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Abstract: Object segmentation is a widely studied topic in digital image processing, as to it can be
used for countless applications in several fields. This process is traditionally achieved by computing
an optimal threshold from the image intensity histogram. Several algorithms have been proposed
to find this threshold based on different statistical principles. However, the results generated via
these algorithms contradict one another due to the many variables that can disturb an image. An
accepted strategy to achieve the optimal histogram threshold, to distinguish between the object
and the background, is to estimate two data distributions and find their intersection. This work
proposes a strategy based on the Cuckoo Search Algorithm (CSA) and the Generalized Gaussian
(GG) distribution to assess the optimal threshold. To test this methodology, we carried out several
experiments in synthetic and practical scenarios and compared our results against other well-known
algorithms from the literature. These practical cases comprise a medical image database and our
own generated database. The results in a simulated environment show an evident advantage of
the proposed strategy against other algorithms. In a real environment, this ranks among the best
algorithms, making it a reliable alternative.

Keywords: image segmentation; thresholding; cuckoo search; generalized Gaussian distribution

1. Introduction

Despite considerable advances in computer vision, object detection is still an active
topic of study [1–4]. This process is used in many fields, such as biomedical imaging,
biometry, video surveillance, vehicle navigation, visual inspection, robot navigation, and
remote sensing [1–5], to mention a few. Object identification has been considered an
essential task and one of the biggest challenges in image processing [1–3,6–8]. Several
object recognition problems are solved utilizing digital image processing techniques, where
segmentation methods are essential procedures [9–14]. Hence, optimal image segmentation
is a crucial step in image preconditioning for further analysis because it precedes processing
stages such as object extraction, parameter measurement, and object recognition [9,15].
Specifically, the thresholding methods are the most widely utilized in image segmentation
due to their simplicity and effectiveness [9,11,15–17]. In layman’s terms, these methods
aim to separate the image foreground from its background by finding a limit or threshold
in the image histogram. The challenge is, therefore, finding such a limit.

Many works in the literature have proposed a colorful palette of procedures and
metrics to tackle such a challenge [9,10,18,19]. One of the most relevant, which is also con-
sidered a traditional technique, is the Otsu algorithm that aims to maximize the difference
between the pixels belonging to the left and right sides of the threshold [20]. Other strate-
gies that are worth mentioning are the Minimum Error method [21] and the Maximum
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Entropy algorithm [22–24]. As usual, in the healthy development of computer science
procedures, these techniques have disadvantages, so improved versions have appeared.
For example, those that enhance the Otsu algorithm performance include e.g., the Valley
Emphasis [17,25], Fan-Lei [26] and Xing-Yang methods [27]. These algorithms are suitable
when the gray level histogram exhibits an evident bimodal behavior, and the optimal
threshold is located at the valley bottom [28]. However, in several image processing works,
the thresholds given by different algorithms are considered inaccurate. This is mostly due
to the histogram distributions, which represent the background and object, and are not
normal or seem to be quasi-unimodal functions [17,25–27,29,30].

To solve this inconvenience, an accepted methodology to discriminate the background
and object is to estimate the data distributions and compute their intersection [31–34].
These works present a parametric image histogram threshold method based on an approx-
imation f the statistical parameters of the object and background classes via estimation
methods, such as Expectation-Maximization (EM), Particle Swarm Optimization (PSO),
and Maximize Likelihood (ML). Even some improvements in these methods were proposed
as in [35]. However, these algorithms have some disadvantages, such as slow or premature
convergence and high sensibility in terms of the initial conditions. Additionally, these
works omitted the near-unimodal histogram testing, which is a challenging task.

This work proposes a threshold algorithm based on a mixture of General Gaussian
Distribution (GGD) functions to fit the image histogram. To do this, we implement the
Cuckoo Search Algorithm (CSA) as a solver to assess the distribution parameters’ opti-
mal configuration. We carried out several experiments to prove the benefits of using the
proposed methodology, and compared the results with those obtained with other thresh-
olding methods from the literature. Furthermore, we implemented the methodology in
two practical segmentation problems in a publicly available medical images database and
our collection of organic and inorganic products.

The rest of this manuscript is organized as follows. We begin with a brief description
of image segmentation and an introduction to the basic concepts employed in this work in
Section 2. Section 3 describes the proposed methodology based on the GG function and the
metaheuristic solver CSA. The experimental details are explained in Section 4. Subsequently,
Section 5 presents and discusses the experiment and the obtained results. Then, Section 6
highlights the most relevant conclusions obtained from the experiments and comments on
future work.

2. Theoretical Foundations

This section starts by describing the image segmentation process; then, it overviews the most
common thresholding methods, such as the Otsu, Maximum Entropy, and Kittler–Illingworth.

2.1. Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple parts,
which are pixel sets, known as image objects [11]. The goal is to represent an image as
something more meaningful and straightforward to analyze [9]. For that reason, many
researchers define image segmentation as the process of labeling every image pixel accord-
ing to certain characteristics [9,16]. Several general-purpose image segmentation methods
have been developed; the simplest ones are the thresholding strategies [9,11,15,16]. The
histogram techniques are incredibly efficient compared to other image segmentation meth-
ods because they typically require only one sweep over the image pixels. In these routines,
a histogram is computed, employing the intensity values from all pixels, and its landscape
(peaks and valleys) serves to locate the possible clusters [17,25].

