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Abstract: In 1977, Davis et al. proposed a method to generate an arrangement of [n] = {1, 2, . . . , n}
that avoids three-term monotone arithmetic progressions. Consequently, this arrangement avoids
k-term monotone arithmetic progressions in [n] for k ≥ 3. Hence, we are interested in finding
an arrangement of [n] that avoids k-term monotone arithmetic progression, but allows k− 1-term
monotone arithmetic progression. In this paper, we propose a method to rearrange the rows of a
magic square of order 2k− 3 and show that this arrangement does not contain a k-term monotone
arithmetic progression. Consequently, we show that there exists an arrangement of n consecutive
integers such that it does not contain a k-term monotone arithmetic progression, but it contains a
k− 1-term monotone arithmetic progression.

Keywords: magic square; arithmetic progression; permutations

1. Introduction

A sequence a1, a2, . . . , an is said to have a k -term monotone arithmetic progression if there
is a set of indices {i1 < i2 < · · · < ik} such that the k-term subsequence ai1 , ai2 , . . . , aik is
either an increasing or a decreasing arithmetic progression.

Davis et al. [1] proposed a way to generate an arrangement of [n] = {1, 2, . . . , n}
that avoids three-term monotone arithmetic progressions. An arrangement of [n] is a
sequence a1, a2, . . . , an such that {a1, a2, . . . , an} = [n]. An arrangement of [n] is also called
a permutation of [n].

Theorem 1 ([1]). Let n ≥ 1. There is a permutation of [n] that does not contain a three-term
monotone arithmetic progression.

Let Z+ be the set of positive integers. Davis et al. [1] and Sidorenko [2] showed
that there is no permutation of Z+ that avoids three-term monotone arithmetic progres-
sions. However, they [1] showed that there exists permutations of Z+ that avoid five-term
monotone arithmetic progression, implying the existence of permutations of the integers
avoiding arithmetic progressions of length seven. Recently, Geneson [3] constructed a
permutation of the integers avoiding arithmetic progressions of length six. Up to now, an
intriguing question, whose answer is still unknown, is whether there exists a permutation
of Z+ that avoids four-term monotone arithmetic progressions [4].

Let θ(n) denote the number of permutations of [n] that contain no three-term mono-
tone arithmetic progressions. Davis et al. [1] established that 2n−1 ≤ θ(n) ≤ b n+1

2 c!d
n+1

2 e!.
These bounds were then improved by [5–7]. LeSaulnier and Vijay [5] also showed that any
permutation of the positive integers must contain a three-term arithmetic progression with
an odd common difference as a subsequence and constructed a permutation of the positive
integers that does not contain any four-term arithmetic progression with an odd common
difference. Geneson [3] also proved a lower bound of 1

2 on the lower density of subsets
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of positive integers that can be permuted to avoid arithmetic progressions of length four,
sharpening the lower bound of 1

3 from [5].
As a consequence of Theorem 1, there exists an arrangement of [n] that avoids k-term

monotone arithmetic progression, where k ≥ 3. However, up to now, there is no proposed
arrangement of [n] that avoids a k-term monotone arithmetic progression, but contains
a (k− 1)-term monotone arithmetic progression. In this paper, for k ≥ 3, we show that
the rows of a magic square of order 2k − 3 can be arranged in a way that the resulting
arrangement does not contain a k-term monotone arithmetic progression, but it contains
a (k− 1)-term monotone arithmetic progression. Then, we apply the result to show that
there exists an arrangement of n consecutive integers such that it does not contain a k-
term monotone arithmetic progression, but it contains a (k− 1)-term monotone arithmetic
progression.

2. K-Term Monotone Arithmetic Progression

In this section, we prove that given any n consecutive integers with n ≥ k, there
is an arrangement that avoids k-term monotone arithmetic progressions, but contains a
(k− 1)-term monotone arithmetic progression.

2.1. Magic Square

In 1624 France, Claude Gaspard Bachet described the following “diamond method”
for constructing odd ordered magic squares in his book Problèmes Plaisants [8].

Step 1: First, for k ≥ 3, we arrange [1, (2k − 3)2] in an (2k − 3) × (2k − 3) square. We
extend a (2k− 3)× (2k− 3) square to form a diamond structure as in Figure 1. Then, we
put the integers in order along descending diagonals into the square. For k = 3 and k = 4,
Figures 1 and 2 illustrate the 3× 3 and 5× 5 extended squares, respectively.

1
4 2

7 5 3
8 6

9

Figure 1. A 3× 3 square.

1
6 2

11 7 3
16 12 8 4

21 17 13 9 5
22 18 14 10

23 19 15
24 20

25

Figure 2. A 5× 5 square.

Step 2: Then, move the numbers on the right leftwards in the same row. Similarly, move
the numbers on the left rightwards in the same row. Furthermore, move the numbers on
the top downwards in the same column, and move the numbers at the bottom upwards
in the same column. See Figures 3 and 4 for k = 3 and 4. This gives a (2k− 3)× (2k− 3)

magic square with magic sum
(2k−3)[(2k−3)2+1]

2 .

4 9 2
3 5 7
8 1 6

Figure 3. A 3× 3 magic square.
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11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

Figure 4. A 5× 5 magic square.

Let Ri be the i-th row of the magic square constructed this way, i.e.,

Ri = ai,1, bi,1, ai,2, bi,2, . . . , ai,(k−2), bi,(k−2), ai,(k−1).

Note that for the first row R1, we have:

a1,j = 1 + (k− 2)(2k− 3)− (j− 1)(2k− 4), 1 ≤ j ≤ k− 1; (1)

b1,j = k + (2k− 4)(2k− 3)− (j− 1)(2k− 4), 1 ≤ j ≤ k− 2.

For the last row R2k−3, we have:

a(2k−3),j = k− 1 + (2k− 4)(2k− 3)− (j− 1)(2k− 4), 1 ≤ j ≤ k− 1; (2)

b(2k−3),j = 1 + (k− 3)(2k− 3)− (j− 1)(2k− 4), 1 ≤ j ≤ k− 2.

