Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of the Problem
2.2. Semi-Discrete Schemes
2.2.1. Construction of the Semi-Discrete Schemes
2.2.2. Error Estimates of the Semi-Discrete Schemes
2.3. Fully Discrete Schemes
2.3.1. Construction of the Fully Discrete Schemes
2.3.2. Error Estimates of the Fully Discrete Schemes
3. Results
3.1. Verification of the Convergence Order
3.2. Verification of the Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoteit, H.; Firoozabadi, A. An Efficient Numerical Model for Incompressible Two-phase Flow in Fractured Media. Adv. Water Resour. 2008, 31, 891–905. [Google Scholar] [CrossRef]
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transp. Porous Media 2019, 130, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choi, S.-U.; Cho, W. A Comparative Study of Dual-Porosity Model and Discrete Fracture Network Model. Water Eng. 1999, 3, 171–180. [Google Scholar] [CrossRef]
- Moinfar, A.; Narr, W.; Hui, M.-H.; Mallison, B.; Lee, S.H. Comparison of Discrete-Fracture and Dual-Permeability Models for Multiphase Flow in Naturally Fractured Reservoirs. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011; Abstract Number SPE 142295. pp. 1–17. [Google Scholar]
- Torres, F.; Xavier, M.; Ailin, J.; Wei, Y.; Yunsheng, W.; Junlei, W.; Xie, H.; Li, N.; Miao, J. Comparison of Dual Porosity Dual Permeability with Embedded Discrete Fracture Model for Simulation Fluid Flow in Naturally Fractured Reservoirs. In Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium, Golden, CO, USA, 28 June–1 July 2020. Abstract Number ARMA-2020-1462. [Google Scholar]
- Gazizov, R.K.; Lukashchuk, S.Y. Fractional Differential Approach to Modeling Filtration Processes in Complex Inhomogeneous Porous Media. Vestnik UGATU 2017, 21, 104–112. (In Russian) [Google Scholar]
- Zhong, W.; Li, C.; Kou, J. Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media. Adv. Math. Phys. 2013, 2013, 429835. [Google Scholar] [CrossRef]
- Beybalaev, V.D.; Abduragimov, E.I.; Yakubov, A.Z.; Meilanov, R.R.; Aliverdiev, A.A. Numerical Research of Non-Isothermal Filtration Process in Fractal Medium with Non-Locality in Time. Therm. Sci. 2021, 25, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Models of Flux in Porous Media with Memory. Water Resour. Res. 2000, 36, 693–705. [Google Scholar] [CrossRef]
- Hossain, M.E. Numerical Investigation of Memory-Based Diffusivity Equation: The Integro-Differential Equation. Arab. J. Sci. Eng. 2016, 41, 1–15. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Moroni, M.; Caputo, M. Flux in Porous Media with Memory: Models and Experiments. Transp. Porous Media 2010, 83, 479–500. [Google Scholar] [CrossRef]
- Caffarelli, L.; Vazquez, J.L. Nonlinear Porous Medium Flow with Fractional Potential Pressure. Arch. Ration. Mech. Anal. 2011, 202, 537–565. [Google Scholar] [CrossRef] [Green Version]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries and Exact Solutions of Fractional Filtration Equations. AIP Conf. Proc. 2017, 1907, 020010. [Google Scholar]
- Meilanov, R.R.; Akhmedov, E.N.; Beybalaev, V.D.; Magomedov, R.A.; Ragimkhanov, G.B.; Aliverdiev, A.A. To the Theory of Non-Local Non-Isothermal Filtration in Porous Medium. J. Phys. Conf. Ser. 2018, 946, 012076. [Google Scholar] [CrossRef]
