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Abstract: The nonlinear fractional-order model of bioethanol production under a generalized nonlo-
cal operator in the Caputo sense is investigated in this work. Theoretical and computational aspects
of the considered model are discussed. We prove that the model has at least one solution and a unique
solution using the Leray–Schauder and Banach contraction theorems. Using functional analysis,
we investigate several types of Ulam–Hyres model stability. We use the predictor–corrector (P–C)
method to construct a broad numerical scheme for the model’s solution. The proposed numeri-
cal method’s stability is demonstrated. Finally, we depict the numerical findings geometrically to
demonstrate the model’s dynamics.

Keywords: ethanol model; Ulam-Hyres-Rassias stable; generalized Caputo derivative

1. Introduction and Motivation

Scientists and industry have been focusing on the creation of green, sustainable biore-
fineries in recent years. This concept implies the production of a wide range of molecules
from sustainable sources such as biomass, fine chemicals, or energy [1,2]. Processes based
on the conversion of biomass into useable biomaterial might increase the economic worth
of currently discarded raw materials while also reducing wastewater released by various
industries. Bioethanol is one of the most important renewable fuels, and it helps to reduce
the negative environmental effects of global fossil fuel use. Ethanol can be added to gasoline
as a transportation fuel to minimize the number of greenhouse gases released into the at-
mosphere [3]. One of the really efficient renewable liquid biofuels for replacing oil-derived
fossil fuels is bioethanol. Agricultural crops are now the most common substrates for
bioethanol synthesis (sorghum, corn, sugarcane, wheat). Determining the growth rate of
biomass is critical to understanding how bioethanol production works in a bioreactor. There
are various models that examine the dynamics of cell mass growth in a bioreactor, and
the majority of these models offer formulations for the specific cell mass growth rate [3,4].
Several scientists were interested in looking at the long-term behavior of expanded models
that included a continuous flow reactor [5,6]. In systems with pure and simple microbial
competition, Ajbar investigated the conditions for the formation of complex dynamic be-
havior [7]. In 2013, Cornelli et al. investigated yeasts’ ability to ferment sugars found in
a variety of items made by well-known companies [8]. In 2016, Cornelli et al. published
an ethanol production model based on the performance of ten commercial Saccharomyces
yeast strains in the batch alcoholic fermentation of sugars acquired from the soft drink
industry [9]. In 2018, Bhowmik et al. [10] extended the process model of Cornelli et al. by
including recycle ratio and decay rate. Their model contains three contents explaining the
evolution of substrate S , biomass X and ethanol E . They formulated a model for bioethanol
productions as:

Mathematics 2021, 9, 2370. https://doi.org/10.3390/math9192370 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5610-6248
https://orcid.org/0000-0001-9832-1424
https://doi.org/10.3390/math9192370
https://doi.org/10.3390/math9192370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192370
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192370?type=check_update&version=1


Mathematics 2021, 9, 2370 2 of 21


V d

dtS = F(S0 − S)− µmax
YX
S
M2(S , E)XV,

V d
dtX = −FX + µmaxM2(S , E)XV+ RF(C− 1)X − bHXV,

V d
dtE = −FE + Y E

X
µmaxM2(S , E)XV+ RF(C− 1)E + FγX ,

where M2 represents the modified Andrew expression with inhibition by ethanol. M2 and
residence time τ are respectively defined as:

M2(S , E) = S
KS + S + KEE2 ,

τ =
V
F

.

The first equation of the above model represents the rate of change of the substrate. The rate
of flow through the reactor and the biomass’ use of the substrate determine this rate.
The first term of the equation indicates the change in S due to the flow through the reactor,
while the last term represents the negative rate of change in S concentration owing to
biomass consumption of the substrate.

The rate of change in biomass is represented by the model’s second equation. This rate is
determined by the reactor flow, S consumption, and the presence of a settling unit. The change
in X concentration caused by the flow-through reactor is given by the first term on the right-
hand side of the second equation. The positive change in the concentration of X , owing to
the consumption of S , is represented by the second term. The third term indicates settling
unit consumption, while the fourth term depicts X elimination owing to a combination of
first-order processes that include cell loss and cell breakdown.

The third equation of the model represents the rate of change of the ethanol. It depends
on the use of a settling unit and a flow-through reactor. The first term of the third equation
gives the change of concentration of ethanol due to flow via reactor. The second term
represents the increase in the concentration of ethanol due to the use of S . The third term gives
the use of a settling unit. The fourth term models the production of ethanol by maintenance.

Fractional calculus has recently been used to describe a variety of complex problems
in the domains of computational sciences [11,12]. Because of the complexity of these issues,
researchers have developed mathematical theories to simulate the complexities of nature
using fractional calculus. Differential equations and differential operators are needed to
develop mathematical models, which are effective tools for explaining real-world issues.
The differential operators can be either local or nonlocal (fractional). The most well known
fractional operators are of three types: operator with a power-law kernel is called Caputo
operator [13], operator with exponential decay law is called Caputo–Fabrizio operator [14],
and finally, operator with Mittag–Leffler law is called Atangana–Baleanu operator [15].
These operators are commonly employed by researchers to capture memory features of
mathematical models, which may be found in a variety of fields of study [16–18]. As the
use of fractional differential equations grows, researchers have begun to develop novel
methods for numerically solving these equations, as they confront numerous challenges
while solving these equations analytically. The methods which are available in literature
include the predictor–corrector method (P–C) [19], the Adams–Bashforth scheme [20], the
Adomain decomposition method [21], the fractional differential transform method [22], and
the homotopy analysis method [23], and so forth. Different theoretical aspects of fractional
differential equations are also studied by researchers in the last century. Existence theory,
stability analysis, numerical and optimization approaches are some of the well-known
features that have recently been introduced.

