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Abstract: Assimilating a complex fluid with a fractal object, non-differentiable behaviors in its dy-
namics are analyzed. Complex fluid dynamics in the form of hydrodynamic-type fractal regimes
imply “holographic implementations” through velocity fields at non-differentiable scale resolution,
via fractal solitons, fractal solitons–fractal kinks, and fractal minimal vortices. Complex fluid dynam-
ics in the form of Schrödinger type fractal regimes imply “holographic implementations”, through
the formalism of Airy functions of fractal type. Then, the in-phase coherence of the dynamics of
the complex fluid structural units induces various operational procedures in the description of
such dynamics: special cubics with SL(2R)-type group invariance, special differential geometry of
Riemann type associated to such cubics, special apolar transport of cubics, special harmonic mapping
principle, etc. In such a manner, a possible scenario toward chaos (a period-doubling scenario),
without concluding in chaos (nonmanifest chaos), can be mimed.

Keywords: differentiability; fractal hydrodynamic regimes; fractal Schrödinger regimes; fractal
soliton; fractal kink; “holographic implementations”; cubics; apolar transport; harmonic mapping
principle; period doubling scenario

1. Introduction

Common models used to describe the dynamics in complex fluids, are founded on a
mix of basic theories, derived primarily from physics and computer simulations [1–3]. In
such a context, their description implies both computational simulations based on specific
algorithms [2], as well as developments on fundamental theories. With respect to models
developed on fundamental theories, the following classes can be distinguished:

(i) A class of models developed on spaces with integer dimension—i.e., differentiable
models (for example, Navier–Stokes systems, etc.) [1–3];

(ii) Another class of models developed on spaces with non-integer dimensions, which
is clearly defined by means of fractional derivatives [4,5]—i.e., non-differentiable
models, with examples including the fractal models [6];

(iii) Expanding the previous class of models, new developments have been made based
on Scale Relativity Theory. In such a context, the dynamics of any complex fluid can
be developed on monofractal manifolds (theory of Nottale, in the fractal dimension
Df = 2) [7], or on the multifractal manifolds (as in the case of the Fractal Theory of
Motion) [8,9].
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Both in the context of Scale Relativity Theory in the sense of Nottale [7], as well as
in the one of Fractal Theory of Motion [8,9], the fundamental hypothesis is the following:
assuming that any type of complex fluid is assimilated to a fractal object, said dynamics can
be analyzed using motions of the structural units of any complex fluid, on fractal curves.

Such a hypothesis may be illustrated by considering the following scenario: between
two successive interactions of the structural units belonging to any complex system, the
trajectory of the complex fluid’s structural unit is a straight line. This straight line becomes
non-differentiable in the impact point. From such a perspective, taking into account that all
interaction points construct an uncountable set of points, it can be stated that the trajectories
of the complex fluid’s structural units become fractal curves. Given the diversity of the
structural units which compose any complex fluid and the diversity of interactions taking
place between them, extrapolating the preceding argument for any type of complex fluid,
it results that it can be assimilated to a fractal in the general sense of Mandelbrot [6].

All these considerations imply that, in the description of complex fluid dynamics,
instead of “working” with a single variable (regardless of its nature, i.e., velocity, density,
etc.) governed through a non-differentiable function, it is necessary to “work” just with
approximations of this function (i.e., mathematical function was given by averaging them
on various scale resolutions). From such a perspective, it results that any mathematical
variable purposed to characterize the complex fluid dynamics will act as the limit of a class
of functions. Thus, said variable will be non-differentiable for null scale resolutions and
differentiable otherwise [7–9]. To put it differently, from a mathematical point of view,
these variables can be explained through fractal functions, i.e., functions dependent not
only on spatial and temporal coordinates, but also on the scale resolution.