2.2. Thresholding Methods

These techniques are based on a threshold value to transform a gray-scale image
IIIg ∈ ZM×N

G into a binary image IIIB ∈ ZM×N
2 . The gray-scale image IIIg is defined with

elements (pixels) Ix,y, such as IIIg 3 Ix,y ∈ {0, . . . , G− 1}, where G is the number of distinct
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intensities of gray (256), and M× N is the size, given by the number of rows times the
number of columns. Some standard thresholding methods are described below.

2.2.1. Otsu Method

The Otsu method, proposed by Nobuyuki Otsu in 1979, is one of the best known and
most applied for image segmentation. This automatically selects the optimal threshold
by maximizing the between-class variance in the segmented image [20]. Consider the
gray-scale image IIIg and the occurrence probability p(g) : ZG 7→ [0, 1] for a specific gray
level g in the image is determined as

p(g) =
ng

n
=

1
NM

M

∑
x=1

N

∑
y=1

δg,Ix,y , (1)

where δ{},{} is the well-known Kronecker delta, ng is the number of pixels with the same
gray level, and n is the total number of pixels in the image. These pixels are divided into
two classes, D0 and D1, based on a threshold t. Therefore, D0 and D1 consist of pixels with
levels between [0, t] and [t + 1, G− 1], respectively. The cumulative probabilities P0(t) and
P1(t) of D0 and D1, respectively, can be defined as follows,

P0(t) = Pr(D0) =
t

∑
g=0

p(g), (2)

P1(t) = Pr(D1) =
G−1

∑
g=t+1

p(g) = 1− P0(t). (3)

In the same way, the mean levels µ0(t) and µ1(t) can be computed as

µ0(t) =
t

∑
g=0

g · p(g)
P0(t)

, (4)

µ1(t) =
G−1

∑
g=t+1

g · p(g)
P1(t)

. (5)

For both classes, minimizing the within-class variance is equivalent to maximizing
the between-class variance [18,20]. Accordingly, the between-class variance maximization
criterion is used, and is obtained with the following equation:

σ2
b (t) = P0(t)P1(t)(µ1(t)− µ0(t))

2. (6)

According to the Otsu method, this expression serves as a metric for evaluation of a given
threshold. Therefore, the optimal threshold t∗ guarantees the greatest distinction between
the two classes D0 and D1, t∗ maximizes σ2

b (t), as shown,

t∗ = argmax
0<t<G−1

{
σ2

b (t)
}

. (7)

In the simplest scenario, when a single threshold is required, the Otsu method has
an astonishing performance, with histograms of a bimodal distribution [17,18]. This is
chiefly because the method assumes that the object and background’s gray level presents a
Gaussian distribution with equal variances [17]. However, the threshold achieved with this
method is inaccurate when the histogram distribution shows unimodal or quasi-unimodal
distribution characteristics [11,17,18].

To implement the Otsu method, it is only necessary to sweep the different gray levels
and pick one that satisfies (7). Note that no optimization method is needed. Naturally, one
must take several additional conditions into account for practical cases, so the “brute-force”
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strategy may not be the best alternative. However, the Otsu method is incorporated in
almost all digital image processing software. One of the most popular methods is the
Matlab’s function, called graythresh, based on the Otsu method [20] used in this work.
Nonetheless, this function can use the histogram data or the image as input, with the latter
being the most used.

2.2.2. Maximum Entropy Method

The Maximum Entropy (MxE) method is a different and novel criterion function,
used to select an appropriate threshold. This alternative to searching an optimal threshold
was proposed using the Shannon’s entropy definition in [22–24]. According to their idea,
the histogram and the Probability Mass Function (PMF) of a gray-scale image IIIg can be
represented by h(g) and p(g), respectively, for g from 0 to G − 1. In several particular
applications, it is possible to define g between a narrower range, given by gmin ≤ g ≤ gmax.
However, if these extrema are not explicitly indicated, it is assumed that 0 ≤ g ≤ G− 1.
Thence, the cumulative probability function is defined as

P(g) =
G−1

∑
g=0

p(g), (8)

Assuming that p(g) is calculated from the histogram of the image h(g), normalizing
it by the total number of samples. In the context of image segmentation, ZM×N

f 3 IIIg ≤ t

and ZM×N
b 3 IIIg > t, where f could represent the foreground and b the background or

vice-versa. Therefore, when an object appears to be brighter than the background, the set
of pixels with gray intensities greater than t would be defined as the foreground. Pf (g)
and Pb(g) are the probabilities of two distribution classes (D0 and D1), separated by a
threshold t, in the image histogram. Therefore, Pf (g) represents the foreground and Pb(g)
the background for the ranges 0 < g ≤ t and t + 1 ≤ g ≤ G− 1, respectively. Foreground
and background area probabilities are calculated as follows:

Pf (t) =
t

∑
g=1

p f (g), and Pb(t) =
G−1

∑
g=t+1

pb(g). (9)

Now, it is possible to calculate t based on the entropy for both the foreground and
background, such that:

H f (t) = −
t

∑
g=1

p f (g) log p f (g), and Hb(t) = −
G−1

∑
g=t+1

pb(g) log pb(g). (10)

The total entropy H(t) for the image distribution p(g) is obtained by

H(t) = H f (t) + Hb(t). (11)

The maximum H then corresponds to the optimal threshold value for the separation
between background and foreground, i.e.,

t∗ = argmax
0<t<G−1

{H(t)}. (12)

With this reference threshold and the histogram of the image h(g), the binarization
can be carried out to separate the object from the background.