Many nonlocal operators are available in the literature, which have important applica-
tions in applied mathematics. In 2014, Katugampola introduced a new fractional derivative
and integral which generalizes Riemann–Liouville and the Hadamard fractional derivative
and integrals [24,25]. Recently, Odibat and his coauthor constructed a new generalized
Caputo fractional derivative which generalizes the classical Caputo derivative [26]. There
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are various applications of generalized Caputo fractional derivative in the literature. For in-
stance, Kumar et al. studied a love story model of Layla and Manjnun using a new GCF
operator [27]. In the literature [28], the authors have analyzed the HIV model via the GCF
derivative and many more. Predictor–corrector (P–C) algorithms, on the other hand, are
one of the most efficient, reliable, and accurate methods for numerically solving FDEs,
where the fractional derivative is regarded in the Caputo sense. The numerical solution
of the initial value problem with the Caputo fractional differential equation has been in-
troduced in [19] using an Adams-type P–C technique. In the literature, this approach has
been widely utilized to simulate several fractional derivative models, including the work
reported in [29–32].

Since the considered generalized fractional derivative is the generalization of classical
Caputo derivative. This derivative has recently introduced and its applications in modelling
of any physical phenomena are very rare. We use this newly developed generalized Caputo
derivative to study the bioethanol model. We study the theoretical and computational
aspects of the above ethanol production model. The major goal of this study is to look
into the existence and uniqueness of the model’s solutions using well-known fixed point
theorems like Banach’s and Larey-nonlinear Schauder’s alternative. Furthermore, the
stability analysis is explored from the perspective of various Ulam’s stabilities. Finally,
we apply the predictor–corrector approach to determine the fractional model of ethanol
production’s approximate solutions. We proved the stability of the proposed numerical
method in the last theorem of the paper. The numerical results are graphically presented to
study the process of the ethanol production and effects of the generalized Caputo operator
on the evolution of the proposed ethanol model.

2. Preliminaries

This section provides some fundamental concepts which are needed for our current
study. For the sake of simplicity, we will use GFI for generalized fractional integral and
GFD for generalized fractional derivative .

Definition 1 ([25]). The GFI of a function Y of order κ2 > 0 is expressed as κ1Iκ2
a+ and is defined as:

(
κ1Iκ2

b+ Y
)
(t) =

1
Γ(κ2)

[∫ t

b
(

tκ1 − sκ1

κ1
)κ2−1Y(s)

ds
s1−κ1

]
, t > b ≥ 0,

where κ1 > 0.

Definition 2 ([24]). The GFD of a function Y of order κ2 > 0 in RL sense is expressed as κ1
RLDκ2

b+
and is defined as:

(κ1
RLDκ2

b+Y
)
(t) =

(t1−κ1 d
dt )

j

Γ(j− κ2)

∫ t

b
(

tκ1 − sκ1

κ1
)j−κ2−1Y(s)

ds
s1−κ1

, t > b ≥ 0,

where κ1 > 0 and j ∈ N.

Definition 3 ([26]). The new GFD of a function Y of order κ2 > 0 in Caputo sense is expressed as
κ1 Dκ2

b+ and is defined as:

(
κ1 Dκ2

b+Y
)
(t) =

1
Γ(j− κ2)

∫ t

b
(

tκ1 − sκ1

κ1
)j−κ2−1(t1−κ1

d
dt

Y)j(s)
ds

s1−κ2
,

where κ2 ∈ (j− 1, j].

Lemma 1 ([26]). Let Y ∈ Cj([b, c]), j− 1 < κ2 ≤ j and κ1 > 0. Then, for 0 ≤ b < t ≤ c < ∞,
we have (

κ1Iκ2
b+

κ1 Dκ2
b+Y

)
(t) = Y(t)−

j−1

∑
g=0

(t1−κ1 d
dt )

g(Y)(b)
Γ(g + 1)

(
tκ1 − sκ1

κ1
)g. (1)



Mathematics 2021, 9, 2370 4 of 21

If κ2 ∈ (0, 1], then (
κ1Iκ2

b+
κ1 Dκ2

b+Y
)
(t) = Y(t)− Y(b).

Theorem 1 (Banach contraction result). Let A represents a Banach space, and Ø 6= B ⊂ A
be a closed subset. If the operator F :B→ B fulfills the contraction condition, the F has a unique
fixed point in B.

Theorem 2 (Leray–Schauder fixed point theorem). Let Br be a convex and closed subset of A .
Let 0 ∈ P, where P is an open subset of A . If F :P→Br is a compact and continuous map. Then
either F possesses a fixed point in P or ∃Θ ∈ ∂P and ψ ∈ (0, 1) such that Θ = ψF (Θ).

3. Model Formulation and Its Analysis

Here, we formulate the above model given by using generalized Caputo fractional
order operator. We formulate the fractional order dimensional model as:

Vκ1 Dκ2S = F(S0 − S)− µmax
YX
S
M2(S , E)XV,

Vκ1 Dκ2X = −FX + µmaxM2(S , E)XV+ RF(C− 1)X − bHXV,
Vκ1 Dκ2E = −FE + Y E

X
µmaxM2(S , E)XV+ RF(C− 1)E + FγX .

(2)

The initial values of the three components of the considered model are all non-negative,
that is, S(0) = S0 > 0,X (0) = X0 ≥ 0, and E(0) = E0 ≥ 0. Now, the model (2) can be
reduced to dimensionless form by introducing the dimensionless variables as:

S∗ = S
KS

,X ∗ = X
Y E
X

KS
, E∗ = E

KS
, t∗ = µmaxt.

The dimensionless model is given as:
κ1 Dκ2S∗(t∗) = S∗0−S∗

τ∗ − S∗X ∗
1+S∗+γ1E∗

2 ,
κ1 Dκ2X ∗(t∗) = −X ∗

τ∗ + S∗X ∗
1+S∗+γ1E∗

2 − b∗HX ∗ +
R∗X ∗

τ∗ ,
κ1 Dκ2E∗(t∗) = −E∗

τ∗ + γ2X ∗
τ∗ + γ3S∗X ∗

1+S∗+γ1E∗
2 + R∗E∗

τ∗ .

