1
2 tr
{

K̃N−1K̃T
}

+ 1
2 tr
{

Ω̃P−1Ω̃
T}

+ 1
2η1

W̃TW̃ + 1
2η2

c̃T c̃ + 1
2η3

b̃T b̃ + 1
2η4

r̃T r̃ + 1
2η5

W̃ro
TW̃ro

Differentiating (30) with respect to time, combining the contents of Assumption 3 and
substituting Equation (31) yields the following:

.
V = sT

[(
D̃d + 2Ω̃

) .
q + K̃q + f − ρ̂ s

‖s‖

]
+

.
ξ

= sT
[(

D̃d + 2Ω̃
) .

q + K̃q + f − ŴT l̂ s
‖s‖

]
+

.
ξ

≤ sT
[(

D̃d + 2Ω̃
) .

q + K̃q + f
]
− ‖s‖

[
ŴT l̂ − ρ + ρ

]
+

.
ξ

= sT
[(

D̃d + 2Ω̃
) .

q + K̃q + f − ρ
]
+ ‖s‖

[
ρ− ŴT l̂

]
+

.
ξ

= sT
[(

D̃d + 2Ω̃
) .

q + K̃q + f − ρ
]
+ ‖s‖

[
W∗T l∗ − ŴT l̂ + ε

]
+

.
ξ

= sT
[(

D̃d + 2Ω̃
) .

q + K̃q + f − ρ
]
+ ‖s‖

[
ŴT l̃ + W̃T l̃ + W̃T l̂ + ε

]
+

.
ξ

(31)

The approximation error is defined as W̃T l̃ + ε = ε0, and Equation (31) can be simpli-
fied as follows:

.
V ≤ sT

[(
D̃d + 2Ω̃

) .
q + K̃q + f − ρ

]
+ ‖s‖

[
ŴT l̃ + W̃T l̂ + ε0

]
+

.
ξ (32)
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l̃ is expressed in the Taylor series as follows:

l̃ = ∂l
∂c

∣∣∣
c=c∗

(c∗ − ĉ) + ∂l
∂b

∣∣∣
b=b∗

(
b∗ − b̂

)
+ ∂l

∂r

∣∣∣
r=r∗

(r∗ − r̂)

+ ∂l
∂Wro

∣∣∣
Wro=Wro∗

(
Wro

∗ − Ŵro
)
+ ∆

= lc · c̃ + lb · b̃ + lr · r̃ + lWro · W̃ro + ∆

(33)

where ∆ is a high-order term, l ∈ R5×1, and the coefficient matrices are expressed as
follows:

lc =


∂l1
∂cT
∂l2
∂cT

...
∂lk
∂cT

 =


∂l1
∂c1

∂l1
∂c2

· · · ∂l1
∂ci

∂l2
∂c1

∂l2
∂c2

· · · ∂l2
∂ci

...
...

. . .
...

∂lk
∂c1

∂lk
∂c2

· · · ∂lk
∂ci


k×m·i

,

lb =


∂l1
∂bT
∂l2
∂bT

...
∂lk
∂bT

 =


∂l1
∂b1

∂l1
∂b2

· · · ∂l1
∂bi

∂l2
∂b1

∂l2
∂b2

· · · ∂l2
∂bi

...
...

. . .
...

∂lk
∂b1

∂lk
∂b2

· · · ∂lk
∂bi


k×m·i

,

lr =


∂l1
∂rT
∂l2
∂rT

...
∂lk
∂rT

 =


∂l1
∂r1

∂l1
∂r2

· · · ∂l1
∂ri

∂l2
∂r1

∂l2
∂r2

· · · ∂l2
∂ri

...
...

. . .
...

∂lk
∂r1

∂lk
∂r2

· · · ∂lk
∂ri


k×m·i

,

lWro =


∂l1

∂WT
ro

∂l2
∂WT

ro
...

∂lk
∂WT

ro

 =


∂l1

Wro1

∂l1
∂Wro2

· · · ∂l1
∂Wroi

∂l2
∂Wro1

∂l2
∂Wro2

· · · ∂l2
∂Wroi

...
...

. . .
...

∂lk
∂Wro1

∂lk
∂Wro2

· · · ∂lk
∂Wroi


k×m·i

.

Substituting Equation (33) into Equation (32) leads to the following:

.
V ≤ sT

[(
D̃d + 2Ω̃

) .
q + K̃q + f − ρ

]
+ ‖s‖

[
ŴT
(

lc · c̃ + lb · b̃

+ lr · r̃ + lWro · W̃ro + ∆
)

+ W̃T l̂ + ε0

]
+ tr

{
D̃d M−1

.
D̃d

T
}

+ tr
{

Ω̃P−1
.