2.2.3. Kittler-Illingworth Method

The Kittler–Illingworth method, founded on the mixture of distributions, corresponds
to a more realistic approach to practical image segmentation implementations. This is
the main reason that we selected it as the foundation of our proposed algorithm. The
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mixture comprises two Normal distributions with different means and variances,N (µ1, σ2
1 )

and N (µ2, σ2
2 ), and the proportions q1 and q2 [21]. Therefore, the mixture distribution

f (g) : ZG 7→ [0, 1] described in the histogram takes the form

f (g) =
q1√
2πσ1

exp

(
− (g− µ1)

2

2σ2
1

)
+

q2√
2πσ2

exp

(
− (g− µ2)

2

2σ2
2

)
(13)

Consider a trial threshold t is given by a brightness level; then, two pixel populations
are modeled, such as p1(g) and p2(g). Similarly to the methods described above, the
brightness level g in p1(g) is less than or equal to the threshold t, whilst in p2(g), g
is greater than or equal to the threshold t. These two populations are modeled by the
Normal distributions N (µ1(t), σ2

1 (t)) and N (µ2(t), σ2
2 (t)). For the general case, when the

image has a brightness level of up to g, it is successively tested with different threshold
values. Therefore, by considering the histogram frequencies P(0), P(1), . . . , P(G− 1) for
the observed brightness values 0, 1, . . . , G− 1, a fitting criterion J(t) can be determined for
each value t, such as:

J(t) = 1 + 2
(

p1(t) log
σ1(t)
p1(t)

+ p2(t) log
σ2(t)
p2(t)

)
, (14)

since

p1(t) =
t

∑
g=0

P(g) and p2(t) =
G−1

∑
g=t+1

P(g). (15)

It is worth noting that the better the models fit the data, the smaller the criterion J(t).
Therefore, the optimal threshold value t∗ value minimizes the criterion function J(t) as

t∗ = argmin
0<t<G−1

{J(t)}. (16)

Therefore, solving the problem in (16), one can estimate the optimal threshold without
requiring additional solution methods.

3. Proposed Method

The proposed methodology employs two main procedures. The first one comprises the
fitting problem of a metamodel fm(~z; g) based on the Generalized Gaussian (GG) function
and the histogram data (~ge, ~fe) from a gray image. This minimization problem is given by

~z∗ = argmin
~z∈ZD

∥∥∥~fe − ~fm(~z;~ge)
∥∥∥2

2
, (17)

since~z stands the metamodel parameters. A metaheuristic solver such as the Cuckoo Search
Algorithm (CSA) is implemented to deal with such a problem. The second procedure
then utilizes the information from the optimal parameters~z∗ and the histogram data to
identify the threshold. Figure 1 illustrates the aforementioned proposed methodology.
The remainder of this section details the metamodel, the optimization algorithm, and the
threshold identification.
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Figure 1. Proposed method based on the Generalized Gaussian function as the metamodel and the
Cuckoo Search Algorithm as the optimizer.

3.1. Generalized Gaussian Function

The sum of Generalized Gaussian Distributions (GGDs) is proposed as a metamodel
according to [36]. The major feature of a GGD is its ability to approach several statistical
distributions by only varying a parameter α, such as the Impulsive (α→ 0), sub-Laplacian
(α < 1), Laplacian (α = 1), Gaussian (α = 2), and uniform (α → ∞) ones. Given this
flexibility, we considered that GGDs are excellent candidates to describe the statistical
characteristics presented in an image histogram as a meta-distribution.

We assumed that the histogram for the background and object shows two principal
lobes (bimodal histogram); based on (13), it is proposed fm(g) : ZG 7→ [0, 1] to approximate
two probability density functions, such as

fm(~z; g) = f1(~z; g) + f2(~z; g). (18)

In this distribution model, fk(~z; g) : ZG 7→ [0, 1] is given by

fk(g) = Gk exp
(
−
∣∣∣∣ g− µk

σk

∣∣∣∣αk
)

, ∀ k ∈ {1, 2}, (19)

where g ∈ ZG, µk ∈ R, σk ∈ R+, and αk ∈ R+ are the intensity of the gray level, its mean,
scale, and shape, respectively. Moreover, ~z is the parameter vector and Gk ∈ R+ is the
normalizing constant defined by

Gk =
αk

2σkΓ(1/αk)
, ∀ k ∈ {1, 2}. (20)

We consider G1 and G2 as two global constants to avoid the use of the Γ(·) function and
thus to reduce the computational complexity; i.e., they are specified in parameter vector
~z = (G1, µ1, σ1, α1, G2, µ2, σ2, α2)

ᵀ. Furthermore, we set a simple constraint to this model to
facilitate its analysis, such as µ1<µ2.