(3)

The parameters of model (3) are non-negative and also the initial values are S∗(0) = S∗0 ≥ 0,
X ∗(0) = X ∗0 ≥ 0, and E∗(0) = E∗0 ≥ 0. The description of the parameters used in the
above models are given below:

• The parameter F denotes the flow rate via reactor;
• The death coefficient is represented by bH;
• b∗H is the dimensionless rate of death;
• KS and KE is the saturation constant and the inhibition constant by ethanol, respectively;
• X , S , and E denote the biomass, substrate, and ethanol, respectively;
• X ∗, S∗, and E∗ represent the dimensionless biomass, substrate, and ethanol concen-

trations, respectively;
• V the volume of the reactor;
• t and t∗ represent time and dimensionless time, respectively;
• YX

S
and Y E

X
denote the biomass and ethanol/biomass yield coefficient, respectively;

• The ethanol production’s kinetic constant is represented by γ;
• M2(S , E) denotes the rate of the specific growth rate;
• µmax is the maximum rate of specific growth;
• τ and τ∗ denote the residence time and dimensionless residence time, respectively;
• R represents the recycle ratio which is based on the flow rates of volume;
• R∗ is the parameter which represents the effective recycle.
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4. Dynamical Analysis

In this section, we study the important properties of the model, such as the non nega-
tivity of solutions, the existence of unique solutions of the proposed model, and different
types of Ulam’s stability results. We derive the numerical scheme for the considered model
with aid of fractional Predictor–corrector (P–C) method.

4.1. Theoretical Analysis of the Proposed Model

In this part, we will study theoretical aspects of the considered model.

Lemma 2 (Non-negativity of the solution). For all t > 0, the solutions of the proposed model (3)
are non-negative provided that the initial conditions are non-negative.

Proof. Since we have stated that all the parameters and initial conditions are non-negative.
So for S∗ = 0, we have:

κ1 Dκ2S∗ =
S∗0
τ∗
≥ 0, sinceS∗0 ≥ 0, and τ∗ > 0.

The solution S∗ is non-negative. It can be solved by taking the integral to both sides. Now
for the second equation of the model, we substitute X ∗ = 0, we get:

κ1 Dκ2X ∗ = 0.

The solution of the κ1 Dκ2X ∗ = 0 is non-negative. It is a linear homogenous equation and
can be solved by taking the integral on both sides. Similarly for E∗ = 0, we have:

κ1 Dκ2E∗ = γ2X ∗
τ∗

+
γ3S∗X ∗
1 + S∗ .

Thus κ1 Dκ2E∗ > 0, because X ∗, τ∗, S∗, γ2 and γ3 are all positive. Thus, all solutions of the
proposed model are non-negative.

Lemma 3 (Unique bounded solution). The proposed model has a unique bounded solution if the
following conditions are held:

• (A1): All parameters are positive.
• (A2): 1 + τ∗b∗H ≥ R∗γ3 + γ2.
• (A3): 0 ≤ R∗ < 1.

Proof. In the above Lemma, we have proved that the solutions of the proposed model are
non-negative. Let Q =

{
(S∗,X ∗, E∗) ∈ R3 : S∗ ≥ 0,X ∗ ≥ 0, E∗ ≥ 0

}
, and

J1 =
S∗0−S∗

τ∗ − S∗X ∗
1+S∗+γ1E∗

2 ,

J2 = −X ∗
τ∗ + S∗X ∗

1+S∗+γ1E∗
2 − b∗HX ∗ +

R∗X ∗
τ∗ ,

J3 = −E∗
τ∗ + γ2X ∗

τ∗ + γ3S∗X ∗

1+S∗+γ1E∗
2 + R∗E∗

τ∗ ,

and J = (J1, J2, J3). Let z = (z1, z2, z3) := (S∗,X ∗, E∗). Thus, the proposed model has
the form {

κ1 Dκ2z = J(z),
z(0) = z0 ≥ 0.

It is easy to see that
∣∣∣∣ S∗

1+S∗+γ1E∗
2

∣∣∣∣ < 1 for all z ∈ Q. Using the given assumptions (A1–A3),

we have

|J1| <
S∗0
τ∗

+
1

τ∗
‖z‖,
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|J2| <
(∣∣∣∣R∗ − 1

τ∗
− b∗H

∣∣∣∣+ 1
)
‖z‖,

and

|J3| <
(

1
τ∗

+
γ2

τ∗
+ γ3 +

R∗

τ∗

)
‖z‖.

Thus
‖J‖ < H1‖z‖+ H2,

where H1 = max
{

1
τ∗ ,
(∣∣∣R∗−1

τ∗ − b∗H
∣∣∣+ 1

)
,
(

1
τ∗ +

γ2
τ∗ + γ3 +

R∗
τ∗

)}
,

H2 =
S∗0
τ∗ .

Hence, the proposed model possesses a bounded unique solution.

Theorem 3 (Uniform boundedness of solution). Assume that the conditions A1–A3 are sat-
isfied, then the solutions of the considered model are uniformly bounded over Q, if z0 ∈ Q, with
|z0| < ∞.

Proof. We define W = 2γ3J1 + γ3J2 + J3. Then,

κ1 Dκ2W = 2γ3

(
S∗0 − z1

τ∗
− z1z2

1 + z1 + γ1z2
3

)

+γ3

(
−z2

τ∗
+

z1z2

1 + z1 + γ1z2
3
− b∗Hz2 +

R∗z2

τ∗

)

+

(
−z3

τ∗
+

γ2z2

τ∗
+

γ3z1z2

1 + z1 + γ1z2
3
+

R∗z3

τ∗

)
,

using assumptions A2 and A3, we have:

κ1 Dκ2W < H3W + H4,

where H3 ≤ min
{

1
τ∗ ,
(

1
τ∗ + b∗H −

R∗
τ∗ −

γ2
γ3τ∗

)
, 1

τ∗ −
R∗
τ∗

}
,

H4 =
2γ3S∗0

τ∗ .

Thus, we achieve the differential inequality as:{
κ1 Dκ2W ≤ −H3W + H4,
W(0) = W0.

Thus, on applying the corresponding generalized integral, we will get the bounded solution.
This ends the proof.

4.1.1. Existence of Solution via Fixed Point Results

In this subsection, we discuss the existence of at least one, unique solution via the
Leray–Schauder theorem and the Banach contraction theorem. Let us write the right hand
side of model (3) as:

G1(t∗,S∗,X ∗, E∗) =
S∗0−S∗

τ∗ − S∗X ∗
1+S∗+γ1E∗

2 ,

G2(t∗,S∗,X ∗, E∗) = −X ∗
τ∗ + S∗X ∗

1+S∗+γ1E∗
2 − b∗HX ∗ +

R∗X ∗
τ∗ ,

G3(t∗,S∗,X ∗, E∗) = −E∗
τ∗ + γ2X ∗

τ∗ + γ3S∗X ∗

1+S∗+γ1E∗
2 + R∗E∗

τ∗ .

