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Abstract: The present research paper explains the influence of Marangoni convection on magne-
tohydrodynamic viscous dissipation and heat transfer on hybrid nanofluids in a rotating system
among two surfaces. Then, the properties of heat and mass transfer are analysed. With the similarity
transformation, the governing equations of the defined flow problem are converted into nonlinear
ordinary differential equations. These compact equations are solved approximately and analytically
using the optimal homotopy analysis method. The impact of different parameters is interpreted
through graphs in the form of velocity and temperature profiles. The influence of the skin friction
coefficient and Nusselt number are presented in the form of tables. The comparison of the present
research paper and published works is also presented table.
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1. Introduction

Single-coated two-dimensional sheets of graphite are called graphene. Due to poor
solubility, graphene is mostly used as a nanofluid. It is used in the form of graphene
oxide (GO) due to its highly oxidised structure. GO is used in industrial machinery and
many engineering apparatus, and its flow is used for the stability of centrifugal forces by
engaging the circular pressure gradient. Heat transfer is one of the important properties
in chemical processes. The heat transfer properties of the base fluid, such as water and
mineral oil, are different methods used to increase the heat transfer. For instance, reduced
heat transfer and time heat exchanger size can be minimised. Ethylene glycol (EG) can be
used as a cooling fluid and anti-freezing agent to improve thermal properties because the
thermal conductivity of metals and nonmetals and carbon structures are higher than those
of the base fluids. Many studies have been conducted on nanofluids, but hybrid nanofluids,
which are one of the new types of nanofluid, have recently attracted the attention of
researchers. Hybrid nanofluids are produced in two forms: First, two or more types of
nanofluids are suspended in the base fluid. Second, nanoparticles are suspended in the base
fluid, such as composites. Researchers’ attention on this topic can be attributed to the heat
transfer rate enhancement and production cost reduction that can be achieved through the
application of these nanofluids. This new type of heat transport fluid has also encouraged
various researchers to study real-world problems. Moreover, hybrid nanofluids increase
thermophysical properties and the heat transfer ratio. Hybrid nanofluids are subclasses of
nanoliquids. They consist of two different nanoparticles sprinkled in a base fluid. They are
characterised by high heat transfer ratios relative to conventional nanofluids, hence the
current interest shown by the academic and industrial research communities. Specifically,
researchers have taken interest in the magneto Marangoni convection of nanofluids due to
its vast applications in chemical, industrial, process, thin liquid films and crystal growth.
The convection is produced due to the surface tension known as Marangoni convection.
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Pop et al. [1] studied different structures of the thermo-solutal boundary film Marangoni
convective method. Moreover, Al-Mudhaf and Chamkha [2] used a solute gradient to study
Marangoni convection in porous media. Moreover, Wang [3] used a perturbation method
to investigate Marangoni convection and thin-film spray, and Chen [4] investigated the
power-law model of Marangoni convection and thin-film spray. Apart from that, Magyari
and Chamkha [5] studied the impact of Reynolds number on Marangoni convection
using the flow assumption. In addition, Lin et al. [6,7] used a thermal gradient to study
the magnetic hydrodynamic Marangoni convective, and Aly and Ebaid [8] studied the
exact solution of the Marangoni convection flow of viscid nanoliquid on a porous surface.
Finally, Rehman et al. [9] analytically studied Marangoni convection on thin films using a
stretching cylinder.