3.2. Cuckoo Search Algorithm

Cuckoo Search Algorithm (CSA) is a metaheuristic optimization method based on a
population, and Lévy flights [37]. CSA mimics the brood parasitism behavior of certain
cuckoo species, which hide their eggs inside alien nests. The general scientific community
has widely accepted this method in numerous variants and applications [38–40]. CSA can
be implemented to tackle a given minimization problem, such as

~z∗ = argmin
~z∈ZD

fobj(~z), (21)
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where~z∗ is the optimal solution and fobj(~z) is the objective function. For maximization
problems, such as those mentioned in Section 2.2, this objective function is just the negated
threshold metric.

In CSA, the population is defined as Zt = {~z1(t), . . . ,~zN(t)} ∈ Z, since i is the time
step, N is the number of agents, and D implies the dimensionality of the problem. Thus,
~zn(t) ∈ Z(t) is the n-th agent’s position in the feasible domain Z ⊆ RD at the step i. For
most problems, such a domain Z is defined as shown,

Z =
{
~z ∈ RD :

(
∃~l,~u ∈ RD

)[
~l � ~z � ~u

]}
(22)

since~l and ~u are the lower and upper boundary vectors, respectively.
As first step, the population is initialized at random within the problem domain, i.e.,

Z0 3 ~z0
n 3 zd,n ∼ U (ld, ud) ∀ ld ∈~l, ud ∈ ~u, and the fitness value for each agent is evaluated

such that f 0
n = fobj(~z0

n), ∀~z0
n ∈ Z0. Then, the initial best position~z0,∗ and its fitness value

f 0,∗ are found, ~z0,∗ = argmin{ f (Z0)}, and the iteration counter is increased as i←i + 1.
CSA employs the Lévy flight and local random walk as its primary two search mechanisms,
which are applied iteratively until a convergence criterion, which was defined previously,
is met. Some examples of the criteria are the maximum number of steps i ≥ imax and the
best-fitness change tolerance f i,∗ − f i−1,∗ ≤ ε.

Thence, the Lévy flight for the n-th agent (~zi
n ∈ Zi) is given by

~zi
n = ~zi

n + ζ~η � (~zi−1
n −~zi−1,∗), (23)

where ζ > 0 is the spatial step size, ~η is a vector of i.i.d. random numbers obtained from
the Mantegna–Stanley’s algorithm [41] using the symmetric Lévy stable distribution, and
� is the Hadamard–Schur’s product.

Likewise, the second procedure, namely, local random walk, is defined as

~zi
n = ~zi

n +~r� H(~r− p)� (~zi
q1
−~zi

q2
), (24)

where~r is a vector of i.i.d. random variables with U (0, 1), p ∈ [0, 1] is the probability of
change, and H : RD → ZD

2 is the element-wise Heaviside step function with H(0) = 1.
Indices q1 and q2 are mutually exclusive integers randomly selected from the population
range [1, N].

After applying each of these search mechanisms, all agents are evaluated in the
objective function, and only the new positions~zi

n better than the previous ones~zi−1
n are

preserved, i.e.,~zi
n = ~zi−1

n if f i
n > f i−1

n , ∀ n ∈ {1, . . . , N}. Furthermore, once the local random
walk is performed and the population is updated, the best position~zi,∗ and its fitness value
f i,∗ are found as they were before with the initial population. Thus, the convergence criteria
are checked. If any are satisfied, the iterative procedure concludes. Otherwise, the step
counter is increased i = i + 1, and the search mechanisms are applied again.

3.3. Threshold Identification

The threshold identification procedure is somewhat similar to those described in
Section 2. The main differences are that instead of using the histogram data (ge, fe), we
evaluate a subset of gray-scale levels T ⊂ G over the fitted GGD model fm(~z∗; t). We stress
that we do not employ the direct histogram data but the fitted curves. Thus, his subset T is
obtained as follows

T = {g ∈ ~ge : (bµ∗1 + σ∗1 /2c < g < dµ∗2 − σ∗2 /2e)[bµ∗1 + σ∗1 /2c < dµ∗2 − σ∗2 /2e]}, (25)

where µ∗1 , σ∗1 , µ∗2 , and σ∗2 are from the optimal parameter values~z∗ achieved in the optimiza-
tion procedure. The rounding operators b·c and d·e stand the floor and ceil, respectively.
This subset will be nonempty, at least in the context of the segmentation problem tackled



Mathematics 2021, 9, 2287 8 of 19

in this work. Hence, the optimal threshold value using the proposed method is found
as shown

t∗ = argmin
t∈T

{ fm(~z∗; t)}. (26)

4. Methodology

We carried out a three-fold experiment procedure to study the proposed method
ThCSA and also to compare it against those methods described in Section 2.2. These
methods are Otsu, Matlab’s Otsu implementation (GrayThresh), Maximum Entropy (MxE),
Kittler–Illingworth (KI), and ThCSA. The graythresh method is omitted for simulated
comparison because it requires an image as input. We tested the methods using simulated
distributions in the preliminary experiment, which correspond to bimodal histograms
with the optimal threshold t∗r1 as a reference. The optimal threshold is obtained with
the intersection of two well-known distributions. In this work, the sum of distributions
was designated as a global histogram. For this experiment, the synthetic histogram was
considered as the sum of two distributions, not a histogram in the strict sense. Synthetic
histograms have constant parameters to simulate two distributions. Table 1 describes the
five cases that comprise this experiment. In the first experiment, we simulated a bimodal
histogram corresponding to an image with one object and a well-defined background with
two known thresholds.