(4)
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The model (3) gets the form:
κ1 Dκ2S∗(t∗) = G1(t∗,S∗,X ∗, E∗),
κ1 Dκ2X ∗(t∗) = G2(t∗,S∗,X ∗, E∗),
κ1 Dκ2E∗(t∗) = G3(t∗,S∗,X ∗, E∗).

(5)

We can write the system (5) as:{
κ1 Dκ2 Θ(t∗) = Z (t∗, Θ(t∗))
Θ(0) = Θ0,

(6)

where

Θ(t∗) =

 S∗(t∗)X ∗(t∗)
E∗(t∗)

,

Z (t∗, Θ(t∗)) =

 G1(t∗,S∗,X ∗, E∗)
G2(t∗,S∗,X ∗, E∗)
G3(t∗,S∗,X ∗, E∗)

,

Θ0 =

 S∗0X ∗0
E∗0

.

Let A = C([0, T],R) represent a Banach space equipped with a norm defined as:

‖Θ‖ = ‖S∗,X ∗, E∗‖ = sup
t∗∈[0,T]

|Θ(t∗)|, (7)

where |Θ(t∗)| = |S∗(t∗) +X ∗(t∗) + E∗(t∗)|, where S∗,X ∗, E∗ ∈ A . Using the generalized
fractional integral, model (6) converts to the Volterra integral equation as:

Θ(t∗) = Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1
. (8)

If the Volterra integral Equation (8) has a fixed a point, then it must have a solution. Let us
define an operator F : A → A . In the view of (8), we define F as:

(FΘ)(t∗) = Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1
. (9)

To develop fixed point theory, convert the considered model to the fixed point problem,
that is, Θ = FΘ. The following theorem ensures the existence of at least one solution of
the model.

Theorem 4 (At least one solution). Suppose that Z : [0, T] → R is a continuous function.
Assume that:

(A1) For all (t∗, Θ) ∈ [0, T]× R, ∃ a function d ∈ C([0, T],R+) and a continuous, sub-
homogeneous, and non decreasing function ℵ : [0, ∞)→ [0, ∞) such that:

|Z (t∗, Θ(t∗))| ≤ d(t∗)ℵ(|Θ(t∗)|), (10)

where d0 = supt∗∈[0,T] d(t∗).
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(A2) If ∃ω > 0, such that

ω

‖Θ0‖+ d0ℵ(ω)Tκ1κ2

κ
κ2
1 Γ(κ2+1)

< 1, (11)

Then, Equation (8) has at least one solution.

Proof. Consider the operator defined by (9). Our first task is to show that F maps bounded
balls into bounded balls in A . Now, define a bounded ball as: Br = {Θ ∈ A : ‖Θ‖ ≤ r},
where r > 0. From Equation (8), we have:

sup
t∗∈[0,T]

|(FΘ)(t∗)| =

∥∥∥∥∥∥Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∥∥∥∥∥∥
≤ ‖Θ0‖+

∥∥∥∥∥∥ 1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∥∥∥∥∥∥
≤ ‖Θ0‖+

1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

‖Z (s, Θ(s))‖ ds
s1−κ1

≤ ‖Θ0‖+ sup
t∗∈[0,T]

1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

|Z (s, Θ(s))| ds
s1−κ1

.

Using Mathematica and assumption (A1), we get:

‖FΘ‖ ≤ ‖Θ0‖+
d0ℵ(r)Tκ1κ2

κκ2
1 Γ(κ2 + 1)

.

Next, we prove that F maps bounded balls into equi-continuous sets of A . For Θ ∈ Br
and z1, z2 ∈ [0, T] with z1 < z2, we have

|(FΘ)(z2)− (FΘ)(z1)| =

∣∣∣∣∣∣Θ0 +
1

Γ(κ2)

∫ z2

0

(
zκ1

2 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

−Θ0 −
1

Γ(κ2)

∫ z1

0

(
zκ1

1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
Γ(κ2)

∫ z2

0

(
zκ1

2 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

− 1
Γ(κ2)

∫ z1

0

(
zκ1

1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∣∣∣∣∣∣
≤ d0ℵ(r)

κκ2
1 Γ(κ2 + 1)

(∣∣zκ1κ2
2 − zκ1κ2

1

∣∣− 2
∣∣zκ1

2 − zκ1
1

∣∣κ2
)

.

Clearly, |(FΘ)(z2)− (FΘ)(z1)| → 0 as z2 → z1. Hence, by the Arzela–Ascoli result, the
operator F : A → A is completely continuous. Lastly, we prove that all solutions to
Θ = ψFΘ, where ψ ∈ (0, 1), are bounded. Then, for t∗ ∈ [0, T], we have:



Mathematics 2021, 9, 2370 9 of 21

|Θ(t∗)| = |ψ(FΘ)(t∗)|
≤ |(FΘ)(t∗)|

≤

∣∣∣∣∣∣Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∣∣∣∣∣∣
≤ |Θ0|+

d0ℵ(|Θ0|)t∗
κ1κ2

κκ2
1 Γ(κ2 + 1)

.

Taking the supremum value of t∗ ∈ [0, T], we get the following inequality after some steps:

Θ

‖Θ0‖+ d0ℵ(‖Θ‖)Tκ1κ2

κ
κ2
1 Γ(κ2+1)

≤ 1. (12)

From assumption (A2), ∃ω > 0 such that ‖Θ‖ 6= ω. Now, let P = {Θ ∈ A : ‖Θ‖ < ω}.
Note thatF : P→ Br is completely continuous. From P, there is no Θ ∈ ∂P with Θ = ψFΘ,
for some ψ ∈ (0, 1). Therefore, from the Leray–Schauder result, we say that F possesses a
fixed point Θ ∈ P. It follows that the considered model has at least one solution.

Theorem 5 (Unique solution). Suppose that Z : [0, T]→ R is a continuous function with the
following assumption:

(A3) For any Θ1, Θ2 ∈ A and ∀t∗ ∈ [0, T], ∃ a positive constant h̄Z > 0 such that:

|Z (t∗, Θ1(t∗))−Z (t∗, Θ2(t∗))| ≤ h̄Z |Θ1(t∗)−Θ2(t∗)|. (13)

If h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

< 1, then at most one solution of the considered model will exist.

