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Abstract: Buildings consume a considerable amount of electrical energy, the Heating, Ventilation,
and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining
comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by
modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts.
Scientific literature shows that Soft Computing techniques require fewer computing resources but at
the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive
results, although further research will be necessary to resolve new challenging multi-objective
optimization problems. This article compares the performance of selected genetic and swarm-
intelligence-based algorithms with the aim of discerning their capabilities in the field of smart
buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are
compared in hypervolume, generational distance, ε-indicator, and execution time. Real data from
the Building Management System of Teatro Real de Madrid have been used to train a data model
used for the multiple objective calculations. The novelty brought by the analysis of the different
proposed dynamic optimization algorithms in the transient time of an HVAC system also includes
the addition, to the conventional optimization objectives of comfort and energy efficiency, of the
coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the
equipment lifecycle and minimize the overshooting effect when passing to the steady state. The
optimization works impressively well in energy savings, although the results must be balanced with
other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive
visualization of the performance of the two families of algorithms in a real multi-HVAC system
increases the novelty of this proposal.

Keywords: multi-objective optimization; genetic algorithms; evolutionary computation; swarm
intelligence; Heating, Ventilation and Air Conditioning (HVAC); metaheuristics search; bio-inspired
algorithms; smart building; soft computing

1. Introduction

Global energy consumption has been growing at 1.4% annually over the last 10 years [1],
and 94% of it is produced with combustion [2]. Greenhouse gas emissions produce adverse
effects on the environment and society and cannot be completely replaced. Buildings
consume on average 40% of the electrical energy in European Union cities and 32% in
world cities [3], where the Heating, Ventilation, and Air Conditioning (HVAC) system
requires 32.7% of the supplied electricity and up to 40.3% in public buildings [4].
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Advanced control systems improve energy management by adapting fast to unfore-
seen events or predicting system behavior. There are some examples of this, such as the
application of neural networks with genetic algorithms in building management systems,
reaching savings of 27% [5]. Other studies improve the cost by 19.7%, adding an optimiza-
tion module in the ambient controller [6]. Some researchers have proven that it is possible
to save 30% on cold days, embedding a machine-learning-based MPC controller [7]. On
the other hand, the faster the controller reaches the goals, the better the energy efficiency
is obtained; for example, Adaptive LAMDA-PI (Learning Algorithm for Multivariable
Data Analysis—Proportional Integral) controllers improve the Integral Absolute Error
(IAE) of the response time by above 140% compared with conventional PI and Fuzzy-PI
controllers [8]. Optimization works are embedded in different tasks or problems of the
HVAC systems in both design and operations. They are used to adjust Proportional, Inte-
gral, and Derivative (PID) controllers to improve the logic of Model-Predicting Controllers
(MPCs) or to enhance the supervision tasks in the Building Management Systems (BMSs)
or Multi-Agent Controllers (MACs) [9]. There is a significant interest in embedding ad-
vanced, Artificial Intelligence (AI)-based control architectures in the BMS [10] that provide
acceptable results in uncertain contexts and complex systems, while allowing the adoption
of multi-objective optimization policies. There are two visible advanced control strategies:
(1) predicting the system behavior with machine-learning-based simulations to obtain
the optimal sequence of instructions or (2) adapting the system parameters in case of
context perturbances, so that it quickly returns to the zero-error state, such as with fuzzy
logic control. Artificial Intelligence (AI), together with other technologies, such as Big
Data, Internet of Things (IoT), or Cloud Computing, enhances the ubiquity, accessibility,
mobility, knowledge extraction, and autonomy for the new software tasks. The traditional
multi-objective problem in operations is to improve the energy efficiency and maintain
comfort for the users, i.e., the ideal temperature, humidity, or Indoor Environmental Qual-
ity (IEQ) that mutually conflicts. Comfort, health, or maintenance add other objectives to
the optimization problem, such as the CO2 concentration, reducing the efficiency of the
optimization with fewer objectives [11].

Zadeh conceptually grouped under the umbrella of “soft computing” (SC) technolo-
gies that overperformed traditional deterministic approaches [12], at the expense of losing
accuracy and generalization. Thus, SC is tolerant to imprecision and uncertain approxi-
mation and today are widely used for complex problems where moderate precision and
generalization capability are acceptable, given their high-resolution speed. SC covers
three main fields: (1) Machine Learning (ML), (2) metaheuristics-based optimization, and
(3) Fuzzy Logic (FL) for decision-making. Metaheuristics-based optimization [11] offers
good tradeoffs between consumed resources and accuracy for achieving global goals but
brings challenges to face, such as algorithm convergence, stability, parameter tuning, a
mathematical framework, benchmarking, generalization, and performance assessment [13].
SC also offers fitness estimation for optimization with data-based models that require fewer
computer resources [14].

Digital transformation and the social trend towards standardization allow for sharing
the functionality among different fields, requiring testing their approaches and convenience
for specific applications. This conceptual ‘liquidity’ brings new challenges for optimization,
such as the smart city, smart districts, and smart building, which leads to the scaling of
the control and supervision capabilities to upper layers (e.g., ISA 95 and IEC 62264 L2),
but constraining the lower layers. More conflicting objectives, such as the Coefficient of
Performance (COP), allow for the monitoring of subtle equipment degradations, achieving
considerable savings in the life cycle of the installations [15]. The system management is
susceptible to becoming autonomous with the self-optimization organic function.