Nanofluids are defined as the colloidal combination of a nanosized particle (<100 nm)
in the base fluid, and they are used to increase the heat transfer ratio of the base fluid.
Due to this property, nanofluids have some key applications in industry, such as heat
exchange, coolants, lubricants and microchannel heat sinks. Nanofluids are used to de-
termine the best thermal properties with the least possible (1%) volume fraction of the
nanoparticle. Moreover, Rehman et al. [10] used a stretching surface to analytically study a
unsteady thin-film nanofluid. Rehman et al. [11] used a stretching surface to analytically
study an unsteady thin film along with the magnetic field. Moreover, Sandeep et al. [12]
used a magnetic field to discuss the thermal enhancement of an unsteady nanofluid, and
Khan et al. [13] investigated the impact of carbon nanotube (CNT) nanofluids using Riga
plates. Sheikholeslami [14] used Darcy’s law to discuss copper oxide–water nanofluids, and
Sheikholeslami and Vajravelu [15] used variable magnetic fields to discuss the nanofluid
heat transfer in a cavity. Furthermore, Aman et al. [16] used Poiseuille flow to study the
variation of a thermal field, and Khan et al. [17] used a rotating conduit to discuss a three-
dimensional (3D) squeezed flow. The heat transfer ratio of a nanofluid is greater than that
of conventional fluids, such as water, EG and oil. Recently, a new type of nanofluid known
as a hybrid nanofluid was used to increase the heat transfer ratio. A hybrid nanofluid is the
mixture of two or more different nanoparticles distributed in a base fluid. Many research
works have been conducted to investigate thermal conductivity, revealing several dynamic
declarations of these properties. For example, Han et al. [18] used temperatures between
10 ◦C and 90 ◦C to discuss a hybrid CNT. Meanwhile, Suresh et al. [19] used volume
concentrations from 0.1% to 2% to discuss a Al2O3-Cu/H2O hybrid nanofluid. Moreover,
Madhesh and Kalaiselvam [20] examined a Cu-TiO2 water base nanofluid and showed
that the enhancement of the heat transfer is approximately 48.4% for a concentration of
0.7%. Furthermore, Devi and Devi [21,22] used a stretching sheet to study the problems
of heat transfer and flow of hydromagnetic hybrid nanofluids (Cu-Al2O3/H2O). By con-
trast, Tayebi et al. [23] numerically interpreted the problem of heat transfer analyses of
Cu-Al2O3/H2O hybrid nanofluids in an annulus. The characteristics of the TiO2-Cu/H2O
hybrid nanofluid with Lorentz force were analysed by Ghadikolaei et al. [24]. Meanwhile,
Hayat et al. [25] studied Ag-CuO/water hybrid nanofluids using rotating surfaces. In addi-
tion, Yousefi et al. [26] investigated the aqueous titania–copper hybrid nanofluid stagnation
point flow toward the stretching cylinder. Consequently, Subhani and Nadeem [27] studied
the behaviour of a Cu-TiO2/H2O hybrid nanofluid over a stretching surface. Based on the
literature study, the number of researchers working on hybrid nanofluids is very low. Thus,
the purpose of the present paper was to study the effect of Marangoni convection on the
combined effect of magnetohydrodynamic viscous dissipation and heat transfer on hybrid
nanofluids in a rotating system among two surfaces. The approximate analytical method,
namely, the optimal homotopy analysis method (OHAM), is used to solve nonlinear differ-
ential equations. Liao [28] used this method to solve the nonlinear differential equation.
The results of important parameters, such as the magnetic parameter, Prandtl number,
Eckert number and Marangoni convection parameters, for the velocity and temperature
profiles are plotted and discussed. The convergences of the flow problem are obtained with
up to 25 iterations using the BVPh 2.0 package of Mathematica. The skin friction coefficient
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and Nusselt number are explained in table form. The remainder of the paper is presented
as follows: The literature review is presented in Section 1. The mathematical formulation of
the important equation with boundary condition is derived in Section 2, and the results and
discussion are described in Section 3. Moreover, the conclusion is presented in Section 4.
The following structures define the novelty of this investigation:

• Hybrid nanofluid along with the magnetic field
• Effect of Marangoni convection on hybrid nanofluids along with the magnetic field

and viscous dissipation
• Approximate analytical method [29–36] for the approximate analytical series solution

of the flow problem
• Influence of Marangoni convection on the 3D flow.

2. Mathematical Formulation of the Given Flow Problem

Consider an incompressible time-independent viscous hybrid nanofluid between two
parallel surfaces. In this combination of surfaces, one surface is stretchable, and the other is
stationary. In this system, the plate and hybrid nanofluid rotate simultaneously around the
y-axis, the x is equivalent to the plate’s surface, and the z-axis is normal to x, y, as shown in
Figure 1. The plates are set at y = 0 and y = h. The penetrable surface of the channel is at
y = h, which depicts the unbroken suction and injection and the movable surface of the
channel at y = 0. We also consider the influence of the constant magnetic field of strength
B0, which is normal to the plate from the y-axis.

Figure 1. Geometry of the given flow problem.