Ω̃
T}

+ tr
{

K̃N−1
.
K̃

T}
+ 1

η1

.
W̃

T
W̃ + 1

η2

.
c̃

T
c̃

+ 1
η3

.

b̃
T

b̃ + 1
η4

.
r̃

T
r̃ + 1

η5

.
W̃ro

TW̃ro

. (34)

Because Dd, K, and Ω are symmetric matrices, and for matrix Dd, there is a scalar
sT D̃d

.
q =

.
qT D̃ds, the following can be obtained:

sT D̃d
.
q =

1
2

(
sT D̃d

.
q +

.
qT D̃ds

)
(35)

Similarly, the equations for matrices K and Ω can be obtained:

sTK̃
.
q =

1
2

(
sTK̃q + qTK̃s

)
(36)

sTΩ̃
.
q =

1
2

(
sTΩ̃

.
q− .

qTΩ̃s
)

(37)
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Substituting (35)–(37) into (34) gives the following:

.
V ≤ sT [ f − ρ] + ‖s‖

[
ŴT
(

lc · c̃ + lb · b̃ + lr · r̃ + lWro · W̃ro + ∆
)

+ W̃T l̂ + ε0

]
+ 1

η1

.
W̃

T
W̃ + 1

η2

.
c̃

T
c̃ + 1

η3

.

b̃
T

b̃ + 1
η4

.
r̃

T
r̃

+ 1
η5

.
W̃ro

TW̃ro + tr
{

D̃d

[
M−1

.
D̂d

T + 1
2

(
sT .

q +
.
qTs
)]}

+ tr
{

K̃
[

N−1
.
K̂

T
+ 1

2
(
sTq + qTs

)]}
+ tr

{
Ω̃
[

P−1
.

Ω̂
T
+ 1

2

(
2

.
qsT − 2s

.
qT
)]}

(38)

To ensure that
.

V ≤ 0, let tr
{

D̃d

[
M−1

.
D̂d

T + 1
2

(
sT .

q +
.
qTs
)]}

= 0, ‖s‖W̃T l̂ + 1
η1

W̃T

.
W̃ = 0, tr

{
K̃
[

N−1
.
K̂

T
+ 1

2
(
sTq + qTs

)]}
= 0, ‖s‖ŴT lc c̃ + 1

η2

.
c̃

T
c̃ = 0,

tr
{

Ω̃
[

P−1
.

Ω̂
T
+ 1

2

(
2

.
qsT − 2s

.
qT
)]}

= 0, ‖s‖ŴT lb b̃ + 1
η3

.

b̃
T

b̃ = 0, ‖s‖ŴT lr r̃ + 1
η4

.
r̃

T
r̃ = 0,

‖s‖ŴT lWro W̃ro +
1
η5

.
W̃ro

TW̃ro = 0, the adaptive laws of D̂, K̂, Ω̂, Ŵ, ĉ, b̂, r̂ and Ŵro are
calculated as follows:

.
D̂d

T = − 1
2 M
( .

qsT + s
.
qT
) .

K̂
T
= − 1

2 N
(
qsT + sqT)

.
Ω̂

T
= −P

( .
qsT − s

.
qT
) .

Ŵ
T
= η1‖s‖l̂

.
ĉ

T
= η2‖s‖ŴT lc

.
b̂

T
= η3‖s‖ŴT lb

.
r̂

T
= η4‖s‖ŴT lr

.
Ŵ

T

ro = η5‖s‖ŴT lWro

(39)

Substituting the adaptive laws in Equation (39) into Equation (38), and according to
Assumption 2, we can obtain the following:

.
V ≤ sT [ f − ρ] + ‖s‖

[
ŴT · ∆ + ε0

]
≤ ‖s‖[‖ f ‖ − ρ] + ‖s‖

[
ŴT · ∆ + ε0

]
≤ −‖s‖

(
ε∗ − ε0 − ŴT · ∆

) (40)

Assume that ŴT · ∆ has upper bound ∆d, and ∆d, ε∗, and ε0 satisfy ε∗ > ε0 + ∆d,
that is,

.
V ≤ 0 is guaranteed and V is semi-negative, namely, the tracking trajectory

can reach the designed fractional-order sliding surface and stay on it. For the inte-

gral of inequality
.

V ≤ −‖s‖
(
ε∗ − ε0 − ŴT · ∆

)
,

t∫
0
‖s‖dt ≤ 1

‖ε∗‖ − ‖ε0‖ − ‖∆d‖
[V(t) − V(0)]

can be obtained, because V(0) and V(t) are bounded, and V(t) is non-increasing, so
t∫

0
‖s‖(‖ε∗‖ − ‖ε0‖ − ‖∆d‖)dt is bounded. According to Barbalat lemma, lim

t→∞
s(t) = 0

can be obtained, then it can be shown that the system is asymptotically stable.

5. Simulation Study

The proposed adaptive double feedback fuzzy neural network fractional-order slid-
ing mode control method is simulated with MATLAB/Simulink. The selection of the
dimensional parameters of gyroscope is shown in Table 1.



Mathematics 2021, 9, 2124 11 of 20

Table 1. The parameters of micro gyroscope.

Parameters Values

m 1.8× 10−7 kg
kxx 63.955 N/m
kyy 95.92 N/m
kxy 12.779 N/m
dxx 1.8× 10−6 Ns/m
dyy 1.8× 10−6 Ns/m
dxy 3.6× 10−7 Ns/m

In order to make it easier to implement the controller design, it is essential to perform
dimensionless processing on the system mode. The dimensionless parameters can be
obtained by choosing the reference frequency and the reference length as ω0 = 1000 Hz
and q0 = 1 µm. Therefore, the dimensionless parameters can be obtained as shown in
Table 2.