Because for a large temporal scale resolution when referring to the inverse of the
highest Lyapunov exponent [10,11], the deterministic trajectories of any structural unit
belonging to a complex fluid can be substituted by a “class” of virtual trajectories, such
that the notion of a definite trajectory can be supplanted by the one of probability density.
Considering all of the above, the fractality expressed by means of stochasticity, in the
depiction of the dynamics of complex fluid, becomes operational in the fractal paradigm
through the Fractal Theory of Motion [8,9].

In this context, the present study was directed to the modeling of the behavior of
complex fluid dynamics. A mathematical model was created considering the complex fluid
as a fractal object, and its dynamics were analyzed in the framework of Scale Relativity
Theory [7–9].

2. Mathematical Model

The complex fluid is a collection of entities (or structured units) that, by means of their
interactions, relationships, or dependencies construct a unified total. In what follows, the
complex fluid will be assimilated with a fractal. Then, Scale Relativity Theory in the form of
Fractal Theory of Motion becomes operational through the scale covariant derivative [8,9]:

d̂F
dt

=

[
∂t + V̂ l∂l +

1
4
(dt)

( 2
D f

)−1
Dlp∂l∂p

]
F, (1)

where
V̂ l = V l

D −V l
F

Dlp = dlp − id̂lp

dlp = λl
+λ

p
+ − λl

−λ
p
−

d̂lp = λl
+λ

p
+ + λl

−λ
p
−

∂t =
∂
∂t , ∂l =

∂
∂xl , ∂l∂p = ∂

∂xl
∂

∂xp , i =
√
−1, l, p = 1, 2, 3

(2)

In relations (2), the meaning of the variables and parameters are as follows:
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• xl is the fractal spatial coordinate;
• t is the non-fractal time having the role of an affine parameter of the motion curves;
• V̂ l is the complex velocity;
• V l

D is the differential velocity independent on the scale resolution;
• V l

F is the non-differentiable velocity dependent on the scale resolution;
• dt is the scale resolution;
• D f is the fractal dimension of the movement curve;
• Dlp is the constant tensor associated with the differentiable–non-differentiable transi-

tion;
• λl

+

(
λ

p
+

)
is the constant vector associated with the backward differentiable–non-

differentiable dynamic processes;
• λl

−

(
λ

p
−

)
is the constant vector associated with the forward differentiable–non-

differentiable dynamic processes;
• F is a fractal function.

Many modes, and as such, an equally varied choice of definitions of fractal dimen-
sions exist. More precisely, the fractal dimension of the Kolmogorov type and the fractal
dimension of Hausdorff–Besikovitch type are the most frequently used [6,10,11]. Choosing
one of the above fractal dimensions in the description of any complex fluid dynamics, the
value of the fractal dimension must be constant and arbitrary in any dynamical analysis.
For instance: D f < 2 for correlative processes in complex fluid dynamics, D f > 2 for
non-correlative processes in said dynamics, etc. [10,11].

Accepting the functionality of the scale covariance principle, which refers to applying
the operator (1) to the complex velocity field (2), for the case of free motions, the geodesics
equation on fractal space takes the following form [8,9]:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i +

1
4
(dt)

( 2
D f

)−1
Dlk∂l∂kV̂i = 0, (3)

This means that the fractal acceleration, ∂tV̂i, the fractal convection, V̂ l∂lV̂i and the
fractal dissipation, Dlk∂l∂kV̂i, achieve their equilibrium at any point of the fractal curve.

If the fractalization is achieved by Markov-type stochastic processes (see Introduction
and [6–9]), then:

λi
+λl

+ = λi
−λl
− = 2λδil , (4)

In (4), λ is a coefficient linked to the differentiable-non-differentiable transition and δil

is Kronecker’s pseudo-tensor. In these conditions, the geodesics Equation (3) becomes:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i − iλ(dt)

( 2
D f

)−1
∂l∂lV̂i = 0 (5)

3. Dynamics of Complex Fluids in the Form of Hydrodynamic—Type
Fractal “Regimes”

The division of the complex fluid’s dynamics on scale resolutions implies, through (5),
both the conservation law of the specific momentum at differentiable scale resolution:

∂Vi
D

dt
= ∂tVi

D + V l
D∂lVi

D −
[

V l
F + λ(dt)

( 2
D f

)−1
∂l

]
∂lVi

F = 0, (6)

and also the conservation laws of the specific momentum at non-differentiable scale resolu-
tions:

∂Vi
F

dt
= ∂tVi

F + V l
D∂lVi

F +

[
V l

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

D = 0, (7)
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From (6), it results that the specific force:

f i
F =

[
V l

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

F, (8)

induced by the velocity fields Vi
F. This becomes a “measure” of non-differentiability of

motion curves of complex fluid entities.
In the case of stationary complex fluid dynamics

(
∂tVi

D = 0, ∂tVi
F = 0

)
, the conserva-

tion laws (6), (7) become:

V l
D∂lVi

D −
[

V l
F + λ(dt)

( 2
D f

)−1
∂l

]
∂lVi

F = 0, (9)

V l
D∂lVi

F +

[
V l

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

D = 0, (10)

while, in the static case (∂tVi
D = 0, Vi

D = 0, ∂tVi
F = 0) these take the form:[

V l
F + λ(dt)

( 2
D f

)−1
∂l

]
∂lVi

F = 0, (11)

The result (11) specifies that, although at differentiable scale resolution, the complex fluid
dynamics are absent while, at the non-differentiable scale resolution, the complex fluid
dynamics can be “dictated” by the hydrodynamic fractal- type equations:

V l
F∂lVi

F + λ(dt)
( 2

D f
)−1

∂l∂
lVi

F = 0 (12)

∂lV l
F = 0 (13)

Equation (13) corresponds to the complex fluid incompressibility at the non-differentiable
scale resolution (i.e., the states’ density ρ at the non-differentiable scale resolution is
constant).

Generally, it is difficult to obtain an analytical solution for the previous equation
system, taking into account its non-linear nature. However, it is still possible to obtain an
analytic solution in the case of plane symmetry (for example, in (x, y) coordinates) of the
complex fluid dynamics. In order to obtain such a solution, in what follows, the method
described in [12] will be used. Let it be considered the equations system (12) and (13) in
the form:

U0∂xU0 + V0∂yU0 = σ0∂2
yyU0, (14)

∂xU0 + ∂yV0 = 0, (15)

where:

VFx = U0(x, y), VFy = V0(x, y), σ0 = λ(dt)
( 2

D f
)−1

(16)

Imposing now the following conditions:

lim
y→0

V0(x, y) = 0, lim
y→0

∂U0

∂y
= 0, lim

y→∞
U0(x, y) = 0, (17)

and considering constant flux moment per unit of depth:

Q = ρ

+∞∫
−∞

U2
0 dy = const., (18)
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the velocity fields as the solution of the equations system (14) and (15), take the form:

U0 =
1.5
(

Q
6ρ

) 2
3

(σ0x)
1
3

sec h2

0.5y
(

Q
6ρ

) 1
3

(σ0x)
2
3

, (19)

V0 =
1.9
(

Q
6ρ

) 2
3

(σ0x)
1
3


y
(

Q
6ρ

) 1
3

(σ0x)
2
3

sec h2

0.5y
(

Q
6ρ

) 1
3

(σ0x)
2
3

− tan h

0.5y
(

Q
6ρ

) 1
3

(σ0x)
2
3


, (20)

The previous can be simplified greatly through the use of non-dimensional variables:

X =
x
x0

, Y =
y
y0

, U =
U0

w0
, V =

V0

w0
, (21)

and non-dimensional parameters:

µ =
σ0

υ0
, υ0 =

y0
3
2

x0

(
Q
6ρ

) 1
2
, w0 =

1

(y0)
1
2

(
Q
6ρ

) 1
2
, (22)

where x0, y0, w0, and ν0 represent specific lengths, specific velocity, and “fractal degree” of
the complex fluid dynamics. In these conditions, the normalized velocity fields become:

U =
1.5

(µX)
1
3

sec h2

[
0.5Y

(µX)
2
3

]
, (23)

V =
1.9

(µX)
1
3

{
Y

(µX)
2
3

sec h2

[
0.5Y

(µX)
2
3

]
− tan h

[
0.5Y

(µX)
2
3

]}
, (24)

Any of the above relations describe the non-linear character of the velocity fields.
This character can be explained through the fractal soliton (i.e., soliton depending on
scale resolution) for the velocity field across the Ox axis, respectively “mixtures” of frac-
tal soliton-fractal kink (i.e., kink dependent on scale resolution), for the velocity fields
across the Oy axis. The specificities in the complex fluid dynamics are “explained” in
Figures 1a–d and 2a–d. Details on the soliton, kink, and other classical non-linear solutions
are given in [10,11].
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Figure 1. Non-dimensional velocity field U for different fractal degree: (a) µ = 0.5; (b) µ = 1; (c)
µ = 1.5; (d) µ = 3.
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Figure 2. Non–dimensional velocity field 𝑉 for different fractal degree: (a) 𝜇 = 0.5; (b) 𝜇 = 1; (c) 

𝜇 = 1.5; (d) 𝜇 = 3. 

The velocity fields (23) and (24) induce the fractal minimal vortex (Figure 3a–d). 

Ω = (
𝜕𝑈

𝜕𝑌
−
𝜕𝑉

𝜕𝑌
) =

0.57𝑌

(𝜇𝑋)2
+
0.63𝜇
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4
3

tanh [
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(𝜇𝑋)
2
3

] +
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sech2 [
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2
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−
0.57𝑌
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tanh2 [
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2
3

] − [
1.5
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+
1.4𝑌2

𝑋(𝜇𝑋)
5
3

] sech2 [
0.5𝑌
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2
3

] tanh [
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2
3

], 

(25) 

Figure 2. Non-dimensional velocity field V for different fractal degree: (a) µ = 0.5; (b) µ = 1; (c)
µ = 1.5; (d) µ = 3.

The velocity fields (23) and (24) induce the fractal minimal vortex (Figure 3a–d).

Ω =
(

∂U
∂Y −

∂V
∂Y

)
= 0.57Y

(µX)2 +
0.63µ

(µX)
4
3

tan h
[

0.5Y

(µX)
2
3

]
+ 1.9Y

(µX)2 sec h2
[

0.5Y

(µX)
2
3

]
−

− 0.57Y
(µX)2 tan h2

[
0.5Y

(µX)
2
3

]
−
[

1.5
µX + 1.4Y2

X(µX)
5
3

]
sec h2

[
0.5Y

(µX)
2
3

]
tan h

[
0.5Y

(µX)
2
3

]
,

(25)
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fractal vortices and manifest as “virtual” turbulence sources. In the presence of an ex-

ternal constraint, they become “real” and the turbulence mechanism is triggered. Essen-

tially, the discussion revolves around “holographic implementation” of turbulences in 

the complex fluid dynamics. It is reminded that, since the dynamics of complex fluid en-
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Figure 3. Fractal minimal vortex field Ω for different fractal degree: (a) µ = 0.5 (b) µ = 1; (c) µ = 1.5;
(d) µ = 3.

This previous result was used to specify the fact that the turbulence sources may be
induced by fractal vortices. As long as the complex fluid is not constrained externally,
fractal vortices do not manifest themselves. Phrasing it differently, they are “virtual”
fractal vortices and manifest as “virtual” turbulence sources. In the presence of an external
constraint, they become “real” and the turbulence mechanism is triggered. Essentially, the
discussion revolves around “holographic implementation” of turbulences in the complex
fluid dynamics. It is reminded that, since the dynamics of complex fluid entities are
described by continuous but non-differentiable curves, curves which exhibit the property
of self-similarity in every one of its points, these can be viewed as a holographic mechanism
(every part reflects the whole) of dynamics description. It is noted that the previous
choice of the fractality degree (i.e., the scale resolution, type of motion curve through its
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fractal dimension) can generally cover various types of dynamics found in complex fluids.
Moreover, it is noted that the previous Figures were obtained in a Python programming
environment.