The governing equations for continuity, momentum and temperature for the time-
independent 3D flow of hybrid nanofluid are given below:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

u
∂v
∂x

+ v
∂v
∂y

= − 1
ρhn f

∂p
∂y

+
µhn f

ρhn f

(
∂2v
∂x2 +

∂2v
∂y2

)
(2)

u
∂w
∂x

+ v
∂w
∂y
− 2Ωw =

µhn f

ρhn f

(
∂2w
∂x2 +

∂2w
∂y2

)
−

σf B2
0

ρhn f
w (3)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f(

ρCp
)

hn f

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
−

σf B2
0

ρhn f
u +

σf B2
0(

ρCp
)

hn f

(
u2 + w2

)
+

µhn f(
ρCp

)
hn f

(
∂u
∂y

)2
. (4)
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In the above equations, u, v, w represent the velocity along x, y and z-directions, respec-
tively. Ω represents the portend angular velocity, B0 shows the magnetic field,B0 represents
the pressure, σf represents the electric conductivity of the nanofluid, T is the temperature,

and qrad = −
(

4σ∗
3k∗hn f

)
∂T4

∂y . is the heat flux for radiation.

The relative boundary conditions are

u = uw = ax, w = 0, v = 0, T = TH at y = 0
= 0, w = 0, v = v0, T = T0 at y = h.

(5)

The defined similarity transformations are

η = y
h , ν = −ah f (η), u = ax f ′(η)
w = axg(η), θ = T−TH

T0−TH
.

(6)

We used the approximate analytical method because it is difficult to solve nonlin-
ear partial differential equations analytically. Thus, first, we convert nonlinear partial
differential equations to nonlinear ordinary differential equations with a single indepen-
dent variable η. For this, ν = −ah f (η), u = ax f ′(η), w = axg(η) and θ = T−TH

T0−TH
, from

Equation (6) are substituted into Equations (1)–(4). Equation (6) satisfies Equation (1)
identically. Next, we converted Equations (2)–(4) to the following forms:

g′′ + A1(1− φGO− EG− φGO−W)2.5Re( f g′ − f ′g)+
2A1R0(1− φGO− EG− φGO−W)2.5 f ′ −M(1− φGO− EG− φGO−W)2.5g = 0.

(7)

f (iv) + A1(1− φGO− EG− φGO−W)2.5Re m( f f ′′′ − f ′ f ′′ )−
2A1R0(1− φGO− EG− φGO−W)2.5g′ −M(1− φGO− EG− φGO−W)2.5 f ′′ = 0.

(8)

θ′′ + A2PrRe
(

3
3 + 4N

) k f

khn f
f θ′ + MnPrEc

(
3

3 + 4N

) k f

khn f

(
f ′2 + g2

)
= 0. (9)

where A1 and A2 are constantly given by

A1 = 1− φGO− EG− φGO−W + φGO−EGρGO−EG+φGO−WρGO−W
ρ f

A2 = 1− φGO− EG− φGO−W +
φGO−EG(ρCp)GO−EG+φGO−W(ρCp)GO−W

(ρCp) f
.

(10)

The transformed boundary conditions are given by

f (0) = 0, f (1) = A, f ′(0) = 1, f ′(1) = 0,
g(1) = 0, g(0) = 0,
θ(0) = 1, θ(1) = 0.

(11)

The Prandtl number, rotation parameter, Reynolds number, magnetic parameter, radia-
tion parameter Eckert number and suction parameter are denoted by Pr, R0, Re, Mn, N, Ec, m

and A, respectively, and the Marangoni convection parameter is m =
γσ0Tre f

µ f (bν f )
1
2

. When

A > 0, the flow is an injection, and A < 0 implies a suction flow.

2.1. Method of Solution

Equations (8)–(10) are solved analytically using the OHAM given below:

L(u(x)) + N(u(x)) + g(x) = 0, B(u(x)) = 0 (12)
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where L is a linear operator, x is the independent variable, g(x) is the unknown function,
N is the nonlinear operator and B(u) is a boundary operator. We first determine a family
of equations using this method (12):

The initial guess for the velocity and temperature is

f0(η) = η4 − A + e−η (13)

θ0(η) =
1
2

e−ηR (14)

g0(η) =
1
2

e−η (15)

which are calculated from the linear operator given below:

L f = f (iv) + f ′′ = 0, Lg = g′′ = 0, Lθ = θ′′ = 0. (16)

Liao [28] presented this method to identify the residual error, so Equations (7)–(9) can
be written as