For row Rk−1, if k is odd, then:

a(k−1),j = 1 + (2k− 4)(2k− 3)−
(

3k− 1
2

+ j− 3
)
(2k− 4), 1 ≤ j ≤ k− 1

2
;

a(k−1),j = 1 + (2k− 4)(2k− 3)−
(

j− k− 1
2
− 1
)
(2k− 4),

k− 1
2

+ 1 ≤ j ≤ k− 1; (3)

b(k−1),j = 1 + (2k− 4)(2k− 3)−
(

k− 1
2

+ j− 1
)
(2k− 4), 1 ≤ j ≤ k− 2.

whereas if k is even, then:

a(k−1),j = 1 + (2k− 4)(2k− 3)−
(

k
2
+ j− 2

)
(2k− 4), 1 ≤ j ≤ k− 1;

b(k−1),j = 1 + (2k− 4)(2k− 3)−
(

3k
2

+ j− 3
)
(2k− 4), 1 ≤ j ≤ k

2
− 1; (4)

b(k−1),j = 1 + (2k− 4)(2k− 3)−
(

j− k
2

)
(2k− 4),

k
2
≤ j ≤ k− 2,

For row Ri with 2 ≤ i ≤ k− 2, if i is odd, then:

ai,j = 1 + (k− 3 + i)(2k− 3)−
(

i− 1
2

+ j− 1
)
(2k− 4), 1 ≤ j ≤ k− 1;

bi,j = 1 + (k− 3 + i)(2k− 3)−
(

i− 1
2

+ k + j− 2
)
(2k− 4), 1 ≤ j ≤ i− 1

2
; (5)

bi,j = k− 1 + i + (2k− 4)(2k− 3)−
(

j− i− 1
2
− 1
)
(2k− 4),

i− 1
2

+ 1 ≤ j ≤ k− 2− i− 1
2

;

bi,j = 1 + (k− 3 + i)(2k− 3)−
(

j− k + 1 +
i− 1

2

)
(2k− 4), k− 1− i− 1

2
≤ j ≤ k− 2,
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whereas if i is even, then:

ai,j = 1 + (k− 3 + i)(2k− 3)−
(

i
2
+ k + j− 3

)
(2k− 4), 1 ≤ j ≤ i

2
;

ai,j = k− 1 + i + (2k− 4)(2k− 3)−
(

j− i
2
− 1
)
(2k− 4),

i
2
+ 1 ≤ j ≤ k− 1− i

2
; (6)

ai,j = 1 + (k− 3 + i)(2k− 3)−
(

j− k +
i
2

)
(2k− 4), k− i

2
≤ j ≤ k− 1;

bi,j = 1 + (k− 3 + i)(2k− 3)−
(

i
2
+ j− 1

)
(2k− 4), 1 ≤ j ≤ k− 2.

For row Ri with k ≤ i ≤ 2k− 4, if i is odd, then:

ai,j = 2 + i− k + (2k− 4)(2k− 3)−
(

k− 2− 1 + i
2

+ j
)
(2k− 4), 1 ≤ j ≤ k− 1;

bi,j = 2 + i− k + (2k− 4)(2k− 3)−
(

2k− 3− 1 + i
2

+ j
)
(2k− 4), 1 ≤ j ≤ k− 1− 1 + i

2
; (7)

bi,j = 1 + (i− k)(2k− 3)−
(

j− k +
1 + i

2

)
(2k− 4), k− 1 + i

2
≤ j ≤ 1 + i

2
− 1;

bi,j = 2 + i− k + (2k− 4)(2k− 3)−
(

j− 1 + i
2

)
(2k− 4),

1 + i
2
≤ j ≤ k− 2,

whereas if i is even, then:

ai,j = 2 + i− k + (2k− 4)(2k− 3)−
(

2k− 4− i
2
+ j
)
(2k− 4), 1 ≤ j ≤ k− 1− i

2
;

ai,j = 1 + (i− k)(2k− 3)−
(

j− k +
i
2

)
(2k− 4), k− i

2
≤ j ≤ i

2
; (8)

ai,j = 2 + i− k + (2k− 4)(2k− 3)−
(

j− i
2
− 1
)
(2k− 4),

i
2
+ 1 ≤ j ≤ k− 1;

bi,j = 2 + i− k + (2k− 4)(2k− 3)−
(

k− 2− i
2
+ j
)
(2k− 4), 1 ≤ j ≤ k− 2.

2.2. Arrangement That Avoids K-Term Arithmetic Progressions

In this section, we form a sequence P, which is an arrangement of the rows of the (2k−
3)× (2k− 3) magic square from Section 2.1 that avoids k-term arithmetic progressions.

Theorem 2. Suppose k ≥ 4. Let Ri be the sequence of integers in the i-th row from left to right
in the magic square formed by using the method in Section 2.1 where 1 ≤ i ≤ 2k − 3. Then,
the sequence P = R1, R2, . . . , Rk−2, Rk, Rk+1, . . . , R2k−4, R2k−3, Rk−1 avoids k-term arithmetic
progressions, but it has a (k− 1)-term arithmetic progression, k− 1, k, . . . , 2k− 3.

Remark 1. Note that Theorem 2 is not true for k = 3. In fact, the row R3 = 3, 5, 7 has a three-term
arithmetic progression.

Proof. Note that for k = 4,

P = 11, 24, 7, 20, 3, 4, 12, 25, 8, 16, 10, 18, 1, 14, 22, 23, 6, 19, 2, 15, 17, 5, 13, 21, 9,

does not contain a 4-term arithmetic progression, but has a 3-term arithmetic progression
3, 4, 5. Therefore, we may assume that k ≥ 5.

By Equations (1), (5) and (6), for 1 ≤ i ≤ k− 2, every integer in the row Ri is either
congruent with k − 2 + i or k − 1 + i mod (2k − 4). By Equations (2), (7) and (8), for
k ≤ i ≤ 2k− 3, every integer in the row Ri is either congruent with i− k + 1 or i− k + 2
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mod (2k− 4). Lastly, by Equations (3) and (4), every integer in the row Rk−1 is congruent
with 1 mod (2k− 4). Note that the only integer congruent with 1 mod (2k− 4) in row
Rk−2 is (2k− 3)2, whereas the only integer congruent with 1 mod (2k− 4) in row Rk is
one. Thus, all the integers congruent with 1 mod (2k− 4) in [(2k− 3)2] appear in rows
Rk−2, Rk, and Rk−1. For r = 2, 3, . . . , 2k− 4, all the integers congruent with r mod (2k− 4)
in [(2k− 3)2] appear in exactly two different rows.

Since k + j− 2 is in Rj for 1 ≤ j ≤ k− 1 and P = R1, R2, . . . , Rk−2, Rk, Rk+1, . . . , R2k−4,
R2k−3, Rk−1, the progression k− 1, k, . . . , 2k− 3 is a (k− 1)-term arithmetic progression in
P. Now, we proceed to show that P does not have any k-term arithmetic progressions.
We prove it by contradiction. Assume that there exists a k-term monotone arithmetic
progression T = {T1, T2, . . . , Tk} in P. Then, there exists a nonzero integer d such that:

Tj = T1 + (j− 1)d,

for all 1 ≤ j ≤ k. Note that |d| ≤ (2k−3)2−1
k−1 = 4k− 8.