Table 1. Simulated histograms utilized as study cases for the preliminary experiment. Parameters αk,
σk, and µk, ∀ k = {1, 2}, correspond to the distribution model in (19).

Simulation α1 α2 σ1 σ2 µ1 µ2

s01 1 1.62 30.61 43.60 58 183
s02 2 1.42 40.62 33.06 78 163
s03 2 1.71 46.17 48.12 56 187
s04 1 1.38 42.05 38.85 64 195
s05 2 0.97 32.58 33.81 68 175

The remainder experiments were performed following the procedure depicted in
Figure 2. First, the original image is read as an RGB image III ∈ ZM×N×3

G and then trans-
formed to gray-scale IIIg ∈ ZM×N

G . The gray-scale image serves to obtain the histogram
f (g), as commented in Section 2, except for the GrayThresh method, which utilizes the
image IIIg directly. Therefore, the thresholding methods are applied to achieve the binary
image IIIb1 ∈ ZM×N

2 . Lastly, the object perimeter PIII is detected by locating the isolines of the
processed IIIb1 image. The general methodology is summarized in Pseudocode 1.

Figure 2. General diagram of image segmentation based on background and object.

The second set of experiments consisted of segmenting samples of melanoma images
collected from the PH2 Dermoscopic Image Database [42]. We selected this particular
image database mainly because the reference images of the melanoma area are provided
and supported by expert dermatologists. In addition, these images present histograms with
diversity in their statistical parameters and the distances and amplitudes of the histogram’s
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main lobes. It is worth mentioning that these samples required a special consideration
to compute the perimeter of skin lesion; this fact is detailed in the next section. The final
experiments comprised the segmentation of organic and inorganic products with a non-
uniform background. To do this, we implemented the procedure mentioned above with
three images acquired for this work.

Pseudocode 1 Proposed procedure for image segmentation and contour computing

Input: Original image III and thresholding method THRESHOLDINGMETHOD

Output: Processed binary image IIIb1 and perimeter PIII

1: IIIg ← GRAYSCALE(III) . Transform from RGB to gray-scale

2: t← THRESHOLDINGMETHOD(IIIg) . Threshold t computed with a given method

3: IIIb1 ← BINARIZE(IIIg, t) . Binarization according to t

4: PIII ← CONTOUR(IIIb1) . Draws a contour of IIIb1

The methodology described in Figure 2 was designed to apply a traditional threshold-
ing procedure and the basic image form (a binary image) to identify the object perimeter.
The object perimeter for the second and third experiments is determined for different
reasons. The melanoma perimeter helps to provide a view of the morphological structure
of skin lesions, which can be used to support a clinic diagnosis [42]. Meanwhile, the
methodology proposed for the second experiment can be employed to distinguish between
organic and inorganic objects. This is due to the number of centroids of the identified
object perimeters.

Moreover, all the experiments were run on a machine with an Intel Core i5 @ 1.6 GHz
CPU, 4.00 GB @ 1600 MHz RAM, using the numerical platforms Matlab R2018a and R
v4.0.3. We implemented Cuckoo Search Algorithm (CSA) with a population size N of 200,
a step size ζ of 1.0, a probability change p of 0.5, a best-fitness change tolerance ε of 10−15,
and a maximum number of stagnating iterations of 2000. These values were obtained after
performing a preliminary study, which is out of this work’s scope but can be consulted
in [43].

5. Results and Discussion

The first experiment consists of implementing the proposed method and the others
from the literature (ThCSA, Otsu, MxE, and KI) on synthetic histograms (cf. Section 4).
Table 2 presents the resulting thresholds from this simulation comparison, where the
symbols ↓ and ↑ indicate the worst and the best thresholds, respectively. This is based
on the optimal threshold. In the first simulation s01, Otsu yields the closest values to the
optimal threshold. Meanwhile, ThCSA achieved a threshold value with a difference of
four gray intensity values from the optimal reference. Finally, the worst result was attained
by MxE. From the results achieved in simulation s02, it is easy to notice that Otsu, KI and
ThCSA had the same performance, closely followed by MxE. In s02, it is worth noticing
that Otsu, KI and ThCSA computed a threshold near to the optimal threshold with a
difference of two gray intensity levels, respectively. Moreover, the thresholds attained for
the simulation s03 are diverse. For this simulation, MxE outperforms the other methods
according to the optimal reference. It is noticeable that Kittler and ThCSA share the the
same threshold, with a difference of two gray intensity values from t∗r1. The worst algorithm
to assess the reference threshold was found to be Otsu, with a minimal difference of three
gray levels. Now, based on the results shown in Table 2 for simulation s04, we observe that
MxE exhibits an advantage over other algorithms for the optimal threshold. Here, Otsu
and ThCSA obtained the same level and reached second place with a difference of six gray
intensity levels. The last simulation, s05, yields interesting results. In this scenario, ThCSA
render the best threshold concerning the optimal threshold. Meanwhile, MxE and Kittler
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rank at an intermediate level according to the reference threshold. In this simulation, the
algorithm Otsu obtained the lowest performance.