- Hashan, M.; Jahan, L.N.; Zaman, T.U.; Imtiaz, S.; Hossain, M.E. Modelling of Fluid Flow Through Porous Media Using Memory Approach: A Review. Math. Comput. Simul. 2020, 177, 643–673. [Google Scholar] [CrossRef]
- Li, J.; Jiang, T.Q. Constitutive Equation for Viscoelastic Fluids via Fractional Derivative; Allerton Press: New York, NY, USA, 1994. [Google Scholar]
- He, J.H. Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media. Comput. Methods Appl. Mech. Eng. 1998, 167, 57–88. [Google Scholar] [CrossRef]
- Oliveira, E.; Machado, J. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.; Machado, J.; Oliveira, E. A Review of Definitions of Fractional Derivatives and Other Operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Bohaienko, V.; Bulavatsky, V. Mathematical Modeling of Solutes Migration Under the Conditions of Groundwater Filtration by the Model with the K-Caputo Fractional Derivative. Fractal Fract. 2018, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Prajapati, J.C.; Patel, A.D.; Pathak, K.N.; Shukla, A.K. Fractional Calculus Approach in the Study of Instability Phenomenon in Fluid Dynamics. Palest. J. Math. 2012, 1, 95–103. [Google Scholar]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S.D. Existence and Uniqueness of Miscible Flow Equation Through Porous Media with a Non Singular Fractional Derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yang, S.; Zhang, S.Q. Modeling of Non-Darcian Flow and Solute Transport in Porous Media with Caputo-Fabrizio Derivative. Appl. Math. Model. 2019, 68, 603–615. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, H.; Yang, S. Non-Darcy flow Models in Porous Media via Atangana-Baleanu Derivative. Chaos Solitons Fractals 2020, 141, 110335. [Google Scholar] [CrossRef]
- Al-Homidan, S.; Ghanam, R.A.; Tatar, N. On a Generalized Diffusion Equation Arising in Petroleum Engineering. Adv. Differ. Equ. 2013, 2013, 349. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Sun, H.; Zhang, Y.; Zheng, C.; Min, F. Spatial Fractional Darcy’s Law to Quantify Fluid Flow in Natural Reservoirs. Phys. A Stat. Mech. Its Appl. 2019, 519, 119–126. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann-Liouville Fractional Derivatives. Rheol Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Caputo-Fabrizio Operator in Terms of Integer Derivatives: Memory or Distributed Lag? Comput. Appl. Math. 2019, 38, 113. [Google Scholar] [CrossRef]
- El Amin, M.F.; Radwan, A.G.; Sun, S. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media. Results Phys. 2017, 7, 2432–2438. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.S. Exact Solutions for Time-Fractional Diffusion-Wave Equations by Decomposition Method. Phys. Scr. 2007, 75, 53–61. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Liao, H.L. Finite Difference Methods for the Time Fractional Diffusionequation on Non-Uniform Meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Qiao, H.L.; Liu, Z.G.; Cheng, A.J. Two Unconditionally Stable Difference Schemes for Time Distributed-Order Differential Equation Based on Caputo–Fabrizio Fractional Derivative. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Alimbekova, N.B.; Berdyshev, A.S.; Baigereyev, D.R. Parallel Implementation of the Algorithm for Solving a Partial Differential Equation with a Fractional Derivative in the Sense of Riemann-Liouville. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Du, R.; Cao, W.R.; Sun, Z.Z. A Compact Difference Scheme for the Fractional Diffusion-Wave Equation. Appl. Math. Model. 2010, 34, 2998–3007. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Y.; Wang, W.; Yang, J. A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions. Commun. Comput. Inf. Sci. 2012, 323, 273–284. [Google Scholar]