Proof. Here, we apply the most well known fixed point theorem, that is, the Banach
fixed point theorem, to show that a unique solution of the model under consideration

exists. Consider the set Br = {Θ ∈ A : ‖Θ‖ ≤ r} with r ≥
‖Θ0‖+ ΩTκ1κ2

κ
κ2
1 Γ(κ2+1)

1− h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

, where Ω =

supt∗∈[0,T]|Z (t∗, 0)|. First, we show that FBr ⊂ Br. For any Θ ∈ Br, consider:

sup
t∗∈[0,T]

|(FΘ)(t∗)| =

∥∥∥∥∥∥Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∥∥∥∥∥∥
≤ ‖Θ0‖+

∥∥∥∥∥∥ 1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∥∥∥∥∥∥
≤ ‖Θ0‖+

∥∥∥∥∥∥ 1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

[Z (s, Θ(s))−Z (s, 0) +Z (s, 0)]
ds

s1−κ1

∥∥∥∥∥∥
≤ ‖Θ0‖+

1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

‖[Z (s, Θ(s))−Z (s, 0) +Z (s, 0)]‖ ds
s1−κ1

≤ ‖Θ0‖+
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

(h̄Z r + Ω)
ds

s1−κ1

≤ ‖Θ0‖+
Tκ1κ2

κκ2
1 Γ(κ2 + 1)

(h̄Z r + Ω)

≤ r,
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so it follows that FBr ⊂ Br. Finally, we verify that F : Br → Br is a contraction. For any
Θ1, Θ2 ∈ A , we have:

sup
t∗∈[0,T]

|(FΘ1)(t∗)− (FΘ2)(t∗)| =

∥∥∥∥∥∥Θ0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ1(s))
ds

s1−κ1

−Θ0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ2(s))
ds

s1−κ1

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

[Z (s, Θ1(s))−Z (s, Θ2(s))]
ds

s1−κ1

∥∥∥∥∥∥
≤ 1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

‖[Z (s, Θ1(s))−Z (s, Θ2(s))]‖
ds

s1−κ1

≤ h̄Z

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

‖Θ1 −Θ2‖
ds

s1−κ1

≤ h̄Z Tκ1κ2

κκ2
1 Γ(κ2 + 1)

‖Θ1 −Θ2‖.

Since h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

< 1, this implies that F is a contraction. From the Banach fixed result, F
possesses a unique fixed point. It follows that a unique solution of the considered exists.

4.1.2. Ulam’s Stability

In this subsection, we develop a theory related to different types of UlamHyres (UH)
stability. First, we provide definitions of different Ulams stabilities for our considered
model. Let σ > 0 and KZ : [0, T] → R+ represent a continuous mapping. Consider the
inequalities given below:∣∣κ1 Dκ2

0+Y(t∗)−Z (t∗, Y(t∗))
∣∣ ≤ σ (14)∣∣κ1 Dκ2

0+Y(t∗)−Z (t∗, Y(t∗))
∣∣ ≤ σKZ (t∗) (15)∣∣κ1 Dκ2

0+Y(t∗)−Z (t∗, Y(t∗))
∣∣ ≤ KZ (t∗), (16)

where t∗ ∈ [0, T] and σ = max(σj)
T , for j = 1, 2, 3.

Definition 4. The considered model will be UH stable if for every σ > 0, and for every solution
Y ∈ A of (6) ∃JZ > 0 and a solution Θ ∈ A with:

|Y(t∗)−Θ(t∗)| ≤ σJZ > 0, (17)

where t∗ ∈ [0, T] and JZ = max(JZj
)T for j = 1, 2, 3.

Definition 5. The considered model will be generalized UH stable if ∃ a functionKZ ∈ C[R+,R+]
with KZ (0) = 0 and for each Y ∈ A , ∃ a solution Θ ∈ A with

|Y(t∗)−Θ(t∗)| ≤ KZ (σ), (18)

where t∗ ∈ [0, T] and KZ = max(KZj
)T for j = 1, 2, 3.

Definition 6. The considered model will be UHR stable w.r.t KZ ∈ C[[0, T],R+] if ∃ UKZ
> 0

such that for each σ > 0 and for every Y ∈ A ∃ a solution Θ ∈ A such that

|Y(t∗)−Θ(t∗)| ≤ KZ (t∗)UKZ
σ, (19)
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where t∗ ∈ [0, T].

Definition 7. The considered model will be generalized UHR stable w.r.t KZ ∈ C[[0, T],R+] if ∃
UKZ

> 0 such that for each σ > 0 and for every Y ∈ A ∃ a solution Θ ∈ A such that

|Y(t∗)−Θ(t∗)| ≤ KZ (t∗)UKZ
, (20)

where t∗ ∈ [0, T].

Remark 1. Let Y ∈ A be a solution of (14) iff ∃V ∈ A with the following properties:

• |V(t∗)| ≤ σ, V = max(V j)
T , for j = 1, 2, 3.

• κ1 Dκ2
0+Y(t∗) = Z (t∗, Y(t∗)) + V(t∗).

Remark 2. Let Y ∈ A be a solution of (15) iff ∃B ∈ A with the following properties:

• |B(t∗)| ≤ σKZ (t∗), B = max(Bj)
T , for j = 1, 2, 3.

• κ1 Dκ2
0+Y(t∗) = Z (t∗, Y(t∗)) + B(t∗).

First, we prove important results, which are needed for the discussion of Ulam’s
stabilities of the given model. We take another assumption which can be helpful for further
discussion. We assume that:

(A4) For any t∗ ∈ [0, T], ∃ and increasing function KZ ∈ A and ΥKZ
> 0, such that

κ1Iκ2
0+KZ (t∗) ≤ ΥKZ

KZ (t∗). (21)

Lemma 4. Let κ2 ∈ (0, 1] and κ1 > 0. Let Y ∈ A be a solution of (14), then∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣ ≤ σTκ1κ2

κκ2
1 Γ(κ2 + 1)

. (22)

Proof. Since Y ∈ A is a solution of (14). So by the second part of Remark 1, we have:{
κ1 Dκ2

0+Y(t∗) = Z (t∗, Y(t∗)) + V(t∗), t∗ ∈ [0, T],
Y(0) = Y0.

