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Abstract

:

We show presence a special torse-forming vector field (a particular form of torse-forming of a vector field) on generalized Robertson–Walker (GRW) spacetime, which is an eigenvector of the de Rham–Laplace operator. This paves the way to showing that the presence of a time-like special torse-forming vector field  ξ  with potential function  ρ  on a Lorentzian manifold   ( M , g )  , dim  M > 5  , which is an eigenvector of the de Rham Laplace operator, gives a characterization of a GRW-spacetime. We show that if, in addition, the function   ξ ( ρ )   is nowhere zero, then the fibers of the GRW-spacetime are compact. Finally, we show that on a simply connected Lorentzian manifold   ( M , g )   that admits a time-like special torse-forming vector field  ξ , there is a function f called the associated function of  ξ . It is shown that if a connected Lorentzian manifold   ( M , g )  , dim  M > 4  , admits a time-like special torse-forming vector field  ξ  with associated function f nowhere zero and satisfies the Fischer–Marsden equation, then   ( M , g )   is a quasi-Einstein manifold.
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1. Introduction


It is well known that through cosmological considerations the space being homogeneous and isotropic in the large scale, picks the Robertson–Walker metrics. It amounts to the fact that an n-dimensional spacetime,   n > 3  , acquires the form   I  × φ  N  , with metric   g = − d  t 2  +  φ 2   g ¯   , where I is an open interval,  φ  is a smooth positive function defined on I, and   N ,  g ¯    is an   ( n − 1 )  -dimensional Riemannian manifold of constant curvature. An n-dimensional generalized Robertson–Walker spacetime (GRW-spacetime) is   I  × φ  N  , with metric   g = − d  t 2  +  φ 2   g ¯   , where   N ,  g ¯    is an   ( n − 1 )  -dimensional Riemannian manifold (cf. [1,2]). An interesting characterization of GRW-spacetime was obtained by Chen (cf. [3]), by proving that a Lorentzian manifold   ( M , g )   admits a non-trivial time-like concircular vector field, if, and only if, it is a GRW-spacetime. Additionally, for interesting characterizations of GRW-spacetimes using torse-forming vector fields and Weyl tensors, we refer to (cf. [4,5]).



A concircular vector field  ξ  on a semi-Riemannian manifold   ( M , g )   satisfies:


   ∇ U  ξ = ρ U ,  U ∈ X  ( M )  ,  








where  ρ  is a scalar, ∇ is a Levi–Civita connection, and   X ( M )   is the Lie algebra of smooth vector fields on M (cf. [5,6,7]). For other characterizations of GRW-spacetimes, we refer to (cf. [2,3,8,9]).



Yano generalized concircular vector fields by introducing a torse-forming vector field on semi-Riemannian manifold   ( M , g )   (cf. [10]), defined by:


   ∇ U  ξ = ρ U + α  ( U )  ξ ,  U ∈ X  ( M )  ,  



(1)




where  α  is a 1-form called the torsed 1-form. Naturally, if   α = 0  , then a torse-forming vector field is a concircular vector field. These vector fields are also used in characterizing a GRW-spacetime (cf. [2,4]). In [11], Chen considered an interesting special class of torse-forming vector field, requiring  ξ  to be nowhere zero and satisfying   α  ξ  = 0  , that is the torse-forming vector field is perpendicular to the dual-vector field to torsed form  α , called torqued vector fields.



In the present paper, we introduce on a Lorentzian manifold a special type of torse-forming vector field. A unit time-like torse-forming vector field  ξ  on a Lorentzian manifold   ( M , g )   is said to be a special torse-forming vector field if it satisfies:


   ∇ U  ξ = ρ  U + η ( U ) ξ  ,  U ∈ X  ( M )  ,  



(2)




where  ρ  is a non-zero function and  η  is 1-form dual to  ξ . We call  ρ  the potential function of the special torse-forming vector field  ξ . Note that for a special torse-forming vector field, using Equation (1), we have   α ( U ) = − ρ η ( U )  , that is  ξ  is a torse-forming vector field, which is parallel to the vector field dual  α  as opposed to the torqued vector field where  ξ  is orthogonal to the vector field dual  α . Moreover, from the definition of special torse-forming vector field  ξ  on a Lorentzian manifold, it follows that under no situation, it reduces to a concircular vector field.