ε
f
m =

1
n1 + 1

n1

∑
j1=1

[
κ f

(
n1

∑
j1=1

f1(η)η=jδη

)]
, (17)

ε
g
m =

1
n1 + 1

n1

∑
j1=1

[
κ f

(
n1

∑
j1=1

g1(η)η=jδη

)]
, (18)

εθ
m =

1
n + 1

n

∑
j=1

[
κθ

(
n

∑
j=1

f (η)η=jδη ,
n

∑
j=1

θ(η)η=jδη

)]
, (19)

εt
m = ε

f
m + εθ

m + ε
g
m. (20)

2.2. Analysis of OHAM

This approach is usually applied to solve boundary value functional equations. Con-
sider the following boundary value functional equation,

L( f (η)) + g(η) + N( f (η)) = 0,
B
(

f , d f
dη

)
= 0,

(21)

where L and N are the linear and nonlinear operators, respectively, g(η) is a known
function, f (η) is an unknown function, and B is the boundary operator. Consider the
following deformation equation, given by

(1− p)[L( f (η, p)) + g(η)] = H(p)[L( f (η, p)) + g(η) + N( f (η, p))]
B
(

f (η, p), d f (η,p)
dη

)
,

(22)

where p ∈ [0, 1] is an embedding parameter and H(p) for p 6= 0 is a non-zero auxiliary
function, such that H(p) = 1 for p = 0 and p = 1.

We also have f (η, 0) = f0(η) and f (η, 1) = f (η). Thus, as p increases from 0 to 1, the
solution f (η, p) varies from f0(η) to f (η), where f0(η) is an initial guess that satisfies the
linear operator, which is obtained from Equation (14) for p = 0. This condition yields

L( f0(η)) + f (η) = 0,
B
(

f0, d f0
dη

)
.

(23)

The auxiliary function H(p) is considered in the following power series in p:

H(p) = C1 p + C2 p2 + · · · (24)



Mathematics 2021, 9, 2242 6 of 16

where C1 and C2 are constants to be determined. The approximate analytical solution is
given by

f (η, p, C1, . . . , Cm) (25)

It is usually a power series on p as follows:

f (η, p, C1, . . . , Cm) = f0(η) + ∑
k≥1

fk(η, p, C1, . . . , Cm)pk (26)

Substituting Equation (23) in Equation (24) and equating the coefficients of the terms
with the identical power of p lead to the governing equation f0(η), f1(η) up to fk(η), which
begins from Equation (23) given by

L( f1(η)) = C1N0( f0(η)),
B
(

f1, d f1
dη

)
= 0,

(27)

L( fk(η)− fk−1(η)) = Ck N0( f0(η)) +
k−1
∑

i=1
Ci[L( fk−1(η) + Nk−1( f0(η), f1(η), . . . , fk−1(η)))]

B
(

fk, d fk
dη

)
= 0, k = 2, 3, . . . ,

(28)

where Nm( f0(η), f1(η), . . . , fm(η)) are the coefficients of pm obtained by expanding
N( f (η, p, C1, . . . , Cm)) in a power series concerning the embedding parameter p. Moreover,

N( f (η, p, C1, . . . , Cm)) = N

(
f0(η) + ∑

k≥1
Nk( f0(η), f1(η), . . . , fk(η))pk

)
(29)

where N( f (η, p, C1, . . . , Cm)) is given in Equation (28), where the convergence of Equation (28)
depends on the auxiliary constant Ci, i = 1, 2, 3, . . .. If Equation (29) converges when p = 1,
one obtains

f (η, C1, C2, . . . , Cm) = f0(η) + ∑
k≥1

fk(η, C1, C2, . . .). (30)

Then, the m-th-order approximation is then given by

f (η, C1, C2, . . . , Cm) = f0(η) +
m

∑
k≥1

fk(η, C1, C2, . . . , Cm). (31)

The result for the residual is defined as

R(η, C1, C2, . . . , Cm) = L( f (η, C1, C2, . . . , Cm) + f (η) + N( f (η, C1, C2, . . . , Cm))) (32)

If (η, C1, C2, . . . , Cm) = 0, then f (η, C1, C2, . . . , Cm) will be an exact solution, which,
in general, does not happen, especially in nonlinear problems. To determine the optimal
value of Ci, i = 1, 2, . . . , m, we apply the least square method.