4. Dynamics of Complex Fluids in the Form of Schrödinger-Type “Regimes”

In the case of irrotational motions of the complex fluid structural units, the complex
velocity field V̂i from (2) becomes:

V̂i = −2iλ(dt)
( 2

D f
)−1

∂i ln Ψ (26)

where ln Ψ is the fractal scalar potential of the velocity fields and Ψ is a fractal state function.
Then, substituting (26) in (5), the geodesics Equation (5) becomes (for details on the

method, see [7–9]):

λ2(dt)
( 4

D f
)−2

∂l∂lΨ + iλ(dt)
( 2

D f
)−1

∂tΨ = 0 (27)

Relation (27) is a Schrödinger equation of fractal type. As a consequence, different dynamics
of any complex fluids can be explained as Schrödinger-type fractal “regimes”. In the
particular case of the dynamics of structural units belonging to the complex fluid, on
Peano-type curves ( D f → 2) at Compton scale (λ = h/4πm0, where h is Planck’s constant
and m0 is the rest mass of the structural unit belonging to the complex fluid), (27) becomes
the standard Schrödinger equation from quantum mechanics.

The solution of the one-dimensional Schrödinger equation of fractal type can be
written in the form (for details see [13,14]):

Ψ(x, t) = 1√
t
exp
(

i x2

4µt

)
,

µ = λ(dt)
( 2

D f
)−1 (28)

and is defined, of course, up to an arbitrary multiplicative constant.
As such, the general solution of Equation (27) can be written as a linear superposition

of the form:

Ψ(x, t) =
1√

t

+∞∫
−∞

u(y)exp

[
i
(x− y)2

4µt

]
dy (29)

Now, if u(y) is an Airy function of fractal type, then Ψ(x, t) retains this property, in
the sense that its amplitude is an Airy function of fractal type. Indeed, in this case, there
will be:

u(y) ≡ Ai(y) =
1

2π

+∞∫
−∞

exp
[

i
(

ω3

3
+ ωy

)]
dω (30)

in such a way as the state function (29) will be written in the form:

Ψ(x, t) =
1

2π
√

t

+∞∫
−∞

exp

{
i

[
ω3

3
+ ωy +

(x− y)2

4ut

]}
dydω (31)

If, at first, the integration will be carried out after y, up to a multiplicative constant, the
results is:

Ψ(x, t) =
1

2π

+∞∫
−∞

exp
[

i
(

ω3

3
+ ωx− µtω2

)]
dω (32)
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The final result is obtained based on a special relationship developed in [13,14] and it
is:

Ψ(x, t) =
[

Ai
(

kx− ν2t2
)]

exp
[

iνt
(

kx− 2
3

ν2t2
)]

(33)

with
ν = k2µ (34)

In these conditions, if Ψ is chosen in the form:

Ψ(x, t) = A(x, t) exp[iφ(x, t)] (35)

where A(x, t) is an amplitude and Φ(x, t) is a phase, by identifying in (33) the amplitude
and the phase, there will be:

A(x, t) = Ai
(
kx− ν2t2),

φ(x, t) = νt
(
kx− 2

3 ν2t2) (36)

By substituting (35) in (27), by means of direct calculation, the following relation is
checked:

i∂Ψ + µ∂l∂
lΨ = −

[
∂tφ + µ(∂lφ)

2 − µ
∂l∂

lA
A

]
+

i
2A2

[
∂t A2 + 2µ∂l

(
A2∂lφ

)]
(37)

Now, the “specific constraints” necessary for Ψ to be a solution of the non-stationary
differential Equation (37) will be reducible to the differential equations:

∂tφ + µ
(

∂lφ∂lφ
)
= µ ∂l ∂

l A
A

∂t A2 + 2µ
(

A2∂lφ
)
= 0

(38)