Table 2. Comparison of threshold values obtained by different methods in a simulated environ-
ment. Based on the optimal threshold t∗r1, the symbols ↓ and ↑ indicate the worst and the best
threshold respectively.

Simulation t∗r1 Otsu MxE KI ThCSA

s01 120 121 ↑ 128 ↓ 113 116
s02 122 120 ↑ 119 ↓ 120 ↑ 120 ↑

s03 119 122↓ 118↑ 121 121
s04 135 129 140 ↑ 127↓ 129
s05 114 125 ↓ 119 119 118↑

Figure 3 illustrates the cases of those simulated distributions, the optimal threshold
and estimated histograms obtained by using ThCSA. In these plots, the fitted histograms
(in black solid lines) evidence an outstanding description of the global histogram, especially
regarding the reference threshold (in red dashed line). Nevertheless, we observe two issues
in these resulting histograms: In the first one in Figure 3a, the right-hand side distribution
is lower than the simulated data. Plus, in the second one in Figure 3b, an unsatisfactory
fitting of the right and left hand side peaks is evident. In Figure 3c the right-hand and
left-hand side distributions are narrower and lower than simulated histogram, respectively.

Subsequently, Table 3 shows the thresholds comparison obtained with the algorithms
implemented for segmenting four dermoscopic images, i.e., IMD002, IMD004, IMD015,
IMD021, and IMD041. As we mentioned in Section 4, we chose these figures to illustrate
histograms with different patterns. The optimal variables achieved by CSA for the GG
distributions are also presented. Recall that the α1 and α2 values describe abnormal
distributions when αk 6= 2 ∀k ∈ {1, 2}. It is worth noting that the thresholds estimated
by ThCSA and Otsu for the IMD002 sample are close. Hence, the histogram of IMD002
is enveloped with a sum of non-Gaussian distribution because α∗1 = 3 and α∗2 = 3. In the
second test, using IMD004, ThCSA estimates a classification edge with an average variation
of ca. 29 intensities w.r.t. the other algorithms. The distributions computed have the shape
parameters α∗1 = 1.6 and α∗2 = 0.6, which correspond to sub-Gaussian and sub-Laplacian
distributions, respectively. For IMD015 and IMD021, ThCSA and GrayThresh achieve
similar thresholds. It can also be observed in Table 3 that the shape parameters to this
sample are located at 1 ≤ α∗1 , α∗2 < 2, i.e., between Laplacian and Gaussian distributions.
For this experiment, the estimated characteristics can be described with the following
ranges 0.1 ≤ G∗1 , G∗2 ≤ 0.98, 74 ≤ µ∗1 , µ∗2 ≤ 192, 10.34 < σ∗1 , σ∗2 < 25.69, and 1 < α∗1 , α∗2 < 2.
Finally, the proposed algorithm and GrayThresh obtained the same threshold for IMD041.
These results can corroborate the flexibility of the proposed algorithm to estimate several
parameters at the same time on a different scale.

Complementing the information achieved in this experiment, as described in Figure 2,
we determine the contours PI for the medical images IMD002, IMD004, IMD015, and
IMD021. The segmentation of medical samples generates extra white corners following the
procedure depicted in Figure 2 and Pseudocode 1. For this particular case, it is required to
remove the contour located in the corner of each image. Figure 4a,c,e,g show the resulting
contours PI in RGB images, which is computed with the isolines of processed IIIb1 image
and depicted with a solid line. Therefore, the contour PI helps to determine the dark area
of melanoma samples.
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Figure 3. Cases of fitted histograms utilizing the thresholding method based on Cuckoo Search Algorithm. The reference
distribution is depicted with a red dashed line.
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Table 3. Thresholds detected in medical Images with different methods and variables identified by Cuckoo Search Algorithm.

Image
Thresholds of Medical Images Optimal Variables Identified via CSA

Otsu GrayThresh KI MxE ThCSA G∗
1 G∗

2 µ∗
1 µ∗

2 σ∗
1 σ∗

2 α∗
1 α∗

2

IMD002 136 127 132 146 138 0.23 0.92 96 180 31.46 26.71 3.0 3.0

IMD004 162 127 177 169 139 0.10 1.05 91 229 35.73 17.84 1.6 0.6

IMD015 143 127 143 159 125 0.69 0.98 93 192 10.34 25.69 1.4 1.5

IMD021 120 119 123 133 112 0.1 0.84 74 158 24.29 11.85 1.6 1.0

IMD041 157 156 158 169 156 0.36 0.9 97 215 30.71 31.51 1.1 2.3

Figure 4b,d,f,h illustrate the image histogram (gray patch), fitted histogram (black
solid line), and estimated threshold (red dashed line) with ThCSA. In these images, one can
observe two principal lobes and a valley between them, where the threshold achieved with
ThCSA is located. It is also possible to appreciate the estimated distributions with several
shape parameters, which are denoted with α∗1 and α∗2 to the first and second lobes, respec-
tively. Additionally, we can notice some discrepancies between the estimated distributions
and the histograms in Figure 4b,d,f,h. However, the parameters estimated using ThCSA are
able to determine a threshold that achieves the segmentation of the melanoma area.