We study the role of a time-like special torse-forming vector field  ξ  on a Lorentzian manifold   ( M , g )   in characterizing GRW-spacetimes. It is achieved by using the de Rham–Laplace operator ⊡ (cf. [12]) and a time-like special torse-forming vector field  ξ  with potential function  ρ  on a connected Lorentzian manifold   ( M , g )  , dim  M > 5  , through showing that   ⊡ ξ = σ ξ   holds for a smooth function  σ , if, and only if,   ( M , g )   is a GRW-spacetime (see Theorem 1). We also show that if the function   ξ ( ρ )   is nowhere zero on M, then the fibers of GRW-spacetime   I  × φ  N   are compact (see Theorem 2).



If  ξ  is a special torse-forming vector field on a simply connected Lorentzian manifold   ( M , g )  , then the dual-1-form  η  is closed (see Equation (15)), and, therefore, there is a function f such that   η = d f  . Thus, the special torse-forming vector field  ξ  on a simply connected Lorentzian manifold   ( M , g )   satisfies   ξ = ∇ f  , call this function f the associated function of  ξ . Recall that a Lorentzian manifold   ( M , g )   is said to be a quasi-Einstein manifold (cf. [13]) if its Ricci tensor has the following expression:


  R i c =  f 1  g +  f 2  β ⊗ β ,  



(3)




where    f 1  ,  f 2    are scalars and  β  is a 1-form on M. Exact solutions of the Einstein field equations can provide very important information about quasi-Einstein manifolds. For example, the Robertson–Walker spacetimes are quasi-Einstein manifolds. For this reason, the study of quasi-Einstein manifolds is important. It is shown that if the associated function f of the special torse-forming vector field  ξ  on a simply connected Lorentzian manifold   ( M , g )  , dim  M > 4  , satisfies (i) f is nowhere zero and (ii) f is a solution of the Fischer–Marsden equation, then   ( M , g )   is a quasi-Einstein manifold (see Theorem 3). Additionally, it is shown that if the scalar curvature  τ  of a simply connected Lorentzian manifold   ( M , g )  , dim  M ≥ 4  , is a constant and possesses a special torse-forming vector field  ξ  with potential function  ρ  and associated function f satisfying the above two conditions, then the potential function  ρ  is an eigenfunction of the Laplace operator  Δ  (see Corollary 1).




2. Preliminaries


Let  φ  be a smooth function on an n-dimensional connected Lorentzian   ( M , g )  . The Hessian operator   H φ   is defined by:


   H φ   ( V )  =  ∇ V  ∇ φ ,  V ∈ X  ( M )  ,  



(4)




where   ∇ φ   is the gradient of  φ  and Hessian   H e s s ( φ )   is defined by (cf. [14]):


  H e s s  ( φ )   (  U 1  ,  U 2  )  = g   H φ    U 1   ,  U 2   ,   U 1  ,  U 2  ∈ X  ( M )  .  



(5)







The Laplacian   Δ φ   of the function  φ  is given by   Δ φ =  d i v   ∇ φ   , and it satisfies:


  Δ φ = t r  H φ  .  



(6)







Let  ξ  be a time-like special torse-forming vector field on a Lorentzian   ( M , g )  . Then, using the expression for the curvature tensor field


  R  (  F 1  ,  F 2  )   F 3  =  ∇  F 1    ∇  F 2    F 3  −  ∇  F 2    ∇  F 1    F 3  −  ∇   F 1  ,  F 2     F 3  ,   F 1  ,  F 2  ,  F 3  ∈ X  ( M )   








and Equation (2), we compute:


  R  (  F 1  ,  F 2  )  ξ =  F 1   ( ρ )   F 2  −  F 2   ( ρ )   F 1  +   F 1   ( ρ )  η   F 2   −  F 2   ( ρ )  η   F 1    ξ +  ρ 2   η  (  F 2  )   F 1  − η  (  F 1  )   F 2   .  