Thus, society, while aiming to enhance people’s wealth and comfort, is forced to save
energy and reduce costs. Multi-objective optimization strategies can be applied at several
levels in building systems, especially HVAC, that can run at bare equipment control, at
subsystems management, or at a superuser level integrating systems, buildings, blocks,
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or districts. In this scenario, there is a greenfield to explore, including among others au-
tonomic building management architectures that automatically adapt their decisions to
contextual changes and continuously improve with the experience. The proposed study
demonstrates different multi-objective optimization techniques under this scenario that
include conventional conflicting goals of comfort, observable with the ambient temperature,
and energy-saving, quantifiable with the subsystems consumption, and add two new objec-
tives: (1) the maximization of the absolute value of COP, allowing for optimal performance
in saving energy and, at the same time, an enhancement of the lifecycle of the equipment,
something rarely explored in operations before [16]; (2) the minimization of the rate of
change in ambient temperature, which allows the system to enter into a steady-state mode
since startup at nearly critical damping. The possibility for the system to automatically
select the most appropriate algorithm is also proposed for the next research outcome. Al-
though it was expected that the addition of conflicting objectives could reduce the efficiency
of the optimization, the results show evidence of a wide field to be explored.

This comparative study shows the pros and cons of using different population-based
multi-objective optimization algorithms for an HVAC control system. Current practices
limit operation to ensure the comfort of building inhabitants dodging other objectives
such as energy savings. The study will cover (1) Swarm Intelligence (SI) algorithms and
(2) Genetic Algorithms (GAs) and will use real data from the HVAC system of Teatro
Real de Madrid (Opera House). The individuals in the decision space are mapped in
the objective space with cost functions empirically obtained with ML’s Random Forest
Regressors (RFRs) to assess their dominance. The RFRs have been trained with a selection
of data obtained from a historic database kindly provided by the Board of Teatro Real. The
selected GAs are the Multi-Objective Genetic Algorithm (MOGA) and the Non-dominated
Sorting Genetic Algorithm version 2 and 3 (NSGA-II and NSGA-III), and the selected SI-
based algorithms are Optimized Multi-objective Particle Swarm Optimization (OMOPSO)
and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). In the
experiment, the Strength Pareto Evolutionary Algorithm Version 2 (SPEA2) was discarded,
as its execution time was excessive compared to the others. Random Search (RS) results are
exhibited as a reference point.

The paper is organized as follows: In Related Work, the authors bring to light signif-
icant research related to this study. Materials and Methods explain how the experiment
was built and the metrics for comparing the algorithms. The Results section visualizes and
discusses the outcomes. Finally, the Conclusions section compares the obtained results
with other studies, outlines the novelty, and proposes possible future research lines for
this work.

2. Related Work
2.1. Towards a Clear Ontology

It is common for recent literature about SC and multi-objective optimization to take
for granted the approach followed in this work, due to the absence of effective classification
and, therefore, the formation of an adequate body of knowledge. Although it is beyond the
scope of this study, it is prudent to indicate some examples of confusing terms and try to
position them.

Non-preference multi-objective optimization, i.e., those finishing with a set of non-
dominant solutions, is sometimes classified as a subset of ‘a posteriori’ decision-making,
and sometimes they are synonyms. It is often associated with multimodal optimization,
although only the latter also includes local search. It is also difficult to differentiate
Evolutionary Computation from GAs. While sharing a similar process, a GA includes
mating and crossover to improve the search. For some articles, they are synonyms and
come grouped either as evolutionary or genetic. They are sometimes considered a subset
of different approaches, such as bio-inspired algorithms.

Particle Swarm Optimization (PSO) can be classified itself [17] or together with
GAs [18] under Multi-Objective Evolutionary Algorithms (MOEA). MOGA is sometimes
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considered a separated GA [19] or the family of multi-objective GAs [20]. MOEA and
MOGA may include the whole metaheuristics-based search family or only those based on
the population approach.

The new algorithms based on the observation of nature can be named bio-inspired, bio-
search heuristics, or metaphor-based metaheuristics, among others, exchanging their differ-
ent inspirations, be they biological, chemical, or physical. GAs or SI-based algorithms can
be found included in the bio-inspired family, excluding the evolutionary algorithms [19].

With regard to the optimization performance, it is possible to mislead concepts such as
‘convergence’ that could mean either to end the search at any point (lumps) or end it in true
global optima. The diversity feature sometimes indicates the uniformity in the distribution
of the solutions, how they spread, or both.

The classification by Ahma et al. [9] and Oliva et al. [21] with Zadec’s original SC
definition [12] supports the position of this study. At the top, algorithms are split up into
stochastic techniques and intelligent agents (deterministic). Stochastic techniques then split
into population-based and single individual algorithms (trajectory metaheuristics) that
include Simulated Annealing (SA) and Tabu Search (TS). Population-based algorithms then
split into SI and evolutionary algorithms. This study compares GAs (part of evolutionary
algorithms) and SI-based particle swarms, PSO.

2.2. Research Interest

According to Wang, G. [22], at an early stage, optimization methods diversified in
different fields of study: (1) linear or nonlinear programming, (2) constraints, (3) single-
or multi-objective optimization, and (4) dynamic programming. The first generation
introduced the iteration and gradients. The second generation brought the metaheuristics-
based search for global multi-objectives that reduced computing resources and allowed
for parallel computation. Soft Computing (SC) AI approaches support surrogate-based or
metamodel generation, replacing computer-aided simulation software with ML models.
The next-generation links and hybridizes the above approaches.

Nabaei et al. [23] provide a good reference for research interests in SI algorithms and
GAs over time. GAs have been interesting since before 2000 with a peak from 2006 to 2010.
PSO algorithms started to become comparable in 2006 and 2010, but there were much fewer
articles published than there were regarding GAs, half of them spanning from 2011 to 2018.
Another comprehensive study by Shaikh et al. [11] illustrates the research interest for the
optimization in building HVAC systems in which GA articles are 24% of the total and
MOGA represent 3%. PSO is present in 5%, and MOPSO in 7%. Scheduling Optimization,
Hooke and Jeeves, and Linear Quadratic shares range between 3% and 6%.