(23)

Using GFI, the solution of (23) is given by:

Y(t∗) = Y0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

+
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

V(s)
ds

s1−κ1
.

Using the first part of Remark 1, we have:
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∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

×V(s)
ds

s1−κ1

∣∣∣∣
≤ 1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

×|V(s)| ds
s1−κ1

≤ σTκ1κ2

κκ2
1 Γ(κ2 + 1)

.

Hence, the proof is completed.

Lemma 5. Let κ2 ∈ (0, 1] and κ1 > 0. Let Y ∈ A be a solution of (15), then:∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣ ≤ σΥKZ
KZ (t∗). (24)

Proof. Since Y ∈ A is a solution of (14). In the light of the second part of Remark 2, we
can write:

Y(t∗) = Y0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

+
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

B(s)
ds

s1−κ1
.

In light of first part of Remark 2, we get:∣∣Y(t∗)− Y0 − κ1Iκ2
0+Z (t∗, Y(t∗))

∣∣ =
∣∣κ1Iκ2

0+ B(t∗)
∣∣

≤ κ1Iκ2
0+ |B(t

∗)|
≤ σκ1Iκ2

0+KZ (t∗)

≤ σΥKZ
KZ (t∗).

This ends the proof.

Now, we are in a position to prove the UH and UHR stability of the considered model.

Theorem 6 (Generalized Ulam-Hyers stability). Let for every Θ ∈ A , the function Z be
continuous. If (A1) and the relation h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

< 1 are fulfilled. Then the system (6) is UH stable

and, consequently, generalized UH stable.

Proof. Assume that σ > 0 and Y ∈ A is any solution of the relation (14). Let Θ ∈ A be a
unique solution of the system (6). Using Equation (8) and Lemma 1, we get:
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|Y(t∗)−Θ(t∗)| ≤

∣∣∣∣∣∣Y(t∗)−Θ0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣
u

1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

|Z (s, Y(s))−Z (s, Θ(s))| ds
s1−κ1

≤

∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣
u

h̄Z

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

|Y(s)−Θ(s)| ds
s1−κ1

≤ σTκ1κ2

κκ2
1 Γ(κ2 + 1)

+
h̄Z Tκ1κ2

κκ2
1 Γ(κ2 + 1)

|Y(t∗)−Θ(t∗)|.

After a few steps, we obtain |Y(t∗)−Θ(t∗)| ≤ σJZ , where

JZ =

Tκ1κ2

κ
κ2
1 Γ(κ2+1)

1− h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

.

Thus, the condition of UH stability is satisfied. Therefore, the model (6) is UH stable. Now,
by putting KZ (σ) = σJZ such that KZ (0) = 0 implies that the considered model is
generalized UH stable. This ends the proof.

The following theorem presents the UHR and the generalized UHR stability of the
given model.

Theorem 7. Let for every Θ ∈ A , the function Z be continuous. If (A1), (A3), the relations
h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

< 1 are fulfilled. Then the system (6) is UHR stable and, consequently, generalized

UHR stable.

Proof. Assume that σ > 0 and Y ∈ A is any solution of the relation (16). Let Θ ∈ A be a
unique solution of the system (6). Using Equation (8) and Lemma 2, we get:

|Y(t∗)−Θ(t∗)| ≤

∣∣∣∣∣∣Y(t∗)−Θ0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Θ(s))
ds

s1−κ1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣
u

1
Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

|Z (s, Y(s))−Z (s, Θ(s))| ds
s1−κ1

≤

∣∣∣∣∣∣Y(t∗)− Y0 −
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

Z (s, Y(s))
ds

s1−κ1

∣∣∣∣∣∣
u

h̄Z

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

|Y(s)−Θ(s)| ds
s1−κ1

≤ σΥKZ
KZ (t∗) +

h̄Z Tκ1κ2

κκ2
1 Γ(κ2 + 1)

|Y(t∗)−Θ(t∗)|.
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After a few steps, we get |Y(t∗)−Θ(t∗)| ≤ σΥKZ
KZ (t∗)

1− h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

. By letting

UKZ
=

ΥKZ

1− h̄Z Tκ1κ2

κ
κ2
1 Γ(κ2+1)

,

we achieve the desired result:

|Y(t∗)−Θ(t∗)| ≤ KZ (t∗)UKZ
σ. (25)

It follows that the given model is UHR stable. Now, by putting σ = 1 in the above inequality
along with KZ (0) = 0, the model is generalized UHR stable.

4.2. Computational Analysis of the Proposed Model

In this part, we develop a general method of the solution to the considered model.
We use an efficient and stable numerical technique called the predictor–corrector (P–C)
method. We provide stability of the P–C scheme at the end of this section.

Predictor-Corrector Algorithm

Consider the Volterra integral form of first equation of (5) as:

S∗(t∗) = S∗0 +
1

Γ(κ2)

∫ t∗

0

(
t∗

κ1 − sκ1

κ1

)κ2−1

G1(s∗,S∗,X ∗, E∗)
ds

s1−κ1
. (26)

The above equation can be written as:

S∗(t∗) = S∗(0) +
κ1−κ2

1
Γ(κ2)

∫ t∗

0
sκ1−1

(
t∗

κ1 − sκ1
)κ2−1

G1(s∗,S∗,X ∗, E∗)ds. (27)

For the sake of simplicity, we write G1(s∗,S∗(s∗)) instead of G1(s∗,S∗,X ∗, E∗). We split
the interval [0, T] into N subintervals

{[
t∗r , t∗r+1

]
, r = 0, 1, 2, · · · , N − 1

}
and using the

mesh points: t∗0 = 0,

t∗j+1 =
(

t∗
κ1

j + h
) 1

κ1 , j = 0, 1, 2, · · · , N − 1,
(28)

where h = Tκ1
N . Now, we compute the approximate solution S∗j+1 ≈ S∗(t∗j+1) of the integral

Equation (27):

S∗(t∗j+1) = S∗(0) +
κ1−κ2

1
Γ(κ2)

∫ t∗j+1

0
sκ1−1

(
t∗

κ1
j+1 − sκ1

)κ2−1
G1(s∗,S∗(s∗))ds. (29)

Let l = sκ1 , then the above equation becomes:

S∗(t∗j+1) = S∗(0) +
κ−κ2

1
Γ(κ2)

∫ t∗
κ1

j+1

0

(
t∗

κ1
j+1 − l

)κ2−1
G1(l

1
κ1 ,S∗(l

1
κ1 ))dl. (30)

Now, we discretize the integral as:

S∗(t∗j+1) = S∗(0) +
κ−κ2

1
Γ(κ2)

j

∑
r=0

∫ t∗
κ1

j+1

t∗
κ1

j

(
t∗

κ1
j+1 − l

)κ2−1
G1(l

1
κ1 ,S∗(l

1
κ1 ))dl. (31)
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Next, we evaluate the right hand side of (31) with the help ofthe trapezoidal rule w.r.t the

weight function
(

t∗
κ1

j+1 − l
)κ2−1

. Putting G1(l
1

κ1 ,S∗(l
1

κ1 )) by its linear piece wise interpolant

by choosing the nodes t∗
κ1

r , where r = 0, 1, 2, · · · , j + 1. Then, we reach:

∫ t∗
κ1

j+1

t∗
κ1

j

(
t∗

κ1
j+1 − l

)κ2−1
G1(l

1
κ1 ,S∗(l

1
κ1 ))dl =

hκ2−1

κ2Γ(κ2 + 1)

[(
(j− r)κ2+1

−(j− r− κ2)(j− r + 1)κ2)G1(t∗r ,S∗(t∗r ))
+((j− r + 1)κ2 − (j− r + 1 + κ2)(j− r)κ2)

×G1(t∗r+1,S∗(t∗r+1))
]

Substituting the above term into (31), we find the corrector expression for S∗(t∗j+1), j =
0, 1, 2, · · · , N − 1 as follows:S

∗(t∗j+1) = S∗(0) + κ
−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0 ∆r,j+1G1(t∗r ,S∗(t∗r ))

+
κ
−κ2
1 hκ2

Γ(κ2+2)G1(t∗j+1,S∗(t∗j+1)),
(32)

where

∆r,j+1 =

{
jκ2+1 − (j− κ2)(j + 1)κ2 , i f r = 0,
(j− r + 2)κ2+1 + (j− r)κ2 − 2(j− r + 1)κ2+1, i f 1 ≤ r ≤ j.

(33)

Next, implementing the Adams–Bashforth method to the integral (30), we find the predictor

value S∗P
(t∗j+1). For this, we replace the function G1(l

1
κ1 ,S∗(l

1
κ1 )) by G1(t∗r ,S∗(t∗r )) at each

integral in Equation (31), we obtain:

S∗P
(t∗j+1) = S∗(0) +

κ−κ2
1

Γ(κ2)

j

∑
r=0

∫ t∗
κ1

r+1

t∗
κ1

r

(
t∗

κ1
j+1 − l

)κ2−1
G1(t∗r ,S∗(t∗r ))dl. (34)

This implies that:S∗
P
(t∗j+1) = S∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0[(j + 1− r)κ2 − (j− r)κ2 ]

×G1(t∗r ,S∗(t∗r )).
(35)

Now, putting S∗(t∗j+1) instead of S∗P
(t∗j+1) in the right side of (32), we approximate the

S∗(t∗j+1) ≈ S∗j+1 to develop P–C algorithm as:S
∗
j+1 = S∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0 ∆r,j+1G1(t∗r ,S∗r )

+
κ
−κ2
1 hκ2

Γ(κ2+2)G1(t∗j+1,S∗P

j+1),
(36)

where r = 0, 1, 2, · · · , j. So, for the first equation, we achieved a P–C scheme which is
defined in (35) and (36), respectively. Therefore, we can write the P–C algorithm for the
whole model as:
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S∗j+1 = S∗(0) + κ
−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0 ∆r,j+1G1(t∗r ,S∗r )

+
κ
−κ2
1 hκ2

Γ(κ2+2)G1(t∗j+1,S∗P

j+1),

X ∗j+1 = X ∗(0) + κ
−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0 ∆r,j+1G2(t∗r ,X ∗r )

+
κ
−κ2
1 hκ2

Γ(κ2+2)G2(t∗j+1,X ∗P

j+1),

E∗j+1 = E∗(0) + κ
−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0 ∆r,j+1G3(t∗r , E∗r )

+
κ
−κ2
1 hκ2

Γ(κ2+2)G3(t∗j+1, E∗P

j+1),

(37)

where 

S∗P
(t∗j+1) = S∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0[(j + 1− r)κ2 − (j− r)κ2 ]

×G1(t∗r ,S∗(t∗r )),

X ∗P
(t∗j+1) = X ∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0[(j + 1− r)κ2 − (j− r)κ2 ]

×G2(t∗r ,X ∗(t∗r )),

E∗P
(t∗j+1) = E∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2) ∑
j
r=0[(j + 1− r)κ2 − (j− r)κ2 ]

×G3(t∗r , E∗(t∗r )).

(38)

The system (37) is the numerical solution of the considered model via the P–C scheme. Next,
we show in the following theorem that the proposed P–C scheme is conditionally stable.

Theorem 8 (Stability). Let G1(t∗,S∗(t∗)) fulfill the Lipschitz condition and S∗c (c = 1, 2, 3, · · · ,
k + 1) be solutions of system (37). Then, the considered P–C numerical method is conditionally stable.

Proof. Let S̃∗0 , S̃∗c (c = 0, 2, 3, · · · , k+ 1) and S̃∗P

k+1 (k = 0, 1, 2, · · · , N − 1) be perturbations

of S∗0 , S∗c , andS∗P

k+1. Equations (37) and (38) become:

S̃∗P

k+1 = S̃∗0 +
κ−κ2

1 hκ2

Γ(κ2 + 2)

k

∑
c=0
∇c,k+1[G1(t∗c ,S∗c )−G1(t∗k ,S∗k )], (39)

where ∇c,k+1 = [(k + 1− c)κ2 − (k− c)κ2 ]. So,S̃
∗
k+1 = S̃∗(0) + κ

−κ2
1 hκ2

Γ(κ2+2)

[
G1(t∗k+1,S∗P

k+1 + S̃
∗P

k+1)−G1(t∗k+1,S∗P

k+1)
]

+
κ
−κ2
1 hκ2

Γ(κ2+2) ∑k
c=0 ∆c,k+1

[
G1(t∗c ,S∗c + S̃∗c )−G1(t∗c ,S∗c )

]
.