∂J
∂C1

=
∂J

∂C2
= · · · = ∂J

∂Cm
= 0, (33)

where

J(C1, C2, . . . , Cm) =

b∫
a

R2(η, C1, C2, . . . , Cm)dη (34)

Here, the closed interval [a,b] supports the given problem. Knowing these constants,
the approximate solution of order m can be easily determined.
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3. Results and Discussion

The main objective of this section is to study the nature of the approximate analytical
solution of the given flow problem and the influence of different model factors, such as
suction parameter A, magnetic field parameter M, rotation parameter R0, Marangoni
convection parameter m, Prandtl number Pr, Reynolds number Re and Eckert num-
ber Ec, on the velocity and temperature distribution. Two sorts of hybrid nanofluids
GO− EG + GO−W and GO−W have been used for heat enhancement applications. In
this combination, GO−W is the base fluid, and GO− EG + GO−W represents a hybrid
nanofluid. The thermophysical properties of the hybrid nanofluid have been used for
the experimental data available in the literature. The flow analysis is settled over a ro-
tating surface in a magnetic field and viscous dissipation. The approximate analytical
method, i.e., OHAM, is used for the approximate analytical solution. The convergence
of the OHAM for particular problems is also discussed. Moreover, the series solution
for velocity and temperature profiles are calculated using OHAM. The obtained results
are highlighted in Figures 2–13. Figures 2–10 portray the effects of different parameters
on the velocity profile, and Figures 11–13 show the effects of different parameters on the
temperature profile. Furthermore, Tables 1 and 2 represent the comparison of the present
approximate analytical method and integral method from the literature. In Tables 1 and 2,
m represents the number of iterations. In Tables 3 and 4, the numerical results illustrate the
influences of dissimilar model factors on the skin friction coefficient and Nusselt number of
GO− EG + GO−W and GO−W. The influence of different parameters on the local skin
friction coefficient is presented in Table 3. The table shows that the skin friction coefficient
decreases in the cases of GO−W and GO− EG + GO−W for the increasing values of the
suction parameter A and Reynolds number Re. Meanwhile, by increasing these parameters,
viscous forces decrease. As a result, the skin friction coefficient decreases. Table 4 shows
the Nusselt number coefficient effect on GO− EG + GO−W and GO−W for the rising
magnitude of Eckert number Ec and magnetic field parameter M. The Nusselt number
coefficient increases in both cases of Eckert number Ec and magnetic field parameter M on
GO−W and GO− EG + GO−W. The convergence of the hybrid nanofluid and base fluid
is obtained up to the 25th iteration for the GO−W and GO− EG + GO−W nanofluid in
Tables 5 and 6. Tables 5 and 6 show that increasing the number of iterations reduces the
residual error and strong convergence attained. Moreover, Tables 7 and 8 represent the
compression of the present skin friction and Nusselt number with the literature. Figure 1
shows the geometry of the given flow problem, and Figure 2 shows the influence of the
suction parameter on the velocity in the x direction. In Figure 2, the velocity profile initially
increases by increasing the suction parameter, but this effect is limited due to Marangoni
convection. This effect changes, and after some intervals, the velocity profile decreases
by increasing the suction parameter. Figure 3 shows the suction parameter’s influence on
the velocity profile in the y-direction, indicating that the velocity profile is the increasing
function of the suction parameter. That is, the increasing value of the suction parameter
increases the velocity distribution. Figure 4 shows the influence of the Reynolds number on
velocity in the x direction. In Figure 4, the velocity profile initially increases by increasing
the Reynolds number, but this effect is limited due to Marangoni convection. This effect
changes, and after some intervals, the velocity profile decreases by increasing the Reynolds
number. Figure 5 shows the influence of the Reynolds number on the velocity profile in the
y direction. The velocity profile is the increasing function of the Reynolds number. That is,
the increasing value of the Reynolds number increases the velocity distribution. Moreover,
Figure 6 shows the influence of the magnetic field parameter on the velocity in the x direc-
tion. The velocity profile initially decreases by increasing the magnetic field parameter, but
this effect is limited due to the Marangoni convection. This effect changes, and after some
intervals, the velocity profile increases by increasing the magnetic field parameter. Figure 7
shows the influence of the magnetic field parameter on the velocity profile in the y direction.
The velocity profile is the decreasing function of the magnetic field parameter. That is,
the increasing value of the magnetic field parameter decreases the velocity distribution.
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Moreover, Figure 8 shows the influence of the Marangoni convection parameter in the
x direction. The Marangoni convection parameter shows a double effect on the velocity
profile. Initially, the velocity profile decreases by increasing the Marangoni convection pa-
rameter, but this effect is limited due to the Marangoni convection. This effect changes, and
after some intervals, the velocity profile increases by increasing the Marangoni convection
parameter. Furthermore, Figure 9 shows the influence of the rotation parameter on the
velocity in the x direction. In Figure 9, the velocity profile increases by increasing rotation
parameters, but this effect is limited due to the Marangoni convection. This effect changes,
and after some intervals, the velocity profile decreases by increasing the rotation parameter.
Furthermore, Figure 10 shows the influence of rotation parameters on the velocity profile
in the y direction. In Figure 10, the velocity profile is the increasing function of the rotation
parameter. That is, the increasing value of the rotation parameter increases the velocity
distribution. Figure 11 shows the influence of the Prandtl number on the temperature
distribution. The Prandtl number has an inverse relation to the temperature distribution,
in which a large Prandtl number decreases the temperature distribution. Figure 12 shows
the influence of the Eckert number on the temperature distribution. The Eckert number
directly relates to the temperature distribution. In other words, a large Eckert number
increases the temperature distribution. This effect is due to the direct relation of the Eckert
number to the kinetic energy. Moreover, Figure 13 shows the influence of the magnetic
field parameter on the temperature distribution. The magnetic field parameter directly
relates to the temperature distribution, that is, a large magnetic field parameter increases
the temperature distribution. This effect is due to the direct relation of the magnetic field
parameter to the resistance forces.