Optimization can be used for designing systems or in real-time operations [24]. A GA
is used for both design and operations, and so is NSGA-II, but only in a third of the articles
reviewed. There are more articles about PSO in operations than in design, but a Differential
Evolutionary (DE) algorithm is only used in designing, and the number of articles about
the combination of these algorithms is similar to the number of articles related to NSGA-II.

2.3. Genetic and Swarm Intelligence Outcomes

Algorithms based on metaheuristics are good options for characterizing the behavior
of complex, dynamic, and nonlinear systems [25].

A GA puts together a set of individuals (chromosomes) ‘coded’ with genes (variables),
marking them with fitness functions. It then uses a selection strategy to obtain a new
population ready for the next iteration. Mutation and crossover operators regulate the
speed and variety of chromosome changes in the GA. While the crossover ‘exploits’ the
search, the mutation widens the explored space. One key point is the adjustment of the
parameters to the specific problem. The mutation operator can generate solutions with
polynomial or uniform probability distributions. The non-uniform probability prevents
the population from decaying in the early stages of the evolution by generating distant
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solutions with a random probability. Simulated Binary Crossover (SBX) generates offspring
from two parents attending to their probability distributions.

GAs discovers the optimal set in three different ways [26]. (1) The first approach is
known as Pareto-based dominance with a two-level ranking scheme, one to obtain the
dominance and diversity assessment and the other, containing such metrics as the total
nondominated vectors generation, the hypervolume, the generational distance or spac-
ing, and the error rate [27], to determine the convergence to local or global minima [28].
NSGA-II and SPEA2 make use of these principles. (2) The second approach uses unary or
binary indicators to check their performance, for example, with the coefficient of determina-
tion, the R2-like S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm
(SMS-EMOA) that maximizes the hypervolume (HV). (3) The third approach is based on
decomposition that splits the overall problem into smaller problems for the search. There
is not a common procedure for these algorithms. Splitting up complicated Pareto Fronts
(PFs) to apply a local search and Tchebycheff’s scalarization is one of these methods, as
well as the Multi-Objective Evolutionary Algorithm based on decomposition (MOEA/D)
and NSGA-III.

The advantages of GAs are that they (1) have simple fitness arrangement schemes;
(2) do not need derivatives or gradients; (3) are relatively robust; (4) are easy to parallelize.
However, although they require less information about the problem, (1) designing an
objective function, (2) getting a representation, and (3) adjusting the operators can be
a difficult task. In addition, they are computationally expensive compared with others.
NSGA and NSGA-II perform niching, decide deterministically the tournaments, and
avoid chaotic perturbations of the population composition with updated fitness sharing.
However, the niching function is too complex and scales poorly as the number of objectives
increases [24].

SI-based optimization is also population-based, where its individuals are bio-inspired
on natural ecosystem metaphors, such as ants, bees, or particles [29]. Swarm algorithms
still generate some skepticism because of the mentioned metaphoric ornaments describing
their operators [30].

In the case of PSO, the particles move around in the decision space with simple
mathematical equations that yield their position and velocity. Each particle’s best-known
local position and velocity determine its movement towards the optimum. PSO (1) is easy
to adjust; (2) can be implemented and provide fast speed results; (3) is capable of finding
the global optimal solutions in most cases. However, (1) strict convergence cannot be
assured; (2) they are relatively weak in terms of local search abilities; (3) in multi-modal
problems, they are prone to obtain local optima [23].

2.4. Research Activity

There are two schools of thought for improving the efficiency of population-based
optimization. One focuses on balancing the explore and exploit strategy with many
variations, such as the elitist strategy found in some GAs. The other seeks simplification,
as decisions cannot be well understood, especially for large search spaces, discontinuities,
noise, or algorithms with time-varying parameters, such as PSO. The revision of the
research activity is guided by the following goals:

• to find which metaheuristic among some GAs and SI algorithms performs better and
discover possible ways for the system to automate the decision among them;

• to study multi-objective optimization in the transient time at the startup of HVAC systems;
• to include new optimization objectives for enhancing the lifecycle of the equipment

and specifically to facilitate the transition to the steady state.

Sharif et al. [31] included the assessment of the lifecycle cost (LCC) in addition to the
energy consumption and environmental impact as a new optimization objective in the
passive and active building design with a GA. They managed conflicting objectives such
as renovating the envelope (passive structure) or the systems (active structure). Lee [32]
also combined a GA with Computational Fluid Dynamics (CFD) for the building geometry
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(passive design) and the HVAC system (active design), having the temperature, energy
consumption, and the Index of Air Quality (IAQ) as objectives.

Gagnon et al. [33] compared the computational resources spent in sequential and
holistic approaches of a net-zero building design, using NSGA-II to optimize the carbon
footprint, lifecycle cost, and thermal comfort. The experiment proved that the holistic
approach achieved 59% of the optimal solutions in 100 h, and the sequential approach
achieved 41% in 765 h.

The work of Haniff et al. [34] is representative of introducing minor changes to
an algorithm that improves the addressed problem. They modified the Global PSO so
that it can outperform the optimization of the energy consumption and the temperature,
considering the weather forecast, an estimation of the characteristics of the building, and
the Predicted Mean Vote (PMV) for Air Conditioning scheduling.

Cai et al. [35] proposed hybridizing a multi-objective evolutionary algorithm with a
quantum-behaved PSO after dividing the problem into subproblems with Tchebycheff’s
decomposition: Decomposition-based Multi-Objective Binary Quantum-behaved Particle
Swarm Optimization (MOMBQPSO/D). The algorithm minimizes the temperature mean
and deviation in area-to-point heat conduction.

Zhai et al. [36] enhanced MOGA for the secondary cooling process in continuous
casting by dynamically tuning the mutation and crossover operators with the probability
method. They compared it with MOPSO and MOGA and showed a 10% water reduction.