Since:
P = R1, R2, . . . , Rk−2, Rk, Rk+1, . . . , R2k−4, R2k−3, Rk−1,

Tj should appear before Tj+1 if we read the elements from left to right in P. Thus, if Tj is in
Ri for some i ∈ {1, 2, . . . , k− 2, k, k + 1, . . . , 2k− 3}, then Tj+1 will be in Ri′ where i′ ≥ i or
i′ = k− 1, and if Tj is in Rk−1, then Tj+1 will be in Rk−1. Furthermore, if Tj and Tj+1 are
both in Ri for some 1 ≤ i ≤ 2k− 3, then Tj+1 will appear after Tj in the sequence P when
we read from left to right.

Suppose Tj = 1 or (2k − 3)2 for some 2 ≤ j ≤ k − 1. If the former holds, then
d = Tj+1 − Tj > 0 and d = Tj − Tj−1 < 0, a contradiction. If the latter holds, then
d = Tj+1 − Tj < 0 and d = Tj − Tj−1 > 0, a contradiction. Hence, we may assume that
Tj 6= 1 or (2k− 3)2 for all 2 ≤ j ≤ k− 1.

If two consecutive terms of T are in Ri for some 1 ≤ i ≤ 2k − 3, then d ≡ ±1 or 0
mod (2k− 4). Suppose no two consecutive terms of T are in Ri. This means that if Tj is in
Rij , then Tj+1 will be in Rij+1 where ij+1 > ij or ij+1 = k− 1 and ij ∈ {1, 2, . . . , k− 2, k, k +

1, . . . , 2k− 3}. Since 2k−3
2 = k− 3

2 < k, either there exists 1 ≤ j0 ≤ k− 1 such that Tj0 and
Tj0+1 are in Ri0 and Ri0+1, respectively, for some i0 ∈ {1, 2, . . . , k− 3, k, k + 1, . . . , 2k− 4}
or Tj0 and Tj0+1 are in Rk−2 and Rk, respectively, or Tk−1 and Tk are in R2k−3 and Rk−1,
respectively. If such a j0 exists, then d ≡ 0, 1 or 2 mod (2k− 4), otherwise, d ≡ k− 2 or
k− 1 mod (2k− 4).

Case 1: Suppose d ≡ k− 2 mod (2k− 4). This means no two consecutive terms of T are in
Ri and Tk−1 and Tk are in R2k−3 and Rk−1, respectively. Furthermore, Tk ≡ 1 mod (2k− 4)
and Tk−1 ≡ k− 1 mod (2k− 4). Note that Tk−2 ≡ 1 mod (2k− 4). Therefore, Tk−2 is in
Rk−2, Rk or Rk−1. If Tk−2 is in Rk−1, then Tk−1 will be in Rk−1, a contradiction. If Tk−2 is in
Rk−2, then Tk−2 = (2k− 3)2, a contradiction. If Tk−2 is in Rk, then Tk−2 = 1, a contradiction.

Case 2: Suppose d ≡ k− 1 mod (2k− 4). This means no two consecutive terms of T are in
Ri and Tk−1 and Tk are in R2k−3 and Rk−1, respectively. Furthermore, Tk ≡ 1 mod (2k− 4)
and Tk−1 ≡ k− 2 mod (2k− 4). Note that Tk−2 ≡ 2k− 5 mod (2k− 4) and Tk−3 ≡ k− 4
mod (2k− 4). If k = 5, then Tk−2 = T3 is in R1 or R2, whereas Tk−3 = T2 is in R3 or R5.
This is not possible as T2 should appear before T3 in the sequence P. Suppose k ≥ 6. Now,
Tk−2 is in Rk−3 or Rk−4, whereas Tk−3 is in R2k−6 or R2k−5, again not possible.

Case 3: Suppose d ≡ 2 mod (2k− 4). This means no two consecutive terms of T are in
Ri and there exists 1 ≤ j0 ≤ k− 1 such that Tj0 and Tj0+1 are in Ri0 and Ri0+1, respectively,
for some i0 ∈ {1, 2, . . . , k − 3, k, k + 1, . . . , 2k − 4} or Tj0 and Tj0+1 are in Rk−2 and Rk,
respectively. Now, T1 cannot be in Rk−1; otherwise, T2 will be in Rk−1. Note that Tk−1 =
T1 + (k − 2)d ≡ T1 mod (2k − 4). Suppose T1 is in Rt for some 1 ≤ t ≤ k − 2. Then,
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T1 ≡ k− 2 + t or k− 1 + t mod (2k− 4). If T1 ≡ 1 mod (2k− 4), then T1 = (2k− 3)2.
Since Tk−1 6= 1, it must be in Rk−1. Therefore, Tk is in Rk−1, a contradiction. Suppose T1 6≡ 1
mod (2k− 4). Since Tk−1 must appear after T1 in P, we have T1 ≡ k− 1 + t mod (2k− 4)
and T1 is in Rt for some 1 ≤ t ≤ k− 3 and Tk−1 is in Rt+1. This implies that either Tk−2 is
in the same row as Tk−1 or T2 is in the same row as T1, a contradiction. Similarly, we also
cannot have T1 in Rt for some k ≤ t ≤ 2k− 3.

Case 4: Suppose d ≡ 1 mod (2k − 4). Now, T1 cannot be in Rk−1; otherwise, T2 will
be in Rk−1 and d ≡ T2 − T1 ≡ 0 mod (2k − 4). Suppose T1 is in Ri for some 1 ≤ i ≤
k − 2. Then, T1 is either congruent with k − 2 + i or k − 1 + i mod (2k − 4). Suppose
T1 ≡ k − 2 + i mod (2k − 4). Then, Tk−i ≡ k − 2 + i + (k − i − 1) ≡ 1 mod (2k − 4).
Since Tk−i 6= 1 and (2k − 3)2, it must be in Rk−1. Thus, Tk−i+1 is also in Rk−1 and d ≡
Tk−i+1 − Tk−i ≡ 0 mod (2k− 4), a contradiction. Suppose T1 ≡ k− 1 + i mod (2k− 4).
Then, Tk−i−1 ≡ k− 1 + i + (k− i− 2) ≡ 1 mod (2k− 4). If i ≤ k− 3, then Tk−i−1 must be
in Rk−1. Therefore, Tk−i is also in Rk−1 and d ≡ 0 mod (2k− 4), a contradiction. Suppose
i = k− 2. Then, T1 ≡ 1 mod (2k− 4) and it is in Rk−2. Therefore, T1 = (2k− 3)2. Now,
Tk ≡ 1 + (k− 1) ≡ k mod (2k− 4). Since k ≥ 5, Tk is in R1 or R2, which is not possible as
T1 is in Rk−2.