Figure 2. Influence of the injection parameter on the velocity profile.
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Figure 3. Influence of the injection parameter on the velocity profile.

Figure 4. Influence of the Reynolds number on the velocity profile.

Figure 5. Influence of the Reynolds number on the velocity profile.
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Figure 6. Influence of the magnetic field parameter on the velocity profile.

Figure 7. Influence of the magnetic field parameter on the velocity profile.

Figure 8. Influence of the Marangoni convection parameter on the velocity profile.
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Figure 9. Influence of the rotation parameter on the velocity profile.

Figure 10. Influence of the rotation parameter on the velocity profile.

Figure 11. Influence of the Prandtl number on the temperature profile.
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Figure 12. Influence of the Eckert number on the temperature profile.

Figure 13. Influence of the magnetic field parameter on the temperature profile.

Table 1. OHAM and analytical comparison for f (η).

m ADM OHAM Absolute Error

1 1.00. . . 1.00. . . 7.0372× 10−12

2 1.03. . . 1.04. . . 3.4300× 10−7

3 1.03. . . 1.04. . . 3.2767× 10−9

4 1.06. . . 1.07. . . 1.8614× 10−7

5 0.97. . . 0.99. . . 1.7344× 10−8

6 0.83. . . 0.85. . . 1.6300× 10−8

7 0.73. . . 0.76. . . 1.7021× 10−7

8 0.59. . . 0.61. . . 1.2500× 10−7

9 0.42. . . 0.45. . . 2.1768× 10−9

10 0.22. . . 0.24. . . 2.3304× 10−7



Mathematics 2021, 9, 2242 13 of 16

Table 2. OHAM and numerical comparison for θ(η).

η ADM OHAM Absolute Error

1 1.00. . . 1.00. . . 1.1102× 10−16

2 1.01. . . 1.04. . . 0.0090
3 1.02. . . 1.05. . . 0.0018
4 1.03. . . 1.05. . . 0.0250
5 1.04. . . 1.09. . . 0.0308
6 1.04. . . 1.06. . . 0.0352
7 1.05. . . 1.08. . . 0.0384
8 1.09. . . 1.11. . . 0.0404
9 1.14. . . 1.17. . . 0.0416
10 1.05. . . 1.09. . . 0.0421

Table 3. Evaluation of the suction parameter and Reynolds number on the skin friction coefficient.

A Re GO−W GO−EG+GO−W

0.1000 0.1000 0.7135 0.9297

0.2000 0.1500 0.6557 0.8138

0.3000 0.2000 0.6111 0.7126

0.4000 0.2500 0.5507 0.6114

0.5000 0.3000 0.4104 0.5107

0.6000 0.3500 0.3712 0.4100

Table 4. Influence of the magnetic field parameter and Eckert number on Nusselt number.