Oliva et al. [21] reviewed different metaheuristics-based algorithms applied to the
estimation of solar cell parameters. They outlined the advantages and disadvantages of
the GA, Harmony Search (HS), Artificial Bee Colony (ABC), SA, Cat Swarm Optimization,
Differential Evolutionary, PSO, Advanced Bee Swarm Optimization, Whale Optimization
Algorithm (WOA), Gravitational Search Algorithm, Flower Pollination Algorithm, Shuffled
Complex Evolution, and Wind-Driven Optimization. They concluded that WOA performs
better than the others regarding the accuracy and convergence speed and avoided local
minima trapping.

Aguilar et al. [37] proposed a new flexible architecture for Building Management
Systems (BMSs), with an Autonomic Cycle of Data Analysis Tasks (ACODAT) that makes
use of banks of optimization algorithms for HVAC system control and hinted at its use for
supervisory and self-optimization tasks. In fact, in a later study, they developed a Fault
Detect and Diagnosis (FDD) system optimized with MOPSO, also capable of long-term
equipment degradation, using the COP [15].

Awan et al. [17] analyzed the design of a solar tower plant using fuzzy goals with
PSO, showing significant improvements in most of the design parameters (solar multiple,
tower height, and others).

Afzal et al. [38] compared the results of applying Fuzzy Logic (FL) in both a GA and
PSO to optimize the Nusselt number, friction coefficient, and maximum temperature of a
battery thermal management, observing that GAs provide better results, though they are
less widespread than PSO.

Suthar et al. [39] compared NSGA-II, NSGA-III, and MOPSO, applying the Technique
for the Order of Preference by the Similarity to Ideal Solution (TOPSIS) for tuning the
parameters of a 2 Degree-of-Freedom (DoF) controller: the setpoint track, flow variation,
and input fluid. The performance was measured with IAE, ISE, ITAE errors, and the
execution time, and the step function reaction was analyzed.

Waseem Ahmad et al. [9] assessed several optimization methods and indicated that
GAs perform global searches well but show poor convergence. Swarm-based algorithms
are good for local searches but are slower than genetic algorithms for global searches.
However, Ant Colony Optimization (ACO) is faster at searching compared to others and at
converging compared to simple genetic algorithms. In an HVAC system’s control, the most
studied multi-objective optimization techniques are GAs, in 29% of the related literature,
and MOPSO, in 10%. MOGA also stands out among them.
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Behrooz et al. [40] confirmed that GAs provide optimization for comfort and energy
savings because of their good behavior with nonlinear systems but are challenged with
variable context information and perturbances [41]. They are sometimes combined with
fuzzy control [8].

Previous and current research does not fully cover the topics addressed in this article,
which constitutes a novelty. Most of the studies demonstrate GA and SI optimization in
HVAC systems in both design and operations, but few compare them. Some research deals
with dynamic adaptation, such as dynamic PID tunning, but none of them include opti-
mization of the COP to enlarge the lifecycle and the rate of change in ambient temperature
at the end of the transient state to moderate the damping to a steady state. Table 1 shows
all cited works related to this section.

Table 1. This research’s topics addressed in the cited articles.

Topics Addressed References

HVAC system applied research [9,17,32,34–37,39,40]
Improving operations [9,15,34–40]
New optimization objectives [15,31–33,35,37,39]
Genetic and swarm comparison [9,21,36,38]
Algorithm improvements [32,34,35,38,39]
Dynamic objectives [35,39,41]

3. Materials and Methods
3.1. Teatro Real: The Opera House of Madrid

The case study is the HVAC system of the emblematic Opera House of Madrid
(Spain), known as Teatro Real. The building has a floor size of 65,000 m2 (700,000 ft2) in
10 levels above the ground and 6 underneath. The 1430 m2 (15,400 ft2) stage includes the
most advanced scenic technology and hosts opera and concerts for 1746 seated people
in the stalls, the boxes, the balcony, and the paradise areas. The building has 11 lounges,
four rehearsal rooms, and seven studios, and the scenic ‘box’ is surrounded by offices,
warehouses, and technical premises. Figure 1 is a recent photo of the building.
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The Opera House is open from September to July and closed in August every year.
Madrid climate changes abruptly with cold winters, with an average of 0 ◦C (32 ◦F), and
hot summers, with an average of 35 ◦C (95 ◦F), requiring heating and cooling. Teatro Real
is also used out of the shows for rehearsals, celebrations, and product launches, making
the HVAC operation a complex task.

The HVAC system of Teatro Real is an iconic example of a heterogenous HVAC system
built with several refurbishments, allocating two 195 kW water–air heat pumps for both
heating and cooling, and two 350 kW water–water chillers for extra cooling, managed with
the same BMS. There is also a boiler and an ice accumulator that are falling into disuse.
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The database provided by the Administration of Teatro Real contains historical data
registered in the BMS between 1 January 2016 and 4 June 2018.

3.2. Selection of the Optimization Algorithms

The selection of the multi-objective optimization algorithms for HVAC analyzed in
this study is based on the observations of Ekici et al.’s comprehensive review [42]. The
initial selection of evolutionary algorithms is MOGA, NSGA-II, NSGA-III, and SPEA2.

3.2.1. The Multi-Objective Genetic Algorithm (MOGA)

Fonseca et al. [27] proposed in 1993 to compute the fitness of each individual as a
weighted sum of the objective functions with random weights to obtain the probability to
either select or discard it. MOGA yields interesting results, but it is not yet widely spread
in real building HVAC systems.

3.2.2. The Non-Dominated Sorting Genetic Algorithm Version 2 (NSGA-II)

Deb et al. [43] proposed in 2002 to sort the individuals into categories based on non-
dominance. Thus, the non-dominated individuals are in the first category. The individuals
dominated by others in upper levels belong to the second and next categories. Figure 2
shows how the algorithm works.
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At the end of each iteration, the algorithm computes the distances among the individ-
uals, known as crowding distance, for ranking.