Suppose T1 is in Ri for some k ≤ i ≤ 2k − 3. Then, T1 is either congruent with
i− k + 1 or i− k + 2 mod (2k− 4). Suppose T1 ≡ i− k + 2 mod (2k− 4). Then, Tk−2 ≡
i− k + 2 + (k− 3) ≡ i− 1 mod 2k− 3. If i ≥ k + 1, then Tk−2 is in Ri−k+1 or Ri−k, which
is not possible. If i = k, then Tk−2 ≡ k − 1 mod (2k − 4) and Tk−1 ≡ k mod (2k − 4).
Therefore, Tk−1 is in R1 or R2, again not possible. Suppose T1 ≡ i− k + 1 mod (2k− 4).
Then, Tk−1 ≡ i− k + 1 + (k− 2) ≡ i− 1 mod (2k− 4). If i ≥ k + 1, then Tk−1 is in Ri−k+1
or Ri−k, which is not possible. If i = k, then Tk−1 ≡ k − 1 mod (2k − 4) and Tk ≡ k
mod (2k− 4). Therefore, Tk is in R1 or R2, again not possible.

Case 5: Suppose d ≡ −1 mod (2k− 4).
If two consecutive terms of T, say Tj and Tj+1 are in Rk−1, then d = Tj+1 − Tj ≡ 0

mod (2k− 4), a contradiction. Suppose Tj and Tj+1 are in R1. Then, Tj ≡ k mod (2k− 4)
and Tj+1 ≡ k− 1 mod (2k− 4). By Equation (1), Tj = b1,j1 for some 1 ≤ j1 ≤ k− 2 and
Tj+1 = a1,j2 for some 1 ≤ j2 ≤ k− 1. Now,

d = Tj+1 − Tj = a1,j2 − b1,j1 ≤ a1,1 − b1,(k−2)

= 1 + (k− 2)(2k− 3)− (k + (2k− 4)(2k− 3)− (k− 3)(2k− 4))

= 1− 2(2k− 3) = −4k + 7.

Therefore, |d| ≥ 4k− 7 > 4k− 8, a contradiction.
Suppose Tj and Tj+1 are in R2k−3. Then, Tj ≡ k− 1 mod (2k− 4) and Tj+1 ≡ k− 2

mod (2k− 4). By Equation (2), Tj = a(2k−3),j1 for some 1 ≤ j1 ≤ k− 1 and Tj+1 = b(2k−3),j2
for some 1 ≤ j2 ≤ k− 2. Furthermore, j2 ≥ j1. Now,

d = Tj+1 − Tj = b(2k−3),j2 − b(2k−3),j1 + b(2k−3),j1 − a(2k−3),j1

≤ b(2k−3),j1 − a(2k−3),j1

= 1 + (k− 3)(2k− 3)− (k− 1 + (2k− 4)(2k− 3))

= 2− k− (k− 1)(2k− 3) = 1− (k− 1)(2k− 2).

Therefore, |d| ≥ (k− 1)(2k− 2)− 1 > 4k− 8, a contradiction. Hence, we may assume that
no consecutive terms of T are in R1, R2k−3 or Rk−1.

Suppose T1 is in R1. Then, T1 is either congruent with k − 1 or k mod (2k − 4).
Suppose T1 ≡ k mod (2k− 4). Then, T2 ≡ k− 1 mod (2k− 4). Note that T2 is not in R1,
for no two consecutive terms of T are in R1. Therefore, T2 is in R2k−3. This means T3 is
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in Rk−1, for no two consecutive terms of T are in R2k−3. Therefore, T4 must be in Rk−1, a
contradiction as no two consecutive terms of T are in Rk−1.

Suppose T1 ≡ k− 1 mod (2k− 4). Then, Tk−1 ≡ k− 1+(k− 2)(−1) ≡ 1 mod (2k−
4). Therefore, Tk−1 is in Rk−2, Rk, or Rk−1. Note that Tk−1 cannot be in Rk−1, otherwise Tk
will be in Rk−1. If Tk−1 is in Rk−2, then Tk−1 = (2k− 3)2, a contradiction. If Tk−1 is in Rk,
then Tk−1 = 1, a contradiction.

Suppose T1 is in Ri for some 2 ≤ i ≤ k− 2. Then, T1 is either congruent with k− 2 + i
or k− 1 + i mod (2k− 4). Suppose T1 ≡ k− 1 + i mod (2k− 4). Then, T2 ≡ k− 2 + i
mod (2k− 4) and T3 ≡ k− 3 + i mod (2k− 4). Since T2 is not in Ri−1, it must be in Ri. If
i = 2, then T3 must be in R2k−3, for it cannot be in R1. Since T4 ≡ k− 2 mod (2k− 4), we
must have T4 in R2k−3 or R2k−4. Both cases also cannot happen. If i ≥ 3, then T3 is in Ri−1
or Ri−2, which is not possible. Suppose T1 ≡ k− 2 + i mod (2k− 4). Then, T2 ≡ k− 3 + i
mod (2k− 4). If i = 2, then T2 must be in R2k−3. Since T3 is not in R2k−3, it must be in
Rk−1. However, then T4 is also in Rk−1, a contradiction. If i ≥ 3, then T2 is in Ri−1 or Ri−2,
which is not possible.

Suppose T1 is in Ri for some k ≤ i ≤ 2k − 3. Then, T1 is either congruent with
i− k + 1 or i− k + 2 mod (2k− 4). Suppose T1 ≡ i− k + 2 mod (2k− 4). Then, Ti−k+2 ≡
i − k + 2 + (i − k + 1)(−1) ≡ 1 mod (2k− 4). Therefore, Ti−k+2 is in Rk−2, Rk, or Rk−1.
Note that Ti−k+2 cannot be in Rk−1; otherwise, Ti−k+3 will be in Rk−1. If Ti−k+2 is in Rk−2,
then Ti−k+2 = (2k− 3)2, a contradiction. If Ti−k+2 is in Rk, then Ti−k+2 = 1, a contradiction.