The first of these equations is the Hamilton–Jacobi equation of fractal type, while the
second equation is the continuity equation of fractal type. From here, the correspondence
with the hydrodynamic model of fractal type, pertaining to scale relativity [7–9], becomes
evident based on the substitutions:

Vi
D = µ∂iφ,

ρ = A2 (39)

where Vi
D is the differential component of the velocity field and ρ is the density of states. In

this condition, the conservation law of fractal type of the specific momentum:

∂tVi
D + V l

D∂lVi
D = −∂iQ (40)

and respectively, the conservation law of the density of states of fractal type:

∂tρ + ∂l
(

ρV l
D

)
= 0 (41)

can be found.
The specific potential of fractal type:

Q = −µ2 ∂l∂
l√ρ
√

ρ
(42)
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through the induced specific force of fractal type:

f i = −∂iQ = −µ2∂i

(
∂l∂

l√ρ
√

ρ

)
(43)

becomes a measure of the fractal degree pertaining to the motion curves.
Now, through (36), the in-phase coherence of the structural unit dynamics for any

complex fluid implies the condition

Φ(x, t) = νt
(

kx− 2
3

ν2t2
)
= const (44)

or, moreover, in the notations:

− 2
3

ν3t3 = a0X3, a1 = 0, νkxt = 3a2, a3 = const.

the cubic equation:
a0X3 + 3a1X2 + 3a2X + a3 = 0 (45)

If (45) has real roots [14,15]:
X1 = h+hk

1+k ,
X2 = h+εhk

1+εk ,
X3 = h+ε2hk

1+ε2k

(46)

with h, h the roots of Hessian, and ε ≡
(
−1 + i

√
3
)

/2 the cubic root of unity
(
i =
√
−1
)
,

the values of variables h, h, and k can be “scanned” by a simple transitive group with real
parameters. This group can be revealed through Riemann-type spaces associated with the
previous cubic. The basis of this approach is the fact that the simply transitive group with
real parameters [14,15]:

Xl ↔
aXl + b
cXl + d

, l = 1, 2, 3 a, b, c, d ∈ R (47)

where Xl are the roots of the cubic (45), induces the simply transitive group in the quantities
h, h, and k, whose actions are:

h↔ ah+b
ch+d ,

h ↔ ah+b
ch+d

,

k↔ ch+d
ch+d k

(48)

The structure of this group is typical of SL(2R), i.e.,[
B1, B2] = B1,[
B2, B3] = B3,[

B3, B1] = −2B2
(49)

where Bl are the infinitezimal generators of the group:

B1 = ∂
∂h + ∂

∂h
B2 = h ∂

∂h + h ∂
∂h

B3 = h2 ∂
∂h + h

2 ∂
∂h

+
(

h− h
)

k ∂
∂k

(50)
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and admit the absolute invariant differentials

ω1 = dh
(h−h)k

ω2 = −i
(

dk
k −

dh+dh
h−h

)
ω3 = − kdh

h−h

(51)

and the 2-form (the metric):

ds2 =

(
dk
k
− dh + dh

h− h

)2

− 4
dhdh(

h− h
)2 (52)

In real terms
h = u + iv, h = u + iv, k = eiθ (53)

and for
Ω1 = ω2 = dθ + du

v
Ω2 = cos θ du

v + sin θ dv
v

Ω3 = − sin θ du
v + cos θ dv

v ,
(54)

the connection with Poincaré representation of the Lobachevsky plane can be obtained.
Indeed, the metric is a three-dimensional Lorentz structure:

ds2 = −
(

Ω1
)2

+
(

Ω2
)2

+
(

Ω3
)2

= −
(

dθ +
du
v

)2
+

du2 + dv2

v2 (55)

This metric reduces to that of Poincaré, in cases where Ω1 ≡ 0, which defines the
variable θ as the “angle of parallelism” of the hyperbolic planes (the connection). In fact,
recalling that

dk
k
− dh + dh

h− h
= 0↔ dθ = −du

v
(56)

represents the connection form of the hyperbolic plane, the relationship (54) then represents
general Bäcklund transformations in that plane. In such a conjecture, it is noted that, if the
temporal cubic is assumed to have distinct roots, the condition (56) is satisfied, if, and only
if, the differential forms Ω1 is null.