3.2.3. The Non-Dominated Sorting Genetic Algorithm Version 3 (NSGA-III)

NSGA-III is a variant of NSGA-II that Deb et al. proposed later in 2014 [44] with
an adaptive selection of the operator and a set of pre-specified (or manually) points of
reference that generate a hyper-plane that improves the diversity of the population. It is
conceived for improving performance when the number of objectives is larger.

3.2.4. The Strength Pareto Evolutionary Algorithm Version 2 (SPEA2)

Zitzler et al. [45] proposed in 2001 a fitness function to sort the individuals by iden-
tifying how many were dominated by a given solution and how many dominate it. The
density is estimated with the k-Nearest Neighbor (k-NN) technique that prunes the eli-
tist set (non-dominated) so that the algorithm delivers the desired number of solutions.
Figure 3 shows how SPEA2 works.
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The other side of this analysis considers the SI-based algorithms, OMOPSO and SMPSO.

3.2.5. Optimized Multi-Objective Particle Swarm Optimization (OMOPSO)

OMOPSO is one of the MOPSO versions proposed by Reyes-Sierra et al. [46] in 2006
that uses Pareto’s non-dominance to identify the leaders and the crowding distance to
regulate the maximum number of them. Each iteration proclaims a leader, modifying the
speed of the rest to head for it. The leaders of the current generation are set apart from the
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global leaders. The algorithm splits the population into groups with different mutation
operators. Figure 4 shows how these algorithms work.
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3.2.6. Speed-Constrained Multi-Objective Particle Swarm Optimization (SMPSO)

SMPSO, proposed by Nebro et al. in 2009, is another version of MOPSO [47] that
includes a speed constraint mechanism for each individual, being good when individuals
are excessively accelerated. The optimization is no-preference, bringing an important
Degree of Freedom (DoF) for making tactic and strategic decisions. The result consists
of “nondominated” solutions located in the hyper-plane of optimum values or the Pareto
Front (PF). Thus, for instance, the operation can take optimal values increasing the ven-
tilation to reduce the risk of transmission of disease, e.g., COVID-19, or aiming toward
maximum comfort, allowing the manager or the system to pick up the best value of the PF
to accomplish the goal.

In any case, diversity is preserved by either the density estimation or truncation.
Fitness with the k-NN of the ith individual, F(i), is computed as

F(i) = R(i) + D(i)

When F(i) < 1, the individual is non-dominated. R(i) is the raw fitness, obtained from

R(i) = ∑
j ∈(Population+Archive), j �i

S(j)

where S(j) is the strength value, representing the number of solutions in both Population
and Archive, when i dominates:

S(i) = {j / j ∈ (Population + Archive) ∧ i � j}
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D(i) is the density that allows the discrimination between individuals with identical
fitness values, and it is obtained from

D(i) =
1

σk
i + 2

k =
√
|Population|+ |Archive|

where σi
k is the distance in the objective space to the kth nearest neighbor in both Popula-

tion and Archive. In the case of truncation,

i is removed, if i ≺ j, ∀ j

The performances of these metaheuristics are compared with Random Search acting as
a baseline, for not having any specific speeding up mechanism for exploring and exploiting
the decision space.

3.3. Selection of Metrics

The “no free lunch” theorem is applicable for assessing the optimization [9], as the
improvements on one feature reduce the effectiveness on another. The algorithm perfor-
mance is a balance between the achievement of solutions with values close to the PF and
the runtime resources required. This proves the algorithms empirically. Riquelme et al. [48]
identified up to 54 metrics to prove (1) the cardinality or the number of solutions in the
approximation set; (2) the accuracy, convergence, or distance to the PF; and (3) the diver-
sity, which measures the distribution of the fitness values and how they spread. Another
classification of metrics is given by the generic definition of Zitzler et al. [49], being unary
if only one approximation set is received and binary if two are received. This analysis takes
the top three metrics in the ranking and the one that records the runtime [48]:

• Hypervolume (HV), S metric, or Lebesgue measure: a unary metric that obtains the
total space covered by the found solutions or approximation set using a reference
point [11]. It considers accuracy, cardinality, and diversity.

• Generational Distance (GD): the average Euclidean distance between the approxima-
tion set with the nearest member of the ideal PF [50]. It only considers the accuracy.

• ε-Indicator (EI): a binary indicator that gives a factor by which an approximation set
is worse than another considering all objectives.

• Execution Time (ET) or runtime: the time consumed by the optimization algorithm to
fully complete the task.

3.4. Auxiliary Tools

The simulation was coded in Python, using basic NumPy, Pandas, and Datetime
libraries for managing vectors, matrices, and time series. The simulation module, RFR,
is implemented with Scikit recommended for machine learning [51]. The optimization is
built with the JMetalPy framework [52], well proved for solving multi-objective optimiza-
tion problems with metaheuristics [41]. The visualization of the obtained results is built
with Matplotlib.

4. Problem Formulation

The HVAC system of Teatro Real is set to follow the mechanical and comfort setpoints
required for a near event. The time spent to climatize and several HVAC parameters are
those that the chiller’s manufacturer initially recommended just after installation. The BMS
sends commands to the HVAC system to start/stop the chillers in a certain sequence to
ensure that, at the time of the event, the comfort parameters will be appropriate.