- Xu, T.; Lu, S.; Chen, W.; Chen, H. Finite Difference Scheme for Multi-term Variable-order Fractional Diffusion Equation. Adv. Differ. Equ. 2018, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alikhanov, A.A. A New Difference Scheme for the Time Fractional Diffusion Equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, Z. Finite Element Approximation of Time Fractional Optimal Control Problem with Integral State Constraint. AIMS Math. 2020, 6, 979–997. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Zhou, Z.J. A Priori Error Analysis for Time-Stepping Discontinuous Galerkin Finite Element Approximation of Time Fractional Optimal Control Problem. J. Sci. Comput. 2019, 80, 993–1018. [Google Scholar] [CrossRef]
- Liu, K.; Feckan, M.; O’Regan, D.; Wang, J.R. Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Du, Y.; Li, H.; Li, J.; He, S. A Two-Grid Mixed Finite Element Method for a Nonlinear Fourth-Order Reaction-Diffusion Problem with Time-Fractional Derivative. Comput. Math. Appl. 2015, 70, 2474–2492. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V. A New Fractional Finite Volume Method for Solving the Fractional Diffusion Equation. Appl. Math. Model. 2014, 38, 3871–3878. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, A.; Wang, K. Fast Finite Volume Methods for Space-fractional Diffusion Equations. Discret. Contin. Dyn. Syst. Ser. B 2015, 20, 1427–1441. [Google Scholar] [CrossRef]
- Mallawi, F.; Alzaidy, J.F.; Hafez, R.M. Application of a Legendre Collocation Method to the Space-time Variable Fractional-order Advection-dispersion Equation. J. Taibah Univ. Sci. 2019, 13, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Lin, Y.; Xu, C. Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. An Analysis of the L1 Scheme for the Subdiffusion Equation with Nonsmooth Data. IMA J. Numer. Anal. 2016, 36, 197–221. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Khan, M.; Ford, N. An Analysis of the Modified L1 Scheme for Time-fractional Partial Differential Equations with Nonsmooth Data. SIAM J. Numer. Anal. 2018, 56, 210–227. [Google Scholar] [CrossRef]
- Siddiqi, S.; Arshed, S. Numerical Solution of Time-fractional Fourth-order Partial Differential Equations. Int. J. Comput. Math. 2015, 92, 1496–1518. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A New Fractional Numerical Differentiation Formula to Approximate the Caputo Fractional Derivative and Its Applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Cao, J.; Li, C.; Chen, Y. High-order Approximation to Caputo Derivatives and Caputo-type Advection-Diffusion Equation (II). Fract. Calc. Appl. Anal. 2015, 18, 735–761. [Google Scholar] [CrossRef]
- Xuhao, L. Numerical Methods for Fractional Differential Equations. Ph.D. Thesis, Nanyang Technological University, Singapore, 2018. [Google Scholar]
- Atangana, A. Extension of Rate of Change Concept: From Local to Nonlocal Operators with Applications. Results Phys. 2020, 19, 103515. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, W. Comparison of Definition of Several Fractional Derivatives. In Proceedings of the 2016 6th International Conference on Education, Management and Computer Science (ICEMC 2016), Shenyang, China, 27–29 May 2016; pp. 553–557. [Google Scholar]