Case 6: Suppose d ≡ 0 mod (2k− 4).
Then, Tj ≡ T1 mod (2k − 4) for all j and d = ±(2k − 4) or d = ±(4k − 8). If

d = 4k− 8, then Tk = T1 + (k− 1)d ≥ 1 + (k− 1)(4k− 8) = (2k− 3)2. Therefore, we must
have T1 = 1 and Tk = (2k− 3)2. Therefore, T1 is in row Rk, whereas Tk is in Rk−2, which is
not possible. If d = −(4k− 8), then Tk = T1 + (k− 1)d ≤ (2k− 3)2 − (k− 1)(4k− 8) = 1.
Therefore, we must have T1 = (2k− 3)2 and Tk = 1. Now, Tj ≡ T1 ≡ 1 mod (2k− 4) for
2 ≤ j ≤ k− 1 imply that Tj ∈ Rk−1 for all 2 ≤ j ≤ k− 1. This is also not possible as T2
should appear after T1, but before Tk in P. Hence, we may assume that d = ±(2k− 4).

Case 6.1: Suppose T1 ≡ 1 mod (2k − 4). Then, Tj is either in Rk−2, Rk or Rk−1 for all j.
Note that Tj 6= 1 and (2k− 3)2 for all 2 ≤ j ≤ k. Therefore, we may assume that Tj is in
Rk−1 for all 2 ≤ j ≤ k.

Case 6.1.1: Suppose k is odd. Let

A1 =

{
s ∈ [k] : Ts = a(k−1),j for some 1 ≤ j ≤ k− 1

2

}
;

A2 =

{
s ∈ [k] : Ts = a(k−1),j for some

k− 1
2

+ 1 ≤ j ≤ k− 1
}

;

A3 =
{

s ∈ [k] : Ts = b(k−1),j for some 1 ≤ j ≤ k− 2
}

.

Note that A1, A2, and A3 are disjoint. By Equation (3), |A1|+ |A2|+ |A3| ≥ k − 1 ≥ 4.
Therefore, one of the At where t ∈ {1, 2, 3} must contain at least two elements. Thus,
d = −(2k− 4).

Suppose A1 6= ∅. If k /∈ A1, then Ts1 = a(k−1), k−1
2

for some 1 ≤ s1 ≤ k− 1. Now,

Ts1 = 1 + (2k− 4)(2k− 3)−
(

3k− 1
2

+
k− 1

2
− 3
)
(2k− 4)

= 1 + (2k− 4)

and Ts1+1 = 1 + (2k− 4)− (2k− 4) = 1. Therefore, Ts1+1 is in Rk. This is not possible.
Thus, if A1 6= ∅, then k ∈ A1.
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Suppose A2 6= ∅. If k /∈ A2, then Ts2 = a(k−1),k−1 for some 1 ≤ s2 ≤ k − 1. Since
a(k−1),k−1 is the last term in Rk−1, Ts2+1 is not in Rk−1, a contradiction. Thus, if A2 6= ∅,
then k ∈ A2.

Suppose A3 6= ∅. If k /∈ A3, then Ts3 = b(k−1),k−2 for some 1 ≤ s3 ≤ k − 1. Now,
a(k−1),k−1 is the last term in Rk−1. Therefore, Ts3+1 = a(k−1),k−1 and:

d = Ts3+1 − Ts3 =

(
k− 1

2
+ k− 2− 1

)
(2k− 4)−

(
k− 1− k− 1

2
− 1
)
(2k− 4)

= (k− 2)(2k− 4),

a contradiction. Thus, if A3 6= ∅, then k ∈ A3.
Hence, At0 6= ∅ for exactly one t0 ∈ [3]. Now, |A1| ≤ k−1

2 < k− 1, |A2| ≤ k−1
2 < k− 1,

and |A3| ≤ k− 2 < k− 1. Thus, k− 1 ≤ |A1|+ |A2|+ |A3| = |At0 | < k− 1, a contradiction.

Case 6.1.2: Suppose k is even. Let:

A1 =
{

s ∈ [k] : Ts = a(k−1),j for some 1 ≤ j ≤ k− 1
}

;

A2 =

{
s ∈ [k] : Ts = b(k−1),j for some 1 ≤ j ≤ k

2
− 1
}

;

A3 =

{
s ∈ [k] : Ts = b(k−1),j for some

k
2
≤ j ≤ k− 2

}
.

Note that A1, A2, and A3 are disjoint. By Equation (4), |A1|+ |A2|+ |A3| ≥ k − 1 ≥ 4.
Therefore, one of the At where t ∈ {1, 2, 3} must contain at least two elements. Thus,
d = −(2k− 4).

Suppose A1 6= ∅. If k /∈ A1, then Ts1 = a(k−1),k−1 for some 1 ≤ s1 ≤ k − 1. Since
a(k−1),k−1 is the last term in Rk−1, Ts1+1 is not in Rk−1, a contradiction. Thus, if A1 6= ∅,
then k ∈ A1.

Suppose A2 6= ∅. If k /∈ A2, then Ts2 = b(k−1), k
2−1 for some 1 ≤ s2 ≤ k− 1. Now,

Ts2 = 1 + (2k− 4)(2k− 3)−
(

3k
2

+
k
2
− 1− 3

)
(2k− 4)

= 1 + (2k− 4)

and Ts2+1 = 1 + (2k− 4)− (2k− 4) = 1. Therefore, Ts2+1 is in Rk. This is not possible.
Thus, if A2 6= ∅, then k ∈ A2.

Suppose A3 6= ∅. If k /∈ A3, Ts3 = b(k−1),k−2 for some 1 ≤ s3 ≤ k− 1. Now, a(k−1),k−1
is the last term in Rk−1. Therefore, Ts3+1 = a(k−1),k−1 and:

d = Ts3+1 − Ts3 =

(
k− 2− k

2

)
(2k− 4)−

(
k
2
+ k− 1− 2

)
(2k− 4)

= −(k− 1)(2k− 4),

a contradiction. Thus, if A3 6= ∅, then k ∈ A3.
Hence, At0 6= ∅ for exactly one t0 ∈ [3]. Now, |A1| ≤ k− 1, |A2| ≤ k