Above equation gives expression for the Ricci tensor   R i c   of the Lorentzian manifold   ( M , g )  :


  R i c  ( V , ξ )  = −  ( n − 4 )  V  ( ρ )  +  ξ  ( ρ )  +  ( n − 3 )   ρ 2   η  ( V )  ,  V ∈ X  ( M )  .  



(7)







Note that the Ricci operator Q of the Lorentzian manifold   ( M , g )   is given by   R i c  ( U , V )  = g  Q U , V   ,   U ∈ X ( M )  , and, therefore, Equation (7) implies:


  Q ξ = −  ( n − 4 )  ∇ ρ +  ξ  ( ρ )  +  ( n − 3 )   ρ 2   ξ  



(8)




and:


  R i c  ξ , ξ  = −  ( n − 3 )   ξ  ( ρ )  +  ρ 2   .  



(9)







The Laplace operator  Δ  acting on vector fields on the Lorentzian manifold   ( M , g )   is defined by:


  Δ U =  ∑  i = 1  n    ∇  v i    ∇  v i   U −  ∇   ∇  v i    v i    U  ,  U ∈ X  ( M )  ,  



(10)




where    v 1  , … ,  v n    is a local orthonormal frame on M. The de Rham–Laplace operator ⊡ on the Lorentzian manifold   ( M , g )   is   ⊡ : X ( M ) → X ( M )   given by (cf. [12]):


  ⊡ U = Δ U + Q U ,  U ∈ X ( M ) .  



(11)







Lemma 1.

Let ξ be a time-like special torse-forming vector on an n-dimensional Lorentzian manifold   M , g   with potential function ρ. Then:


   ⊡ ξ = −  ( n − 5 )  ∇ ρ + 2  ( n − 2 )   ρ 2  ξ .   













Proof. 

Using Equation (2), for   U ∈ X ( M )  , we have:


   ∇ U   ∇ U  ξ −  ∇   ∇ U  U   ξ = U  ( ρ )  U + U  ( ρ )  η  U  ξ +  ρ 2    U  2  ξ + 2  ρ 2  η   U  2  ξ +  ρ 2  η  U  U .  











Since  ξ  is a time-like unit vector field, choosing a local frame    v 1  , … ,  v  n − 1   , ξ   on M, where   v i  ,   i = 1 , … , n − 1   are spacelike unit vector fields in the above equation, to conclude:


  Δ ξ = ∇ ρ −  ξ  ρ  −  ( n − 1 )   ρ 2   ξ .  











Thus, using Equations (8) and (11) with the above equation, we conclude:


  ⊡ ξ = −  ( n − 5 )  ∇ ρ + 2  ( n − 2 )   ρ 2  ξ .  











□






3. Characterizing GRW Spacetimes


Consider an n-dimensional GRW-spacetime   M = I  × φ  N   with metric   g = − d  t 2  +  φ 2   g ¯   . Then,   ξ =  d  d t     is a time-like unit vector field on   ( M , g )  . Let ∇ be the Levi–Civita connection on   ( M , g )  . Then, for a   U ∈ X ( M )  , we have   U = h ξ + E  ,   E ∈ X ( N )  . If we denote by   η = d t  , then   η ( U ) = g ( U , ξ ) = − h  , where   η  ξ  = g  ξ , ξ  = − 1  . Using fundamental equations for the warped product (cf. [8]), we have:


   ∇ U  ξ =  ∇  h ξ + E   ξ =  ∇ E  ξ =   ξ ( φ )  φ  E =   ξ ( φ )  φ   U − h ξ  =   ξ ( φ )  φ   U + η ( U ) ξ  .  