Therefore, for the metric (55) with restriction (56), the relation becomes:

ds2 =
dhdh(

h− h
)2 =

du2 + dv2

v2 (57)

The parallel transport of the hyperbolic plane actually represents the apolar transport
of the cubics (45).

Such a metric approach allows harmonic mappings from the usual space to the
hyperbolic one (space associated to the dynamics of the complex fluid), through the
functional (for details see [14–16]):

J =
1
2

y
d3X

 ∂lh∂lh(
h− h

)2

 (58)

where the usual notation ∂l denotes the gradient and d3X is the elementary volume.
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In the case of the synchronization of dynamics of any complex fluid structural units,
i.e., in-phase coherence through the condition (44), the Euler equations corresponding to
the functional (58) is: (

h− h
)
∇(∇h) = 2(∇h)2 (59)

which admits

h = i
cosh χ− sinhχe−iΩ

cosh χ + sinhχe−iΩ
, χ =

ψ

2
(60)

as a solution, as long as χ (and thus ψ) are solutions of a Laplace-type equation for the free
space.

Therefore, space-time “synchronization modes” in phase and amplitude of the com-
plex fluid structural units imply group invariances of a SL(2R) type. Then, period dou-
bling emerges as a natural behavior in the complex fluid dynamics (see Figure 4a–c where
r = tanhχ, |h| ≡ Amplitude and Ω = Ωt at various scale resolutions, given by means of
the maximum value of Ω, i.e., Ωmax).

As it can be observed in Figure 4a–c, the natural transition of a complex fluid is
to evolve from a normal period doubling state towards damped oscillating and strong
modulated dynamics. The complex fluid never reaches a chaotic state, but it permanently
evolves towards that state. There is a periodicity to the whole series of transitions, the
system evolves through period doubling, damped oscillations even reaching in some cases
an intermittent state (the damped oscillations, intermittent states, etc. will be analyzed by
us in a future paper), but it never reaches a pure chaotic state. The evolution of the systems
sees a “jump” into a period doubling oscillation state and the transition resumes towards a
quasi-chaotic state.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 19 
 

 

where the usual notation 𝜕𝑙 denotes the gradient and 𝑑3𝑿 is the elementary volume. 

In the case of the synchronization of dynamics of any complex fluid structural units, 

i.e., in-phase coherence through the condition (44), the Euler equations corresponding to 

the functional (58) is: 

(ℎ − ℎ̅)∇(∇ℎ) = 2(∇ℎ)2 (59) 

which admits 

ℎ = 𝑖
cosh 𝜒 − sinh 𝜒𝑒−𝑖Ω

̅̅ ̅

cosh 𝜒 + sinh 𝜒𝑒−𝑖Ω
̅̅ ̅ , 𝜒 =

𝜓

2
 (60) 

as a solution, as long as 𝜒 (and thus 𝜓) are solutions of a Laplace-type equation for the 

free space. 

Therefore, space-time “synchronization modes” in phase and amplitude of the 

complex fluid structural units imply group invariances of a 𝑆𝐿(2𝑅) type. Then, period 

doubling emerges as a natural behavior in the complex fluid dynamics (see Figure 4a–c 

where 𝑟 = 𝑡𝑎𝑛ℎ𝜒, |ℎ| ≡ 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 and Ω̅ = Ωt at various scale resolutions, given by 

means of the maximum value of Ω, i.e., Ω𝑚𝑎𝑥). 