2 − 1 < k− 1, and
|A3| ≤ k

2 − 1 < k− 1. Thus, t0 = 1 and T2 = a(k−1),1. This means T1 can only be in Rk−2 or
Rk. Since d < 0, T1 must be in Rk, that is T1 = (2k− 3)2. Now,

d = T2 − T1 = 1 + (2k− 4)(2k− 3)−
(

k
2
+ 1− 2

)
(2k− 4)− (2k− 3)2

= −
(

k
2

)
(2k− 4),

a contradiction.
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Case 6.2: Suppose T1 ≡ k − 1 mod (2k − 4). Then Tj is either in R1 or R2k−3 for all j.
Since there are at most k− 1 integers in R2k−3 that are congruent with k− 1 mod (2k− 4),
we must have T1 in R1. Suppose both T1 and T2 are in R1. By Equation (1), we must
have d = −(2k − 4) and T1 = a1,l and T2 = a1,l+1 for some 1 ≤ l ≤ k − 2. Since
there are at most k − 1 integers in R1 that are congruent with k − 1 mod (2k − 4), we
must have Tk in R2k−3. The largest integer congruent with k− 1 mod (2k− 4) in R1 is
a1,1 = 1 + (k− 2)(2k− 3), and the smallest integer congruent with k− 1 mod (2k− 4) in
R2k−3 is a(2k−3),k−1 = k− 1 + (2k− 4)(2k− 3)− (k− 2)(2k− 4) = (k− 1)(2k− 3). Note
that a1,1 − a(2k−3),k−1 = −(2k− 4). Let s be the smallest integer such that Ts is in R1 and
Ts+1 is in R2k−3. Since both T1 and T2 are in R1, Ts 6= a1,1. Therefore,

2k− 4 = Ts − Ts+1 = (Ts − a1,1) + a1,1 − a(2k−3),k−1 + (a(2k−3),k−1 − Ts+1)

≤ 0− (2k− 4) + 0 < 0,

a contradiction. Suppose T1 is in R1, but T2 is in R2k−3. Then, we must have Tj = a(2k−3),j−1
for all 2 ≤ j ≤ k. By Equation (2), d = T3 − T2 = a(2k−3),2 − a(2k−3),1 = −(2k− 4). On the
other hand,

2k− 4 = T1 − T2 ≤ a1,1 − a(2k−3),1

= 1 + (k− 2)(2k− 3)− (k− 1 + (2k− 4)(2k− 3))

= −(k− 2)(2k− 2) < 0,

a contradiction.

Case 6.3: Suppose T1 ≡ r mod (2k− 4) where k ≤ r ≤ 2k− 4. Then, for all j, Tj is either
in Rr−k+1 or Rr−k+2.

Case 6.3.1: Suppose r− k + 1 is odd. Let:

A1 =

{
s ∈ [k] : Ts = br−k+1,j for some

r− k
2

+ 1 ≤ j ≤ k− 2− r− k
2

}
;

A2 =

{
s ∈ [k] : Ts = ar−k+2,j for some 1 ≤ j ≤ r− k + 2

2

}
;

A3 =

{
s ∈ [k] : Ts = ar−k+2,j for some k− r− k + 2

2
≤ j ≤ k− 1

}
;

A4 =
{

s ∈ [k] : Ts = br−k+2,j for some 1 ≤ j ≤ k− 2
}

.

Note that A1, A2, A3, and A4 are disjoint. By Equations (5) and (6) (or Equations (1) and (6)
when r = k), |A1| + |A2| + |A3| + |A4| = k ≥ 5. Therefore, one of the At where t ∈
{1, 2, 3, 4}must contain at least two elements. Thus, d = −(2k− 4).

Suppose A4 6= ∅. If k /∈ A4, then Ts4 = br−k+2,k−2 for some 1 ≤ s4 ≤ k − 1. Now,
ar−k+2,k−1 is the last term in Rr−k+2. Therefore, Ts4+1 = ar−k+2,k−1 and:

d = Ts4+1 − Ts4 = −
(

k− 1− k +
r− k + 2

2

)
(2k− 4) +

(
r− k + 2

2
+ k− 2− 1

)
(2k− 4)

= (k− 2)(2k− 4) > 0,

a contradiction. Thus, if A4 6= ∅, then k ∈ A4. Now, if 1 /∈ A4, then Ts5 = br−k+2,1 for
some 2 ≤ s5 ≤ k. By Equation (6), Ts5−1 = ar−k+2,k−1. This is not possible as Ts5−1 should
appear before Ts5 in P. Thus, if A4 6= ∅, then one and k must be in A4. This implies
that j ∈ A4 for all 1 ≤ j ≤ k. This is not possible as |A4| ≤ k− 2. Hence, A4 = ∅ and
|A1|+ |A2|+ |A3| = k.
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Suppose A2 6= ∅. If k /∈ A2, then Ts2 = ar−k+2, r−k+2
2

for some 1 ≤ s2 ≤ k− 1. Now,

Ts2 = 1 + (k− 3 + r− k + 2)(2k− 3)−
(

r− k + 2
2

+ k +
r− k + 2

2
− 3
)
(2k− 4)

= r,

and Ts2+1 = r− (2k− 4) ≤ 0, a contradiction. Thus, if A2 6= ∅, then k ∈ A2.
Suppose A3 6= ∅. If k /∈ A3, then Ts3 = ar−k+2,k−1 for some 1 ≤ s3 ≤ k− 1. Since

ar−k+2,k−1 is the last term in Rr−k+2, Ts3+1 is not in Rr−k+2, a contradiction. Thus, if A3 6= ∅,
then k ∈ A3.

Hence, At0 6= ∅ for at most one t0 ∈ {2, 3}. If A3 = ∅, then:

k = |A1|+ |A2| ≤ k− (r− k + 2) +
r− k + 2

2
= k− r− k + 2

2
< k,

a contradiction. Similarly, if A2 = ∅, then k = |A1|+ |A3| < k, again a contradiction.

Case 6.3.2: Suppose r− k + 1 is even. Let:

A1 =

{
s ∈ [k] : Ts = ar−k+1,j for some

r− k + 1
2

+ 1 ≤ j ≤ k− 1− r− k + 1
2

}
;

A2 =
{

s ∈ [k] : Ts = ar−k+2,j for some 1 ≤ j ≤ k− 1
}

;

A3 =

{
s ∈ [k] : Ts = br−k+2,j for some 1 ≤ j ≤ r− k + 1

2

}
;

A4 =

{
s ∈ [k] : Ts = br−k+2,j for some k− 1− r− k + 1

2
≤ j ≤ k− 2

}
.

Note that A1, A2, A3, and A4 are disjoint. By Equations (5) and (6), |A1|+ |A2|+ |A3|+
|A4| = k ≥ 5. Therefore, one of the At where t ∈ {1, 2, 3, 4} must contain at least two
elements. Thus, d = −(2k− 4).

Suppose A2 6= ∅. If k /∈ A2, then Ts2 = ar−k+2,k−1 for some 1 ≤ s2 ≤ k− 1. Since
ar−k+2,k−1 is the last term in Rr−k+2, Ts2+1 is not in Rr−k+2, a contradiction. Thus, if
A2 6= ∅, then k ∈ A2. Now, if T1 is not in A2, then Ts5 = ar−k+2,1 for some 2 ≤ s5 ≤ k. By
Equation (5) Ts5−1 = br−k+2,k−2. This is not possible as Ts5−1 should appear before Ts5 in P.
Thus, if A2 6= ∅, then one and k must be in A2. This implies that j ∈ A2 for all 1 ≤ j ≤ k.
This is not possible as |A2| ≤ k− 1. Hence, A2 = ∅ and |A1|+ |A3|+ |A4| = k.