The proposed control loop for the multi-HVAC system performance optimization is
depicted in Figure 5.
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The Control Module, with the same functions as today, initiates the process by request-
ing the Optimization Module for instructions to improve its operation. The Optimization
Module, which performs a metaheuristic search in the space of possible solutions, returns
the best candidate obtained with the algorithm used in each model run (either with GA
or SI). The fitness functions of the candidates are evaluated by the Simulation Module
that receives every individual of the population and performs the simulation of the HVAC
behavior (non-linear system) [53], as defined by the candidate control parameters. The sim-
ulation is carried out with an ML algorithm, specifically a Random Forest Regressor (RFR),
previously trained with historical data from the database of Teatro Real, by minimizing
the Mean Squared Error (MSE) and maximizing the coefficient of determination (R2). The
RFR also requests contextual information to compute the simulation, which is provided by
external sources. Finally, the Control Module translates the optimal recommendations into
instructions for the actuators.
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Each experiment carried out in this study executes one control cycle (petition) and
addresses the optimization, without delving into the control stage. Inspired by the ACO-
DAT management architecture for HVAC systems [37], an autonomous cycle updates the
model offline, maintaining its accuracy in real operational conditions, as shown by the
green arrow in Figure 5.

The primary objectives are to maximize comfort and minimize the consumed energy.

Comfort = |T0 − Tr|

E =
n

∑
1

Ei

where T0 is the setpoint temperature, and Tr is the indoor room temperature, both in ◦C.
The maximum comfort for the optimization is therefore 0. The consumed electrical energy,
E, is the sum of the consumed energy in kW.h in each chiller group, the multi-HVAC
concept [37]. N is the number of chiller groups. The energy of one chiller group, Ei, is

Ei = Echiller, i + ECT,i + Ecwp,i + Ewpp,i

where Echiller,i is the energy consumed in the chiller machine, ECT,i is that in the cooling
tower, Ecwp,i is that in the cooling water pump, and Ewpp,I is that in the chilled water
primary pump.

This study includes two new objectives in the optimization as a novelty. The first one
is the Coefficient of Performance, COP. The higher the COP is, the better the performance
of the equipment, resulting in better energy efficiency and lower maintenance costs:

COP =
W
P

The COP is the engineering ratio of the supplied thermal power, W, to the consumed
electric power, P. The optimization of the COP brings two important advantages for the
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HVAC system. HVAC equipment is designed to work at maximum performance, and in
this regime, the system obtains its best energy efficiency. With the appropriate autonomous
cycle of data tasks [8], the supervisory system detects the degradation of the system,
providing predictive maintenance [15].

The second novel objective is the rate of change in the ambient temperature,
.

Tr, that
is the rate at which the temperature varies when it reaches the setpoint. This objective
leads the system to rapidly reach the steady state with convenient damp that minimizes
the overshooting:

.
Tr =

dTr

dt
This parameter is important at sudden startups when there is a transient time be-

fore the steady state [16]. The lower the slope of the derivative is, the less impact on
overshooting and steady noise there is on the next control phase.

The optimization requires Comfort, E, and
.

Tr to be minimized and COP to be max-
imized. The decision space is formed with the chillers’ capacities, Ci [%], the setpoint,
T0 [◦C], and the schedule or the date and time at which the system is expected to reach
the setpoint, tstart. The indoor ambient temperature when the system starts, Tr(t = 0) [◦C],
the number of occupants, N, and the outdoor ambient temperature, OAT [◦C], are the
contextual information that determines the system. This study uses the capacity of the
chillers as actuators on the subsystems, and this is justified with this simplified model:

Pi = Pmax Ci

where Pi is the electrical power actually supplied from the ith chiller, and Pmax is the
maximum power of the chiller. The chiller’s thermal power is generated according to the
machine performance that is added to the other chillers, WHVAC.

Wi = COPi Pi

WHVAC =
n

∑
1

Wi

Thermal power conditions indoors compensate for the outdoor weather conditions
and the corporal temperature of the occupants:

W = WHVAC + WSUN + WOCC

The thermal energy, Q, is then obtained from the power, and Tr is obtained from ∆Tr,
the indoor temperature variance.

Q =
∫ tend

0
W dt

Q = Ce m ∆Tr

Figure 6 shows the model with the inputs required, grouped in controllable and
control variables, and the outputs, differentiating the normal optimization objectives of the
thermal inertia for the next control plan [37].

An individual in the population consists of a sequence of four operational modes of
the chillers based on their capacities, Ci [%], at certain times, ti, before the event starts at
tend [37]. Each operational mode is a 5-tuple consisting of the proposed capacities for the
four chillers ranging from 0% to 100% and the time that they start. Thus, a single individual
contains four of these 5-tuples. The RFR performs a simulation for each 5-tuple, chaining
them according to their start-up time. The last 5-tuple indicates the operational values
applied to the chillers until the system reaches the steady state, tend.
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The multi-objective optimization problem would be formally defined as follows:

1. Find the vector x in the decision space:

x =


t1 t2 t3 t4
C1

1 C2
1 C3

1 C4
1

C1
2 C2

2 C3
2 C4

2
C1

3 C2
3 C3

3 C4
3

C1
4 C2

4 C3
4 C4

4


ti, where i = 1, 2, 3, and 4, represents the starting dates and times to configure the
capacities of every subsystem, while Ci

j , where j = 1, 2, 3, and 4, represents the
capacities of the chiller j during the period that starts at i and ends at i + 1. The last
period is between t4 and tend.

2. x will satisfy these inequality constraints at the following point:∣∣∣Ci
j

∣∣∣ ≤ 100

ti+1 ≥ ti

3. x will optimize the vector function f(x) in the objective space:

f =


Comfort(x)

E(x)
COP(x)

dTr
dt (x)


Comfort and COP must be maximized, while consumed energy, E, and the rate of

change of ambient temperature,
.

Tr must be minimized.

5. Results
5.1. Dataset

The BMS is connected to 1824 digital and analog sensors, prompting the ambient
and return temperatures, frozen water flow rates, valve states, chiller’s performance,
secondary circuit values, air flow rate, fan speeds, pumps rotational speeds, controller
status, etc., and allows the operator to send instructions to the actuators from the centralized
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platform. However, the historical data only keeps 169 variables: outdoor temperature,
room temperatures, electrical supplied power, thermal energy generated by each of the
four HVAC subsystems, and their COPs grouped in several tables with different sampling
rates (10 min, 15 min, 1 h, daily). Usable records are from January 2016 to June 2018. The
data have been cleaned to improve the accuracy by removing nonessential fields, records
with outliers, nulls, and/or zeros, getting 9898 (80%) registers for training and 2475 (20%)
for validation.