Table 2. Dimensionless parameters of micro gyroscope.

Parameters Values

ω2
x 355.3

ω2
y 532.9

ωxy 70.99
dxx 0.01
dyy 0.01
dxy 0.002

Ωz 0.1

The initial conditions for setting up the system are as follows: q1(0) = 0,
.
q1(0) = 1,

q2(0) = 0,
.
q2(0) = 1. The desired trajectory of the two axes of the micro gyroscope is set

to qr1 = sin(4.17t) and qr2 = 1.2 sin(5.11t). The parameters of the sliding surface are set as
follows: c = 2700, λ = 3, and α = 0.9. The adaptive fixed gain is set to N = diag(145, 145),
M = diag(270, 270), and P = diag(1200, 1200).

The estimated initial values of parameters are set as follows: Ω̂(0) = 0, D̂d(0) = 0.95 ∗
Dd, and K̂(0) = 0.95 ∗ K. The initial values of the output layer weight, center, base widths,
outer gains, and inner gains of the double feedback fuzzy neural network are taken as fol-

lows: W =

[
−2 1.2 1.2 −0.01 −0.3
−2 1.2 1.2 −0.01 −0.3

]
, c =

[
−0.01 −0.005 0 0.005 0.01
−0.01 −0.005 0 0.005 0.01

]
,

b =

[
1 1 1 1 1
1 1 1 1 1

]
, Wro =

[
10
10

]
, Wr =

[
−0.2 −0.05 0 −0.05 −0.3
−0.2 −0.05 0 −0.05 −0.3

]
,

that is, the parameters in the neural network structure are set as follows: m = 2, i =
5, k = 5, and the adaptive law gains are taken separately: η1 = 0.05, η2 = 100, η3 = 10000,
η4 = 0.00000001, η5 = 0.001. The lumped uncertainty is a random signal and is taken as
d = [randn(1, 1); randn(1, 1)].

In order to determine the order of fractional order, let α = 0.1, 0.2, 0.5, 0.7, and
0.9. Then, calculating the root mean square errors (RMSEs) of different orders, RMSE =

sqrt
(

sum
(
(qi − qri)

2
)

/n
)

, where i = 1, 2, and n is the observation times. Table 3 shows
the RMSEs of different orders. By comparison, the fractional order α = 0.9 is taken in the
simulation experiment.
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Table 3. RMSEs of different orders.

Order α RMSE of x-Axis Tracking Error RMSE of y-Axis Tracking Error

0.1 4.1396 × 10−4 4.8700 × 10−4

0.2 4.136 × 10−4 4.8663 × 10−4

0.5 4.1355 × 10−4 4.8639 × 10−4

0.7 4.1351 × 10−4 4.8630 × 10−4

0.9 4.1209 × 10−4 4.8423 × 10−4

The time of simulation is set to 60 s, and the simulation results are shown in Figures 4–15.
Figure 4a shows the tracking trajectory of the adaptive double feedback fuzzy neural network
for the system, and Figure 4b shows the tracking trajectory obtained through adaptive integral
order sliding mode control. Figure 5 shows the tracking errors of the system. Compared with
the tracking trajectories and tracking errors of the two methods, the tracking errors of the
fractional-order sliding mode control system based on the adaptive double feedback fuzzy
neural network can more efficiently converge to zero and track the reference trajectory
faster in a limited period of time. Figure 6 shows the control input of the two control
laws. The control effect of the proposed sliding mode control law is far superior. Figure 7
shows the convergence of sliding surface for the two different control methods. The
proposed method incorporates a double feedback fuzzy neural network, which improves
the accuracy and allows the control system to reach the sliding surface in a limited period
of time. Figures 8–10 show the adaptive identification for unknown system parameters. In
the two different control systems, the unknown parameters can asymptotically converge
to their true values, but the convergence speed of the proposed sliding control law is
much faster.

Figures 11–15 show the adaptive identification of the base width b1, the center c1,
output layer weight W, the inner gain r1, and the outer gain Wro, respectively. It is
concluded that the parameters of the double feedback fuzzy neural network can converge
to their respective optimal values. The RMSEs of two-axis tracking error using the adaptive
integral order sliding mode controller are 0.0094 and 0.0136. Compared with the RMSE of
adaptive double feedback fuzzy neural network fractional-order sliding mode control and
simulation results, the trajectory tracking error based on the proposed control method is
smaller than the integral one.
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neural network, which is used as the gain of switching control law. In addition, by adding
fractional order to the sliding surface, the order terms can be increased to improve the
accuracy and enhance the control performance of the system. Meanwhile, adaptive control
is utilized to update all unknown parameters of the micro gyroscope system. By analyzing
the simulation results of MATLAB/Simulink and comparing them with the adaptive in-
tegral order sliding mode control, the proposed control method improves the trajectory
tracking speed and control precision, and ultimately proves its feasibility and validity.
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