- Prieur, F.; Holm, S. Nonlinear Acoustic Wave Equations with Fractional Loss Operators. J. Acoust. Soc. Am. 2011, 130, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- Adams, R. Sobolev Spaces; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer: New York, NY, USA, 1991. [Google Scholar]
-Error | Order | -Error | Order | -Error | Order | |
---|---|---|---|---|---|---|
- | - | - | ||||
1.83 (≃1.90) | 1.58 (≃1.50) | 1.14 (≃1.10) | ||||
1.84 (≃1.90) | 1.57 (≃1.50) | 1.13 (≃1.10) | ||||
1.85 (≃1.90) | 1.56 (≃1.50) | 1.12 (≃1.10) | ||||
1.85 (≃1.90) | 1.56 (≃1.50) | 1.11 (≃1.10) | ||||
- | - | - | ||||
1.46 (≃1.50) | 1.45 (≃1.50) | 1.25 (≃1.10) | ||||
1.47 (≃1.50) | 1.47 (≃1.50) | 1.24 (≃1.10) | ||||
1.48 (≃1.50) | 1.48 (≃1.50) | 1.22 (≃1.10) | ||||
1.49 (≃1.50) | 1.48 (≃1.50) | 1.21 (≃1.10) | ||||
- | - | - | ||||
1.10 (≃1.10) | 1.11 (≃1.10) | 1.11 (≃1.10) | ||||
1.10 (≃1.10) | 1.11 (≃1.10) | 1.10 (≃1.10) | ||||
1.10 (≃1.10) | 1.11 (≃1.10) | 1.10 (≃1.10) | ||||
1.10 (≃1.10) | 1.10 (≃1.10) | 1.10 (≃1.10) |
h | ||||||
---|---|---|---|---|---|---|
-Error | Order | -Error | Order | -Error | Order | |
- | - | - | ||||
1.97 (≃2.00) | 1.98 (≃2.00) | 1.98 (≃2.00) | ||||
1.99 (≃2.00) | 1.99 (≃2.00) | 1.99 (≃2.00) | ||||
2.00 (≃2.00) | 2.00 (≃2.00) | 1.97 (≃2.00) | ||||
- | - | - | ||||
1.97 (≃2.00) | 1.97 (≃2.00) | 1.97 (≃2.00) | ||||
1.99 (≃2.00) | 1.99 (≃2.00) | 1.99 (≃2.00) | ||||
2.00 (≃2.00) | 2.00 (≃2.00) | 1.96 (≃2.00) | ||||
- | - | - | ||||
1.95 (≃2.00) | 1.95 (≃2.00) | 1.96 (≃2.00) | ||||
1.92 (≃2.00) | 1.94 (≃2.00) | 1.94 (≃2.00) | ||||
1.91 (≃2.00) | 1.93 (≃2.00) | 1.93 (≃2.00) |
-Error | Order | -Error | Order | -Error | Order | |
---|---|---|---|---|---|---|
- | - | - | ||||
2.00 (≃1.90) | 1.84 (≃1.50) | 1.60 (≃1.10) | ||||
1.98 (≃1.90) | 1.79 (≃1.50) | 1.47 (≃1.10) | ||||
1.97 (≃1.90) | 1.74 (≃1.50) | 1.34 (≃1.10) | ||||
1.98 (≃1.90) | 1.70 (≃1.50) | 1.25 (≃1.10) | ||||
- | - | - | ||||
1.81 (≃1.50) | 1.70 (≃1.50) | 1.49 (≃1.10) | ||||
1.76 (≃1.50) | 1.65 (≃1.50) | 1.40 (≃1.10) | ||||
1.71 (≃1.50) | 1.61 (≃1.50) | 1.32 (≃1.10) | ||||
1.66 (≃1.50) | 1.59 (≃1.50) | 1.25 (≃1.10) | ||||
- | - | - | ||||
1.51 (≃1.10) | 1.45 (≃1.10) | 1.30 (≃1.10) | ||||
1.38 (≃1.10) | 1.35 (≃1.10) | 1.22 (≃1.10) | ||||
1.27 (≃1.10) | 1.28 (≃1.10) | 1.16 (≃1.10) | ||||
1.29 (≃1.10) | 1.24 (≃1.10) | 1.13 (≃1.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baigereyev, D.; Alimbekova, N.; Berdyshev, A.; Madiyarov, M. Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media. Mathematics 2021, 9, 2179. https://doi.org/10.3390/math9182179
Baigereyev D, Alimbekova N, Berdyshev A, Madiyarov M. Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media. Mathematics. 2021; 9(18):2179. https://doi.org/10.3390/math9182179
Chicago/Turabian StyleBaigereyev, Dossan, Nurlana Alimbekova, Abdumauvlen Berdyshev, and Muratkan Madiyarov. 2021. "Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media" Mathematics 9, no. 18: 2179. https://doi.org/10.3390/math9182179
APA StyleBaigereyev, D., Alimbekova, N., Berdyshev, A., & Madiyarov, M. (2021). Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media. Mathematics, 9(18), 2179. https://doi.org/10.3390/math9182179