The Department of Engineering prepares the work order, based on the HVAC opera-
tional mode (HOM) for the field operators based on the events schedule and the weather
forecasts, and consisting of pre-programmed routines. This is, however, inefficient because
the complexity of the system operation reduces all possible variations to a small set of
HOMs, based on the primitive recommendations of the installers. The occupancy of the
building can reach up to 1700 during performances, while the number of people on labor
days is around 600.

5.2. Data Model

The multi-objective estimation is computed with the RFR with good accuracy and
speed balance. The model simulates the outputs in intervals of 15 min, which is a tradeoff
between the system inertia and the discretization of the system dynamics. The model
receives the time required for starting up the HVAC system, t0, the time of the venue
or the moment in which the room temperature, tend, must reach the setpoint, T0, the
room temperature at the beginning, Tr (t = t0), the number of people, N, and the outdoor
temperature forecast, which is a vector of temperatures from t0 to tend every 15 min. Table 2
represents an example where the temperature at 17 ◦C must reach the setpoint, 23.5 ◦C, in
an hour.

Table 2. Control request & context data.

Feature Value

HVAC startup time, t0 18:30
Event start time, tend 19:30
Setpoint, T0 23.5 ◦C
Ambient Temperature, Tr(t0) 17 ◦C
Outdoors Temperature vector, OAT [14 14.5 14.7 14.6]

The model also requires the outdoor temperature from the weather forecast. The
optimization algorithm then releases the proposed individual for fitness.

In addition, the simulation receives the set of HOMs searched by the algorithms that
will work in each interval. The algorithm is a sequence of HOMs proposed for the slots in
the interval from t0 to tend, consisting of the power capacities of each chiller. Following the
example, Table 3 shows one of these candidate solutions.

Table 3. Individual consisting of a sequence of four operational modes.

Time C1 C2 C3 C4

18:30 −30 −21 0 −3
18:45 −27 −20 −10 −4
19:00 −32 −15 0 −10
19:15 −28 −20 0 −10

A negative capacity indicates that the chiller is cooling, while a positive one indicates
that it is heating. Real implementations will impose restrictions that are not considered
here, such as smoothing the capacity transitions from one slot to another or preparing
the chiller for cooling or heating modes. Table 4 depicts the result of the optimization for
this example.
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Table 4. Model prediction applying optimal operational modes.

Feature Value

Comfort 0.12 ◦C
Consumed Energy, E 1300 kW.h
Coef. of Performance, COP 4.5 kW/kW
Ambient Temp. Change Rate, dTr

dt 0.15 ◦C/min
Time before performance 15 min

5.3. Algorithm Analysis

The analysis compares the performance and execution time (ET) of the algorithms.
They start with the same expected number of solutions, i.e., the population size for the
GA and the swarm size for the SI algorithm. The experiment involved population/swarm
sizes ranging from 100 to 350 in steps of 50. The mutation probabilities were the same, and
the SBX crossover probabilities and distribution index were the same for the GAs. The mu-
tation scheme followed a polynomial probability distribution, except for OMOPSO, which
combined uniform and nonuniform distributions with the same perturbation index, 0.5.

The algorithms stopped after 5000 iterations, and GAs stopped earlier if they were
triggered with the dominance threshold. In order to obtain stable results, the algorithms
were proved 10 times to determine the average of the obtained values. Figures 7–9 represent
the objective space for the variables Comfort, Consumed Energy, and COP in 2D diagrams.
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The GAs ran faster than the SI-based algorithms. MOGA improved the Random Search
by 13%, and OMOPSO improved it by 9%. It was observed that NSGA-III takes more time than
NSGA-II to execute. This is because of the extra computation required for the adaptive operator
and the generation of hyperplanes. On the other hand, the speed constraint mechanism seemed
to increase the ET of the SMPSO, compared with OMOPSO. All outperformed RS.

GD showed how close the fitness of the set of solutions was from the ideal PF, and
this is depicted in Figure 11.
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An approximate PF was constructed running the NSGA-II 20,000 times, simulating a
limit behavior. The accuracy of OMOPSO and MOGA with 75% and 65% improvements
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compared to Random Search was observed. It was unavoidable that the quasi-ideal PF
construction was insufficient for the rest of the algorithms. HV and EI are shown in
Figures 12 and 13.
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In both metrics, it is possible to identify the significant improvements of all the
algorithms compared with Random Search. The ε-Indicator show NSGA-III and MOGA
as the best algorithms, outperforming Random Search by 42% and 40%, while the SI
algorithms were worse (31–35%). The HV does not show significant differences among
algorithms but shows an improvement of 5% on average.

5.4. Visualization

Regarding the question of whether an algorithm outperforms another with a combina-
tion of any quality measures, such as those seen above, Zitzler came to the conclusion that
there was no such combination, but it could be seen as the equivalence to the concept of
dominating [54]. Thus, Figures 14–16 show 2D maps formed with the metrics of this study,
those closer to the bottom left corner being the most appropriate. The best algorithms are
found in the lower-left corner in all cases. The charts also show the distance among them,
presenting an intuitive method with which to make decisions as to which performs better.
Figure 14 shows the behavior of the algorithms when setting the priority in ET and GD.

This case yields the selection of either MOGA or OMOPSO algorithms as the best
for optimization accuracy. Both metrics penalize SMPSO, which obtains a GD even worse
than RS. Figure 15 prioritizes the HV (the inverse in this case for obtaining a homogeneous
visualization) with the ET.