To complement the previous results, we focus on the visual and numeric comparison of
the segmentation outcomes for the medical samples. The segmentation results of IMD004 and
IMD015 using the studied algorithms in the are shown in Figure 5. Here, the Otsu methods
in Figure 5b, GrayThresh in Figure 5c, Kittler in Figure 5d, MxE in Figure 5e, and ThCSA
in Figure 5f obtained similar results for the sample IMD004 in Figure 5a. These images
display white corners in the background, i.e., additional white pixels as a component of
the skin lesion, which could be removed with additional processing. Some additional
white pixels in the segmented background can also be observed using the Kittler, Figure 5d,
and MxE, Figure 5e, methods. Based on the same algorithms, the sample IMD015, shown
in Figure 5g, is segmented. By using this sample, the algorithms obtained an equivalent
segmentation. This can be corroborated for Otsu, GrayThresh, Kittler, MxE, and ThCSA
in Figure 5h–l, respectively. Here, the segmented skin lesion is more uniform, without
extra white pixels in the background, independent of the corner area. For this sample,
all segmentations illustrated in Figure 5h–l, recognize a line of black pixels in the bottom
as background components. This error is caused by extra white pixels immersed in the
original RGB image.



Mathematics 2021, 9, 2287 13 of 19

(a) IMD002 (b) α∗1 = 3, α∗2 = 3

(c) IMD004 (d) α∗1 = 1.6, α∗2 = 0.6

(e) IMD015 (f) α∗1 = 1.4, α∗2 = 1.5

(g) IMD021 (h) α∗1 = 1.1, α∗2 = 1.2

Figure 4. Contours and histograms estimated using the ThCSA algorithm. In the first column, the
contour PI is represented with a solid white line. In the second column, the image histogram, fitted
histogram, and optimal threshold are displayed with a gray patch, a black solid line, and a red
dashed line.
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(a) IMD004 (b) Otsu (c) GrayThresh

(d) Kittler (e) MxE (f) ThCSA

(g) IMD015 (h) Otsu (i) GrayThresh

(j) Kittler (k) MxE (l) ThCSA

Figure 5. Gray-scale and processed images for IMD004 and IMD015 using the thresholding methods
Otsu, GrayThresh, Kittler, MxE, and ThCSA, respectively.

Naturally, the visual comparison is insufficient to determine the best algorithm. For
this reason, the reference images of melanomas or ground-truth images are required.
Such images are provided by an expert dermatologist in [42], which are represented as
IIIbr ∈ ZM×N

2 . IIIbr ∈ ZM×N
2 . Table 4 shows the Jaccard index and the False Negative (FN)

pixels for all the methods. The Jaccard index is used to evaluate the image segmentation
because it measures the intersection of an obtained binary image (IIIb1 or IIIb2) and the
reference image (IIIbr ) divided by the union of both images [44]. The FN points are the
unmatched pixels of the segmented image and the area labeled as object IIIOr in the reference
image, where IIIOr ⊂ IIIBr . Employing the FN metric, it is possible to identify which method
locates fewer wrong pixels in the object. In Table 4, the FN values are divided by the total
number of pixels of IIIOr to avoid large numbers. These metrics are obtained for different
melanoma images IMD002, IMD004, IMD015, IMD021, and IMD041. Table 4 displays the
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best Jaccard index in bold font. According to the Jaccard index, we can appreciate that, for
IMD002, the best algorithm is MxE. This generates fewer inaccuracies regarding the FN
values. Additionally, ThCSA ranks second according to the Jaccard index. For IMD004, the
GrayThresh method is the best one. The ThCSA showed the maximal number in the FN
column, but this method is in third place. Moreover, we notice that ThCSA is better for the
sample IMD015 according to the Jaccard index, although the proposed algorithm obtained
the worst values in FN measurements. For the sample IMD021, ThCSA was better than the
other algorithms. However, the proposed algorithm obtained a low performance for FN
values. The last sample analyzed was the image IMD041. Here, the algorithms GrayThresh
and ThCSA were the best options, with the same Jaccard index and FN measures.

It is worth noting that the Jaccard indices are quite low, in the range of 0.6–0.8. This
poor performance is due to the extra white pixels located in the corners of the images. How-
ever, the Jaccard index is adequate to rank the proposed algorithm. Furthermore, Table 5
shows the computing time comparison between the implemented algorithms. From these
data, we can recognize the high computing time as a drawback of the proposed algorithm.
Nevertheless, we suggest that this comparison is unfair because all the algorithms studied
in this work were employed on different numerical platforms.

Table 4. Jaccard index and False Negative (FN) values obtained via different methods for medical samples. The best Jaccard
index is in bold font. Symbols ↑ and ↓ represent the worst and best values, respectively.

Method

IMD002 IMD004 IMD015 IMD021 IMD041

Ja
cc

ar
d

FN Ja
cc

ar
d

FN Ja
cc

ar
d

FN Ja
cc

ar
d

FN Ja
cc

ar
d

FN

Otsu 0.6889 0.1296 0.6645 0.0421 0.7117 0.0070 0.6149 0.0206 0.6818 0.0746

GrayThresh 0.6868 0.1362 0.6664 0.0447 0.7157 0.0080 0.6176 0.0242 0.6822 0.0779 ↑
Kittler 0.6780 0.1577↑ 0.6167 0.0143↓ 0.7117 0.0070 0.6062 0.0140 0.6816 0.0707

MxE 0.6939 0.0786↓ 0.6471 0.0263 0.6244 0.0007↓ 0.5555 0.0036↓ 0.6669 0.0362 ↓
ThCSA 0.6917 0.1189 0.6601 0.1428↑ 0.7551 0.0496 ↑ 0.6256 0.0558↑ 0.6822 0.0779↑

Table 5. Computing time required to find the threshold for medical images with different methods.