Thus,


   ∇ U  ξ = ρ  U + η ( U ) ξ  ,  U ∈ X  ( M )  ,  ρ =   ξ ( φ )  φ  ,  



(12)




this proves,  ξ  is a special torse-forming vector field on the GRW-spacetime   ( M , g )  . Now, using the expression for the Ricci tensor for the warped product   I  × φ  N   (cf. [8]), we have:


  R i c  ξ , E  = 0 ,  E ∈ X  ( N )  ,  








which implies   Q  ξ  = λ ξ   for a smooth function  λ  on I. Furthermore, choosing a local frame    v 1  , … ,  v  n − 1     on N, we have a local orthonormal frame   ξ ,  v 1  , … ,  v  n − 1     on M. Then, using Equation (12), we have    ∇ ξ  ξ = 0  ,    ∇  v i   ξ = ρ  v i   ,    v i   ρ  = 0  , and:


   ∇  v i    ∇  v i   ξ = ρ  ∇  v i    v i  ,   ∇ ξ   ∇ ξ  ξ = 0 .  











Furthermore, using Equation (12), we have:


   ∇   ∇  v i    v i    ξ = ρ   ∇  v i    v i  + g   ∇  v i    v i  , ξ  ξ  = ρ  ∇  v i    v i  − ρ g   v i  ,  ∇  v i   ξ  ξ = ρ  ∇  v i    v i  −  ρ 2  ξ .  











Thus, the rough Laplace operator  Δ  acting on  ξ  is given by:


  Δ ξ =   ∇ ξ   ∇ ξ  ξ −  ∇   ∇ ξ  ξ   ξ  +  ∑  i = 1   n − 1     ∇  v i    ∇  v i   ξ −  ∇   ∇  v i    u i    ξ  =  ( n − 1 )   ρ 2  ξ .  











Now, we see that the de Rham–Laplace operator ⊡ acting on  ξ  is given by:


  ⊡ ξ =   ( n − 1 )   ρ 2  + λ  ξ .  











Hence, GRW-spacetime   M , g   admits a special torse-forming vector field  ξ , which is an eigenvector of the de Rham–Laplace operator ⊡.



Theorem 1.

An n-dimensional connected Lorentzian manifold   ( M , g )  ,   n > 5  , is a GRW-spacetime   I  × φ  N  , if, and only if, it admits a time-like special torse-forming vector field ξ, which is an eigenvector of the de Rham–Laplace operator on   M , g  .





Proof. 

Let   ( M , g )   be a connected Lorentzian manifold,   n > 5  ,  ξ  be a time-like special torse-forming vector field on   M , g   with   ⊡ ξ = λ ξ  ,  λ  being a scalar. We denote by ∇ the Levi–Civita connection on   M , g  ; using Equation (2), we have:


   ∇ ξ  ξ = 0 .  



(13)







Define a smooth distribution  D  on M by:


  D =  U ∈ X ( M ) : η ( U ) = 0  .  



(14)







Note that Equation (2) gives:


  d η  U , V  = g   ∇ U  ξ , V  − g   ∇ V  ξ , U  = 0 ,  U , V ∈ X  ( M )  ,  



(15)




that is the dual-1-form  η  to  ξ  is closed. Thus, for   E , F ∈ D  , we have   η   E , F   = − d η  E , F  = 0  , that is   [ E , F ] ∈ D  , proving that the distribution  D  is integrable. Let N be a leaf of  D . Then, N is a hypersurface of M with unit normal  ξ . Using Equation (2), we observe that for   E ∈ X ( N )  ,


   ∇ E  ξ = ρ E ,  



(16)




that is the shape operator S of N is given by:


  S ( E ) = − ρ E ,  E ∈ X ( N ) .  



(17)







Now, as   ⊡ ξ = λ ξ  , where  λ  is a scalar on M, using Lemma 1, we get:


  −  ( n − 5 )  ∇ ρ + 2  ( n − 2 )   ρ 2  ξ = λ ξ .  



(18)







On taking the inner product in above equation with  ξ  yields


  λ =  ( n − 5 )  ξ  ρ  + 2  ( n − 2 )   ρ 2   








and substituting this value of  λ  in Equation (18), we have:


  −  ( n − 5 )  ∇ ρ =  ( n − 5 )  ξ  ρ  ξ .  