M Ec GO−W GO−EG+GO−W

1.0000 0.1000 0.1921 0.1077

2.0000 0.5000 0.2632 0.2823

3.0000 1.0000 0.3743 0.3039

4.0000 1.5000 0.4954 0.4564

5.0000 2.0000 0.5375 0.6917

6.0000 2.5000 0.7256 0.9021

Table 5. Convergence of the method for GO− EG + GO−W.

m ε
f
mGO−EG+GO−W εθ

mGO−EG+GO−W

5 0.9640× 10−1 0.8677× 10−3

10 0.8809× 10−2 0.6873× 10−5

15 0.7941× 10−3 0.5729× 10−7

20 0.5721× 10−5 0.7410× 10−8

25 0.4571× 10−7 0.5420× 10−9

Table 6. Convergence method for GO−W.

m ε
f
mGO−W εθ

mGO−W

5 0.6719× 10−1 0.3574× 10−1

10 0.6016× 10−3 0.4571× 10−2

15 0.5138× 10−5 0.5159× 10−5

20 0.4610× 10−6 0.5276× 10−7

25 0.3301× 10−9 0.7665× 10−9
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Table 7. Comparison of the present skin friction coefficient with the past literature.

A Re Present Values Literature Values

0.1000 0.1000 0.7135 0.6217

0.2000 0.1500 0.6557 0.5218

0.3000 0.2000 0.6111 0.5316

0.4000 0.2500 0.5507 0.4274

0.5000 0.3000 0.4104 0.3907

0.6000 0.3500 0.3712 0.2130

Table 8. Comparison of the present Nusselt number with the literature.

M Ec Present Values Literature Values

1.0000 0.1000 0.1921 0.2347

2.0000 0.5000 0.2632 0.3513

3.0000 1.0000 0.3743 0.4133

4.0000 1.5000 0.4954 0.5124

5.0000 2.0000 0.5375 0.6314

6.0000 2.5000 0.7256 0.8165

4. Conclusions

In this research work, the influence of Marangoni convection on magnetohydrody-
namic viscous dissipation and heat transfer on a hybrid nanofluid in a rotating system
among two surfaces is examined. The properties of the heat and mass transfer were
analysed. Applying the analytical method makes it difficult to solve nonlinear partial
differential equations, so we used similarity transformation; the major partial differential
equation was converted to a set of nonlinear ordinary differential equations. The approxi-
mate analytical method, i.e., OHAM, was used to determine the approximate analytical
solution of the nonlinear ordinary differential equation. The impact of important parame-
ters on the velocity and temperature profiles were plotted and discussed through graphs
and tables. The skin friction coefficient and Nusselt number were explained in table form.
The comparison of ADM and OHAM was presented in Tables 1 and 2, where m represents
the number of iterations. Finally, the obtained outputs are deliberated as follows:

1. By increasing the magnetic parameter, the velocity shows a double effect in the x-direction.
2. By increasing the magnetic parameter, the velocity in the y-direction decreases.
3. By increasing the suction parameter, the velocity shows a double effect in the x-direction.
4. By increasing the suction parameter, the velocity in the y-direction increases.
5. By increasing the rotation parameter, the velocity shows a double effect in the x-direction.
6. By increasing the rotation parameter, the velocity increases in the y-direction.
7. By increasing the Reynolds number, the velocity shows a double effect in the x-direction.
8. By increasing the Reynolds number, the velocity increases in the y-direction.
9. By increasing the Marangoni convection parameter, the velocity shows a double effect

in the x-direction.
10. By increasing the Eckert number, the temperature profile increases.
11. By increasing the Prandtl number, the temperature profile decreases.
12. By increasing the magnetic field parameter, the temperature profile increases.
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Nomenclature

x, y, z Cartesian coordinates
u, v, w Velocity components
Uw, Vw Velocities of the stretching sheet
A Time injection parameter
T Local temperature
M Magnetic field
m Marangoni convection parameter
Pr Prandtl number
Tw Surface temperature
B0 Constant magnetic field
T∞ Ambient temperature
Re Reynolds number
R0 Rotation parameter
C f x Skin friction coefficient in x-direction
C f y Skin friction coefficient in y-direction
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