As it can be observed in Figure 4a–c, the natural transition of a complex fluid is to 

evolve from a normal period doubling state towards damped oscillating and strong 

modulated dynamics. The complex fluid never reaches a chaotic state, but it permanently 

evolves towards that state. There is a periodicity to the whole series of transitions, the 

system evolves through period doubling, damped oscillations even reaching in some 

cases an intermittent state (the damped oscillations, intermittent states, etc. will be ana-

lyzed by us in a future paper), but it never reaches a pure chaotic state. The evolution of 

the systems sees a “jump” into a period doubling oscillation state and the transition re-

sumes towards a quasi-chaotic state.  

 

 
Figure 4. Cont.



Mathematics 2021, 9, 2273 17 of 19Mathematics 2021, 9, x FOR PEER REVIEW 17 of 19 
 

 

 

 

 

 

Figure 4. (a–c) A period doubling (a–c) “synchronization mode” of complex fluid structural units 

(3D, contour plot, and time-series) for the scale resolution given by Ω𝑚𝑎𝑥 = 2. 

The Bifurcation Map is presented (Figure 5) where again it is observed that the 

complex fluid starts from a steady state (double period state) and evolves towards a 

chaotic one (Ω𝑚𝑎𝑥 = 2) but it never reaches that state. For each periodic transition sce-

nario, it is possible to observe the system swiping through all the previously mentioned 

dynamic states. Therefore, there is an overall periodicity with a continuous increase in 

oscillation amplitude. 

Figure 4. (a–c) A period doubling (a–c) “synchronization mode” of complex fluid structural units
(3D, contour plot, and time-series) for the scale resolution given by Ωmax = 2.

The Bifurcation Map is presented (Figure 5) where again it is observed that the complex
fluid starts from a steady state (double period state) and evolves towards a chaotic one
(Ωmax = 2) but it never reaches that state. For each periodic transition scenario, it is
possible to observe the system swiping through all the previously mentioned dynamic
states. Therefore, there is an overall periodicity with a continuous increase in oscillation
amplitude.
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Figure 5. The oscillation frequency of the complex system as a function of a scale resolution chosen
by Ωmax bifurcation map.

Let it be noted that the mathematical formalism of the Fractal Theory of Motion
implies various operational procedures (invariance groups, harmonic mappings, groups
isomorphism, embedding manifolds, etc.) with quite a number of applications in complex
fluid dynamics [17,18].

5. Conclusions

Assimilating the complex fluid with a fractal, different dynamics at various scale
resolutions are analyzed. Therefore, the following conclusions may be stated:

(i) The complex fluid dynamics, in the form of hydrodynamic-type fractal regimes,
specify velocity fields at non-differentiable scale resolution, in the form of fractal
solitons, fractal solitons–fractal kinks, and fractal minimal vortices;

(ii) The fractal vortices can be linked to turbulence sources in complex fluid dynamics at
non-differentiable scale resolutions. So long as they are not acted upon by any external
constraint, fractal vortices are virtual and non-manifest. However, the presence of
external constraints radically changes the complex fluid dynamics, in the sense that
the vortices will manifest as a real turbulences. Since the dynamics of complex fluid
entities are described by continuous but non-differentiable curves (which exhibit
the property of self-similarity in every one of their points), these can be viewed as a
holographic mechanism (every part reflects the whole) in the description of complex
fluid dynamics;

(iii) The description of the complex fluid dynamics in the form of Schrödinger type-
fractal regimes imply “holographic implementations”, through the formalism of
Airy functions of fractal type. From such a perspective, the in-phase coherence of the
dynamics of the complex fluid structural units induces various operational procedures
in the description of such dynamics: special cubics with SL(2R)-type group invariance,
special differential geometry of Riemann type associated to such cubics, special apolar
transport of cubics, special harmonic mapping principle, etc. Referring to the special
harmonic principle, in-phase coherence allows harmonic mappings from the usual
space to the hyperbolic one, situation in which the period doubling “synchronization
mode” among the structural units of a complex fluid becomes functional. In such
a manner, a possible scenario toward chaos (period doubling scenario), without
concluding in chaos (nonmanifest chaos), can be mimed.
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