(19)







Above equation on taking the inner product with   E ∈ X ( N )  , gives   ( n − 5 ) E ( ρ ) = 0  , and the assumption   n > 5   implies   E  ρ  = 0  , that is  ρ  is a constant on the hypersurface N. Therefore, Equation (17) implies that N is a totally umbilical hypersurface of M. Moreover, the orthogonal complementary distribution   D ⊥   to  D  is one-dimensional spanned by  ξ , and by Equation (13), the integral curves of the distribution   D ⊥   are geodesics on M. Thus,   ( M , g )   is the warped product   I  × φ  N   (cf. [15]), that is   ( M , g )   is a GRW-spacetime.



Conversely, we have already seen that a GRW-spacetime   I  × φ  N   admits a special torse-forming vector field  ξ , which is an eigenvector of ⊡. □





In the above result we have seen that the presence of a time-like special torse-forming vector field  ξ  on a Lorentzian manifold   ( M , g )   satisfying   ⊡ ξ = λ ξ   for scalar  λ  is a GRW-spacetime   I  × φ  N  . It is interesting to observe if in addition   ξ ( ρ )   is nowhere zero, then this condition has effect on the topology of N.



Theorem 2.

Let ξ be a time-like special torse-forming vector field with potential function ρ on an n-dimensional complete and connected Lorentzian manifold   ( M , g )  ,   n > 5  . If ξ is an eigenvector of the de Rham–Laplace operator on   ( M , g )   and the function   ξ  ρ    is nowhere zero, then   ( M , g )   is GRW-spacetime   I  × φ  N  , with N compact.





Proof. 

Let  ξ  be a time-like special torse-forming vector field on a Lorentzian manifold   ( M , g )  ,   n > 5  , with  ξ  being an eigenvector of the de Rham Laplace operator on   ( M , g )   and the function   ξ  ρ  ≠ 0   everywhere on M. Since   n > 5  , Equation (19) implies:


  ∇ ρ = − ξ  ρ  ξ .  



(20)







As  ξ  is a time-like unit vector field and   ξ  ρ    is nowhere zero, the above equation implies that   ∇ ρ   is nowhere zero on M. Therefore, the potential function   ρ : M → E   is a submersion, and each fiber    F x  =  ρ  − 1    ρ ( x )   ,   x ∈  M, is an   n − 1  -dimensional smooth manifold; as   ρ ( x )   is compact in  E , we obtain that   F x   is compact. Consider a smooth vector field:


  u = −  ξ  ξ  ρ     








that has no zeros on M. Then, it follows that   u  ρ  = − 1   and  u  has a local flow    ϕ s    that satisfies:


  ρ   ϕ s   ( x )   = σ  ( x )  − s .  



(21)







Recall the escape Lemma (cf. [16]), which states that if  γ  is a integral curve of  u  whose maximal domain is not all of  E , then the image of  γ  cannot lie in any compact subset of M. Using the escape lemma and Equation (21) on a complete and connected M, we obtain that  u  is complete and has global flow    ϕ s   . Now, define   f : E ×  F x  → M   by:


  f  ( s , u )  =  ϕ s   ( u )  ,  u ∈  F x  .  











Then, f is smooth, and for each   u ∈ M  , we find   s ∈ E   such that    ϕ s   ( u )  = y ∈  F x   , satisfying   u =  ϕ  − s    ( y )   . Thus,   f ( − s , y ) = u  , that is f is an on-to map. We observe that, on taking   (  s 1  ,  u 1  )  ,   (  s 2  ,  v 2  )   in   E ×  F x    satisfying   f  (  s 1  ,  u 1  )  = f  (  s 2  ,  u 2  )   , we have    ϕ  s 1    (  u 1  )  =  ϕ  s 2    (  u 2  )   , and using Equation (21), we obtain   ρ  (  u 1  )  −  s 1  = ρ  (  u 2  )  −  s 2   . As    u 1  ,  u 2  ∈  F x   ,   ρ  (  u 1  )  = ρ  (  u 2  )   , and we obtain    s 1  =  s 2   . Thus, using    ϕ  s 1    (  u 1  )  =  ϕ  s 2    (  u 2  )   , we arrive at    u 1  =  u 2   , that is f is one-to-one. Furthermore, we have:


   f  − 1    ( u )  =  ( − s , y )  =  − s ,  ϕ s   ( u )   ,  








which is smooth. Hence,   f : E ×  F x  → M   is a diffeomorphism, where   F x   is a compact subset of M. Using Theorem 3.1, we see that   I × N   is diffeomorphic to   E ×  F x   , and as the open interval I is diffeomorphic to  E , the fiber N must be diffeomorphic to   F x  . As   F x   is compact, we obtain that N is compact. □