Suppose A3 6= ∅. If k /∈ A3, then Ts3 = br−k+2, r−k+1
2

for some 1 ≤ s3 ≤ k− 1. Now,

Ts3 = 1 + (k− 3 + r− k + 2)(2k− 3)−
(

r− k + 1
2

+ k +
r− k + 1

2
− 2
)
(2k− 4)

= r,

and Ts3+1 = r− (2k− 4) ≤ 0, a contradiction. Thus, if A3 6= ∅, then k ∈ A3.
Suppose A4 6= ∅. If k /∈ A4, then Ts4 = br−k+2,k−2 for some 1 ≤ s4 ≤ k − 1. By

Equation (5), Ts4+1 = ar−k+2,1, which is not possible. Thus, if A4 6= ∅, then k ∈ A4.
Hence, At0 6= ∅ for at most one t0 ∈ {3, 4}. If A3 = ∅, then:

k = |A1|+ |A4| ≤ k− 1− (r− k + 1) +
r− k + 1

2
= k− 1− r− k + 1

2
< k,

a contradiction. Similarly, if A4 = ∅, then k = |A1|+ |A3| < k, again a contradiction.

Case 6.4: Suppose T1 ≡ r mod (2k− 4) where 2 ≤ r ≤ k− 2. Then, Tj is either in Rk−2+r
or Rk−1+r for all j.
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Case 6.4.1: Suppose k− 2 + r is odd. Let:

A1 =
{

s ∈ [k] : Ts = ak−2+r,j for some 1 ≤ j ≤ k− 1
}

;

A2 =

{
s ∈ [k] : Ts = bk−2+r,j for some 1 ≤ j ≤ k− 1− k− 1 + r

2

}
;

A3 =

{
s ∈ [k] : Ts = bk−2+r,j for some

k− 1 + r
2

≤ j ≤ k− 2
}

;

A4 =

{
s ∈ [k] : Ts = ak−1+r,j for some k− k− 1 + r

2
≤ j ≤ k− 1 + r

2

}
.

Note that A1, A2, A3, and A4 are disjoint. By Equations (7) and (8), |A1|+ |A2|+ |A3|+
|A4| = k ≥ 5. Therefore, one of the At where t ∈ {1, 2, 3, 4} must contain at least two
elements. Thus, d = −(2k− 4).

Suppose A1 6= ∅. If k /∈ A1, then Ts1 = ak−2+r,k−1 for some 1 ≤ s1 ≤ k− 1. Therefore,
Ts1+1 = bk−2+r,1, and this is not possible. Thus, if A1 6= ∅, then k ∈ A1. Now, if 1 /∈ A1,
then Ts5 = ak−2+r,1 for some 2 ≤ s5 ≤ k. Therefore, Ts5−1 = bk−2+r,k−2, again not possible.
Thus, if A1 6= ∅, then one and k must be in A1. This implies that j ∈ A1 for all 1 ≤ j ≤ k.
Therefore, k = |A1| ≤ k− 1, a contradiction. Hence, A1 = ∅ and |A2|+ |A3|+ |A4| = k.

Suppose A2 6= ∅. If 1 /∈ A2, then Ts2 = bk−2+r,1 for some 2 ≤ s2 ≤ k. Therefore,
Ts2−1 = ak−2+r,k−1, and this is not possible. Thus, if A2 6= ∅, then 1 ∈ A2.

Suppose A3 6= ∅. If 1 /∈ A3, then Ts3 = bk−2+r, k−1+r
2

for some 2 ≤ s3 ≤ k. Therefore,

Ts3 = 2 + k− 2 + r− k + (2k− 4)(2k− 3)

= r + (2k− 4)(2k− 3),

and Ts3−1 = r + (2k − 4)(2k − 2) > (2k − 3)2, a contradiction. Thus, if A3 6= ∅, then
1 ∈ A3. Hence, At0 6= ∅ for at most one t0 ∈ {2, 3}. If A3 = ∅, then:

k = |A2|+ |A4| ≤ k− 1− k− 1 + r
2

+ r =
k− 1 + r

2
< k,

a contradiction. Similarly, if A2 = ∅, then k = |A3|+ |A4| < k, again a contradiction.

Case 6.4.2: Suppose k− 2 + r is even. Let:

A1 =

{
s ∈ [k] : Ts = ak−2+r,j for some 1 ≤ j ≤ k− 1− k− 2 + r

2

}
;

A2 =

{
s ∈ [k] : Ts = ak−2+r,j for some

k− 2 + r
2

+ 1 ≤ j ≤ k− 1
}

;

A3 =
{

s ∈ [k] : Ts = bk−2+r,j for some 1 ≤ j ≤ k− 2
}

;

A4 =

{
s ∈ [k] : Ts = bk−1+r,j for some k− k + r

2
≤ j ≤ k + r

2
− 1
}

.

Note that A1, A2, A3, and A4 are disjoint. By Equations (7) and (8) (or Equations (2) and (6)
when r = k − 2), |A1| + |A2| + |A3| + |A4| = k ≥ 5. Therefore, one of the At where
t ∈ {1, 2, 3, 4}must contain at least two elements. Thus, d = −(2k− 4).

Suppose A3 6= ∅. If k /∈ A3, then Ts3 = bk−2+r,k−2 for some 1 ≤ s3 ≤ k− 1. Therefore,
Ts3+1 = ak−2+r,1, and this is not possible. Thus, if A3 6= ∅, then k ∈ A3. Now, if 1 /∈ A3,
then Ts5 = bk−2+r,1 for some 2 ≤ s5 ≤ k. Therefore, Ts5−1 = ak−2+r,k−1, again not possible.
Thus, if A3 6= ∅, then one and k must be in A3. This implies that j ∈ A3 for all 1 ≤ j ≤ k.
Therefore, k = |A3| ≤ k− 2, a contradiction. Hence, A3 = ∅ and |A1|+ |A2|+ |A4| = k.

Suppose A1 6= ∅. If 1 /∈ A1, then Ts1 = ak−2+r,1 for some 2 ≤ s1 ≤ k. Therefore,
Ts1−1 = bk−2+r,k−2, and this is not possible. Thus, if A1 6= ∅, then 1 ∈ A1.