In this case, SMPSO still performs worse than the others in terms of accuracy, but
much better than RS, likely due to diversity. All the rest behave similarly, the GA family
standing out. Figure 16 prioritizes the ε-Indicator and ET.

ε-Indicator also measures the cardinality and maintains SMPSO at the back, followed
by OMOPSO, while GAs shows better behavior.
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5.5. Energy Efficiency Improvements

To complete the experiment, four differentiated events available in the historical
data of the building were randomly selected to compare the performance of the HVAC
equipment in terms of energy efficiency, with the results that would have been obtained
by applying the proposed optimization. This indicates what can be expected from this
approach. The events are defined in Table 5.

Table 5. Model prediction applying optimal HOMs.

Dataset Cases Event 1 Event 2 Event 3 Event 4

Date 27 September 2017 30 December 2017 29 July 2017 16 February 2018
Outdoors Temperature 35.87 ◦C 15.12 ◦C 35.51 ◦C 14.99 ◦C
Simulation Start Time 18:00 16:30 18:00 16:30
Performance Schedule 21:00 19:30 21:00 19:30
Ambient Temp. (start) 25.85 ◦C 23.03 ◦C 26.03 ◦C 22.82 ◦C
Ambient Temp. (end) 25.54 ◦C 23.41 ◦C 25.66 ◦C 23.26 ◦C

To illustrate the example, a second decision-making process with a weighted sum was
set to select one of the solutions with values in the PF. Weights slightly favored Consumed
Energy savings over the others. Table 6 shows the results.

Table 6. Results obtained with MOGA optimization and comparison with real data.

Objective Space Historical Data MOGA Improvement

Event 1

Consumed Energy 1138.69 KW.h 154.63 KW.h 86%
Comfort 2.04 ◦C 0.13 ◦C <0.5 ◦C
COP 3.29 3.25 >3.00

Event 2

Consumed Energy 365.25 KW.h 132.51 KW.h 64%
Comfort −0.08 ◦C 0.27 ◦C <0.5 ◦C
COP 4.31 3.42 >3.00

Event 3

Consumed Energy 931.02 KW.h 126.85 KW.h 86%
Comfort 2.16 ◦C 0.20 ◦C <0.5 ◦C
COP 3.59 4.69 >3.00

Event 4

Consumed Energy 338.04 KW.h 132.44 KW.h 61%
Comfort −0.23 ◦C 0.40 ◦C <0.5 ◦C
COP 3.64 3.69 >3.00

The right column shows the theoretical energy savings in each case with the optimized
HOMs compared with what was actually recorded in the dataset. This column also stresses
the achievements in comfort with expected deviations of less than 0.5 ◦C and HVAC
subsystems working with COPs above 3.00, which is considered a good value. These
impressive results of 60–80% in energy savings, preserving the comfort and the system
performance, must be adjusted with further research considering real restrictions, but they
hint toward a promising line of research.

5.6. Comparison with Other Works

Several authors have proposed comparisons between NSGA-II and MOPSO, which
may contribute to the comprehension of the results. Keshavarz et al. [55] compared NSGA-
II and MOPSO for the stochastic optimization of an inventory control system, showing that
NSGA-II has better performance in spacing and in the number of Pareto optimal solutions,
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while MOPSO better spreads the fitness of the solution set and consumes fewer compu-
tational resources. Niyomubyeyi et al. [56] studied optimization in evacuation planning,
obtaining better convergence and spread with MOPSO, but the algorithm execution took
five times longer than NSGA-II. Saldanha et al. [18] obtained similar results in convergence
and spread for MOPSO and NSGA-II, although MOPSO yielded better results in spacing.
Elgammal et al. [57] studied the integration of hybrid wind photovoltaic and fuel cells,
obtaining similar system operating costs with both, but in this case, the MOPSO execution
time was shorter than NSGA-II.

6. Conclusions

This study shows the performance of several genetic and SI-based algorithms when
optimizing the control of a building HVAC system. The study works with the real historical
data of a complex and singular building by adapting the control logic to the available
sensed measures and individual chiller actuators. The results yield that simple MOGA and
NSGA-II/III run faster than MOPSOs, confirming the pure Random Search algorithm as
the slowest. The best convergence is obtained with OMOPSO according to GD and HV.

The achievement on energy consumption is impressive, as shown with several events
randomly selected from the data, reaching savings from 60% to 80%. These results will
be proved for generalization purposes with further research that will include the new
model’s restrictions.

This study is the first to take two new objectives into the optimization problem: the
HVAC subsystem’s performance, COP, and the rate of change in ambient temperature at
the end of the system startup stage. The first objective brings the possibility of advanced
supervisory policies that improve the maintenance of the equipment and extend its lifecycle.
The minimization of the second allows for a smooth transition to the permanent stage of
the HVAC operation, reducing the overshoots or the underdamping effect of the room
temperature values. In the following works, the dominance variation produced when
adding new conflicting objectives and how this affects control system decision-making will
be analyzed.

The proposed simple visualization of the algorithms not only allows for an intuitive
understanding of which algorithm performs better but also opens the possibility of the au-
tomatic real-time instantiation of the most convenient algorithm from a bank of optimizers
according to given contextual information. This is important because there are no rigid
rules, but rather, existing or new strategies, such as running out of time, operations when
the building is closed, etc.

The article also claims for consensus in optimization with a body of knowledge that
integrates the contribution of the different disciplines that theorize or are applicable to the case.

This study requires generalization to demonstrate its scope with other different buildings,
HVAC systems, and overall different variables extracted from the control logic. It is also of
interest to work on parameter tuning to characterize the inherent “no free lunch” theorem.

The use of real data has made the study more reliable. The singularity of the building
and the heterogeneous equipment that forms the HVAC system represents a demanding
test for this research.

This research will contribute to the development of the smart city with autonomic
management systems capable of learning from experience and improving with the con-
text using AI to overcome the complexity of the managed systems and changing the
user’s requirements.
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