4. Lorentzian Manifolds as Quasi-Einstein Manifolds


Fischer–Marsden considered the following differential equation on a semi-Riemannian manifold   ( M , g )   (cf. [17]):


   Δ f  g + f R i c = H e s s  ( f )  ,  



(22)




where f is a smooth function on M. We call the above differential equation the Fischer–Marsden equation. This differential equation is closely associated with Einstein spaces. A generalization of Einstein manifolds was considered in [13], where the authors defined quasi-Einstein manifolds. A semi-Riemannian manifold   ( M , g )   is said to be a quasi-Einstein manifold if its Ricci tensor satisfies Equation (3). In this section, we use a unit time-like special torse-forming vector field  ξ  on a Lorentzian manifold   ( M , g )   to find conditions under which   ( M , g )   is a quasi-Einstein manifold.



Let  ξ  be a time-like special torse-forming vector field on a simply connected Lorentzian manifold   ( M , g )  . On using Equations (2) and (15), we have   d η = 0  , that is  η  is a closed 1-form and M is simply connected   η = d f   (exact) for a smooth function f on M. Thus, for a time-like special torse-forming  ξ  on a simply connected Lorentzian manifold   ( M , g )  , we have:


  ξ = ∇ f  



(23)




and we call the smooth function f in Equation (23) the associated function of  ξ .



Theorem 3.

Let ξ be a time-like special torse-forming vector field on an n-dimensional simply connected Lorentzian manifold   ( M , g )  ,   n > 4  , with potential function ρ and associated function f. If f is a nowhere zero solution of the Fischer–Marsden equation, then   ( M , g )   is a quasi-Einstein manifold.





Proof. 

Using Equations (2) and (23), we have:


   H f   ( U )  = ρ  U + η ( U ) ξ  ,  








which implies:


  H e s s ( f ) = ρ g + ρ η ⊗ η ,  Δ f = ( n − 3 ) ρ .  



(24)







Since f satisfies Fischer–Marsden equation, using Equations (22) and (24), we have:


  f R i c = − ( n − 4 ) ρ g + ρ η ⊗ η .  



(25)







As f is nowhere zero, we have:


  R i c = −  ( n − 4 )   ρ  f  − 1    g +  ρ  f  − 1    η ⊗ η .  








Hence,   ( M , g )   is a quasi-Einstein manifold. □





If simply connected Lorentzian manifold   ( M , g )   has scalar curvature   τ = t r Q  , using above result we have the following result that gives a relation between  ρ  and f of the time-like special torse-forming vector field  ξ  on   ( M , g )  .



Corollary 1.

Let ξ be a time-like special torse-forming vector field on an n-dimensional simply connected Lorentzian manifold   ( M , g )  ,   n ≥ 4  , with potential function ρ and associated function f. If f is a solution of the Fischer–Marsden equation, then:


   ρ = −  τ   ( n − 3 )  2   f .   











In particular, if the scalar curvature τ of   ( M , g )   is a constant, then the potential function ρ is an eigenfunction of the Laplace operator Δ.





Proof. 

Let  ξ  be a time-like special torse-forming vector field on a simply connected Lorentzian manifold   ( M , g )  ,   n ≥ 4  , with potential function  ρ  and associated function f. Suppose f satisfies Equation (22). Then, Equation (25), gives


  f τ = −  ( n − 4 )   ( n − 2 )  ρ − ρ = −   ( n − 3 )  2  ρ .  











Hence,


  ρ = −  τ   ( n − 3 )  2   f .  











Now, if  τ  is a constant, then the above equation in view of Equation (24) implies:


  Δ ρ = −  τ  ( n − 3 )   ρ ,  








that is the potential function  ρ  is an eigenfunction of  Δ . □
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