Mathematics 2021, 9, 2259 12 of 14

Suppose A2 6= ∅. If 1 /∈ A2, then Ts2 = ak−2+r, k−2+r
2 +1 for some 2 ≤ s2 ≤ k. Therefore,

Ts2 = 2 + k− 2 + r− k + (2k− 4)(2k− 3)

= r + (2k− 4)(2k− 3),

and Ts2−1 = r + (2k − 4)(2k − 2) > (2k − 3)2, a contradiction. Thus, if A2 6= ∅, then
1 ∈ A2. Hence, At0 6= ∅ for at most one t0 ∈ {1, 2}. On the other hand, if A1 = ∅, then:

k = |A2|+ |A4| ≤ k− 1− k− 2 + r
2

+ r =
k− 2 + r

2
+ 1 < k,

a contradiction. Similarly, if A2 = ∅, then k = |A1|+ |A4| < k, again a contradiction.
Hence, P does not contain any k-term monotone arithmetic progressions. This com-

pletes the proof of the theorem.

Corollary 1. Let k ≥ 3. For each integer n with k ≤ n ≤ (2k− 3)2, there is an arrangement of
[n] that avoids k-term arithmetic progressions, but contains a (k− 1)-term arithmetic progression.

Proof. For k = 3, the sequence P = 1, 9, 5, 3, 7, 2, 8, 4, 6 avoids three-term arithmetic pro-
gressions. Now, for 3 ≤ n ≤ 9, remove n + 1, n + 2, . . . , 9 from P, and denote the resulting
sequence as P′. For instance, if n = 8, then P′ = 1, 5, 3, 7, 2, 8, 4, 6, and if n = 5, then
P′ = 1, 5, 3, 2, 4. Note that P′ avoids three-term arithmetic progressions. Therefore, we may
assume that k ≥ 4.

Suppose 2k− 3 ≤ n ≤ (2k− 3)2. First, we show that if n = (2k− 3)2, then there is
an arrangement of [n] that avoids k-term arithmetic progressions, but contains a (k− 1)-
term arithmetic progression. By Theorem 2, such an arrangement exists. Let us denote
the arrangement by P. Now, remove n + 1, n + 2, . . . , (2k − 3)2 from P, and denote the
resulting sequence as P′. Note that P′ avoids k-term arithmetic progressions, but contains a
(k− 1)-term arithmetic progression, that is k− 1, k, . . . , 2k− 3.

Suppose k ≤ n ≤ 2k− 3. Let Q = 2k− 3, 2k− 4, . . . , k, 1, 2, . . . , k− 1. Then, it avoids
k-term arithmetic progressions, but contains a (k− 1)-term arithmetic progression, that
is 1, 2, . . . , k− 1. Now, remove n + 1, n + 2, . . . , (2k− 3) from Q, and denote the resulting
sequence as Q′. Thus, Q′ avoids k-term arithmetic progressions, but contains a (k− 1)-term
arithmetic progression, that is 1, 2, . . . , k− 1.

Lemma 1. Let bn = san + r for some real numbers r, s. Then, the sequence a1, a2, . . . , an contains
a k-term monotone arithmetic progression if and only if b1, b2, . . . , bn contains a k-term monotone
arithmetic progression.

Proof. It is sufficient to show that if a1, a2, . . . , an contains a k-term monotone arithmetic
progression, then b1, b2, . . . , bn contains a k-term monotone arithmetic progression. Let
i1 < i2 < · · · < ik be such that ai1 , ai2 , . . . , aik is a k-term monotone arithmetic progression.
Therefore,

aij = ai1 + (j− 1)d

for some real number d. This implies that:

bij = saij + r = s(ai1 + (j− 1)d) + r

= (sai1 + r) + (j− 1)sd = bi1 + (j− 1)sd.

Hence, bi1 , bi2 , . . . , bik is a k-term monotone arithmetic progression.

Let dxe be the smallest integer such that dxe − 1 < x ≤ dxe and bxc be the largest
integer such that bxc ≤ x < bxc+ 1.
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Theorem 3. Let k ≥ 3. For each integer n with n ≥ k, there is an arrangement of [n] that avoids
k-term arithmetic progressions, but contains a (k− 1)-term arithmetic progression.

Proof. By Corollary 1, this theorem is true for n ≤ (2k − 3)2. Now, we may assume
n > (2k − 3)2. We also assume that the theorem is true for all n′ such that n′ < n.
Let [n] = A1 ∪ A2 where A1 and A2 are odd and even integers, respectively. Note that
|A1| =

⌈ n
2
⌉

and |A2| =
⌊ n

2
⌋
. Note that:

A1 =
{

2j− 1 : 1 ≤ j ≤
⌈n

2

⌉}
;

A2 =
{

2j : 1 ≤ j ≤
⌊n

2

⌋}
.

Since d n
2 e < n, by assumption, the theorem is true for d n

2 e. Let P1 = a1, a2, . . . , ad n
2 e be an

arrangement of
[⌈ n

2
⌉]

that avoids k-term arithmetic progressions, but contains a (k− 1)-
term arithmetic progression. Furthermore, let P2 = b1, b2, . . . , bb n

2 c be an arrangement of[⌊ n
2
⌋]

that avoids k-term arithmetic progressions, but contains a (k− 1)-term arithmetic
progression. We claim that:

P = 2a1 − 1, 2a2 − 1, . . . , 2ad n
2 e − 1, 2b1, 2b2, . . . , 2bb n

2 c

is an arrangement that avoids k-term arithmetic progressions, but contains a (k− 1)-term
arithmetic progression. In fact, if T1, T2, . . . , Tk is a k-term monotone arithmetic progression
in P, then Tj = T1 + (j− 1)d. Let:

A1 =
{

s ∈ [k] : Ts = 2aj − 1 for some 1 ≤ j ≤
⌈n

2

⌉}
;

A2 =
{

s ∈ [k] : Ts = 2bj for some 1 ≤ j ≤
⌊n

2

⌋}
.

Since k ≥ 4, one of the At where t ∈ {1, 2} must contain at least two elements. Thus, d
is even. If both A1 and A2 are nonempty, then there is a 1 ≤ s ≤ k− 1 such that s ∈ A1
and s + 1 ∈ A2. Now, d = Ts+1 − Ts = 2bj2 − (2aj1 − 1) = 2(bj2 − aj1) + 1 is odd, a
contradiction. Hence, At0 6= ∅ for at most one t0 ∈ {1, 2}. If A1 6= ∅, then by Lemma 1,
P1 contains a k-term arithmetic progression, a contradiction. Similarly, if A2 6= ∅, then P2
contains a k-term arithmetic progression. Hence, P avoids k-term arithmetic progressions,
but contains a (k− 1)-term arithmetic progression.
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