Method
Computing Time [s]

IMD002 IMD004 IMD015 IMD021 IMD041

Otsu 0.03 0.04 0.02 0.03 0.4

GrayThresh 0.02 0.02 0.02 0.03 0.2

Kittler 0.01 0.02 0.01 0.02 0.2

MxE 0.04 0.04 0.03 0.04 0.04

ThCSA 1.5 1.2 1.3 1.4 1.1

Furthermore, we extend the scope of application of the proposed algorithm by study-
ing other kinds of images. To do this, we considered those with a background covering a
greater area than the object. Sometimes the objects share pixels with the background in the
gray-scale image. Figure 6 depicts three examples of this problem: one organic product
and two inorganic products. The organic one is illustrated in Figure 6a, and its histogram is
plotted in Figure 6b. The image in gray-scale, see Figure 6a, illustrates a background with
different shades of gray and a darker area, representing the organic object. The histogram
in Figure 6b shows two no uniform lobes that corroborate the color variability of the object
and background. These lobes are approximately G = 90 to G = 130 for the object, and from
G = 140 to G = 175 for the foreground. Despite fluctuations in the histogram, depicted in
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Figure 6b, the algorithm ThCSA computed a good threshold to segment the organic object,
which is bounded with a white line in Figure 6a.

Moreover, the two inorganic, which possess transparent areas, are shown in Figure 6c,e,
and their histograms in Figure 6d,f, respectively. In Figure 6c, a white line delineates partially
incomplete area of an inorganic product. This is because some object pixels are mixed with the
background; i.e., they have the same intensity level. Figure 6d shows the threshold achieved
by the ThCSA-based methodology. This threshold helps to delimit a large part of the object,
although the object’s outline is incomplete. Finally, in Figure 6e,f, we observe the most
challenging example of this proposed work. To this inorganic object, the bottom, the label,
and the screw cap are identified. The histograms (see Figure 6f) evidence where there is
little information about the object. However, the proposed methodology can compute the
corresponding thresholds to identify parts of this object.
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(a) Organic 1 (b) Histograms of Organic 1
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(c) Inorganic 1 (d) Histograms of Inorganic 1
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(e) Inorganic 2 (f) Histograms of Inorganic 2

Figure 6. Illustrative example of the proposed algorithm implemented on three images, with quasi-
modal histograms, containing either organic or inorganic products. Left column: gray-scale images
and achieved detected outlines. Right column: image and fitted histograms and detected threshold.
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6. Conclusions

In this work, we proposed ThCSA, a thresholding technique based on the General-
ized Gaussian (GG) distributions and Cuckoo Search Algorithm. We implemented this
methodology to tackle several image segmentation cases with different conditions and
compared its results with some well-known algorithms. We showed that ThCSA, Otsu,
and MxE obtain acceptable results when estimating the optimal threshold in simulated
histograms. However, Otsu and MxE achieved the worst mark in at least one simulation,
and GrayThresh was the worst at estimating the reference threshold. According to the
comparison, the proposed algorithm obtained good performances by computing thresholds
with a minimal difference and values very close to the optimal reference in most cases.
These results are closely followed by the Kittler–Illingworth (KI).

ThCSA achieved the GG function variables in real medical image-processing to deter-
mine a threshold that segments the melanoma samples. The skin lesions were bounded
with a certain precision based on the proposed methodology. Compared with the manual
segmentation (ground-truth), evaluated by an expert dermatologist, the best segmenta-
tions were rendered by ThCSA , closely followed by GrayThresh. We corroborated this
affirmation through the Jaccard indices, which can be improved with additional processing
to avoid the corners induced by the capture instrument.

Furthermore, we noticed a remarkable potential when applying ThCSA to identify
objects with no-uniform backgrounds and shared pixels. However, we found some is-
sues while delimiting the complete object by the proposed method, especially when the
background and object pixels have the same gray levels. Notwithstanding, ThCSA can
detect strategic points to locate parts of the object. This issue should be analyzed and
solved with an additional processing step. The principal disadvantage of the proposed
methodology is that it requires more processing time than the other methods. Nevertheless,
naturally, this work addressed the prototyping of an algorithm that could be enhanced
and optimized in future implementations. Therefore, considering the advantages and
disadvantages mentioned above, we finally conclude that the proposed methodology is an
excellent option to compute optimal thresholds and segment objects from its quasi-uniform
environment. This work presented an alternative thresholding tool, based on a global
optimization algorithm, to help practitioners in diverse applications, e.g., dermatologic
ones. Moreover, we plan to compare ThCSA with different image databases and employ
several metrics to measure the segmentation quality for future work. We will also optimize
the ThCSA implementation in a particular numerical platform to provide a competitive
alternative to thresholding in any practical application.
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