(40)

Using the Lipschitz property of G1(t∗,S∗(t∗)), consider:

∣∣S̃∗k+1
∣∣ ≤ F0 +

κ−κ2
1 hκ2 ϕ1

Γ(κ2 + 2)

[∣∣∣S̃∗P

k+1

∣∣∣+ k

∑
c=1

∆c,k+1
∣∣S̃∗c ∣∣

]
, (41)

where F0 = max0≤r≤N

{∣∣S̃∗0 ∣∣+ κ
−κ2
1 hκ2 ϕ1∆k,0

Γ(κ2+2)

∣∣S̃∗0 ∣∣}. We can also derive the following equa-

tion easily:

∣∣∣S̃∗P

k+1

∣∣∣ ≤ X0 +
κ−κ2

1 hκ2 ϕ1

Γ(κ2 + 1)

[
k

∑
c=1
∇c,k+1

∣∣S̃∗c ∣∣
]

, (42)
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where X0 = max0≤r≤N

{∣∣S̃∗0 ∣∣+ κ
−κ2
1 hκ2 ϕ1∇k,0

Γ(κ2+2)

∣∣S̃∗0 ∣∣}. Now, plugging Equation (42) into (41),

we get:

∣∣S̃∗k+1
∣∣ ≤ M0 +

κ−κ2
1 hκ2 ϕ1

Γ(κ2 + 2)

[
κ−κ2

1 hκ2 ϕ1

Γ(κ2 + 1)

k

∑
c=1
∇c,k+1

∣∣S̃∗c ∣∣+ k

∑
c=1

∆c,k+1
∣∣S̃∗c ∣∣

]

≤ M0 +
κ−κ2

1 hκ2 ϕ1

Γ(κ2 + 2)

k

∑
c=1

[
κ−κ2

1 hκ2 ϕ1

Γ(κ2 + 1)
∇c,k+1 + ∆c,k+1

]∣∣S̃∗c ∣∣
≤ M0 +

κ−κ2
1 hκ2 ϕ1<κ2,2

Γ(κ2 + 2)

k

∑
c=1

[k + 1− c]κ2−1∣∣S̃∗c ∣∣,
where M0 = max

{
F0 +

κ
−κ2
1 hκ2 ϕ1∆k+1,k+1

Γ(κ2+2) X0

}
and <κ2,2 > 0 is a constant which depends on

κ2. It follows that
∣∣S̃∗k+1

∣∣ ≤ <M0. This ends the proof.

5. Graphical Analysis

In this section, we simulate the suggested dimensionless nonlinear model using the
rate of change of substrate, biomass, and ethanol. To be more specific, we analyze kinetics
characteristics with sugar concentrations of 100–250 g/L, which are typically utilized in
ethanol production. We use the parameter values and initial conditions for the graphical
representation as: γ = 0.338, µmax = 0.333, bH = 0.000916, Y E

X
= 3.817, YX

S
= 0.054,

KE = 0.048, KS = 0.032, S∗0 = 100, X ∗0 = 0.2, and S∗0 = 0. The values of other parameters
used in the dimensionless model are defined as: b∗H = bH

µmax
, γ1 = KEKS , τ∗ = Vµmax

F ,
γ2 = γYX

S
, and γ3 = Y E

X
YX
S

. We illustrate the time evolutions of the substrate, biomass,
and ethanol for different choices of κ1 and κ2. Figure 1 represents the evolution of the
substrate concentration for different values of κ1 and κ2. Figure 2 shows the evolution of
the biomass concentration for different values of κ1 and κ2 while Figure 3 is the graphical
representation of the ethanol concentration for various values of κ1 and κ2. We consider
reactors that have no or continuous substrate, biomass, or ethanol. The abrupt increase
generated by the intake of feed concentration can be seen in the Figure 1. Then, bacteria use
substrate, due to this, it quickly flattens out to a constant. It is clear from the numbers that
using more recycling enhances the generation of biomass and methane. That consequence
depletes the substrates required for a successful biorefinery. With a fixed period at t = 100,
we see that the substrate concentration rises as the recycling ratio rises. Here we also observe
the impact of κ1 and κ2 on each other, as shown in Figures 1–3. From the first two figures
of Figure 1, we observe that varying κ1 and keeping κ2 fixed, the substrate concentration
attains the one peak value for different values of κ1. On the other hand, from the last two
figures of Figure 1, we see that the substrate concentration attains different peak values at
different orders of κ2, keeping κ1 fixed. The same is the case for biomass concentration. In
Figure 3, the effects of κ1 and κ2 on the concentration of ethanol are easily observed. As κ1
or κ2 increase, the slower the process of the substrate, biomass, and ethanol and vice versa.
When both κ1 and κ2 approaches unity, then the curves of the model tend to the curves of
the integer-order model. Thus, the generalized fractional-order model provides a global
evolution of the substrate, biomass, and ethanol concentration.
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Figure 1. Graphical representation of substrate for different values of κ1 and κ2.
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Figure 2. Cont.
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Figure 2. Graphical representation of biomass for different values of κ1 and κ2.
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Figure 3. Graphical representation of ethanol for different values of κ1 and κ2.

6. Conclusions

In this article, we investigated a fractional mathematical model for the synthesis of
bio-ethanol using a generalised Caputo operator. We looked into a variety of mathematical
properties of the model that are required to support the physical features of the modelled
problem. We have presented the applications of well-known results of the Banach and
Leray–Schauider fixed point theorems to develop the existence theory regarding at least one
unique solution of the considered model. We have discussed different forms of Ulam’s types
of stability of the considered model such as UH, generalized UH, URH, and generalized
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URH. In this study, we have established the algorithm via a numerical method called the
predictor–corrector method to find the approximate solution of the dimensionless ethanol
model. We have presented the stability of the P–C numerical method. We have shown
that the proposed method is conditionally stable. We have geometrically presented the
ethanol model under a generalized Caputo operator for different sets of κ1 and κ2. We have
observed from the graphical representation of the model that the fractional-order ethanol
model produces a global evolution of the substrate concentration, biomass concentration,
and ethanol concentration. Thus, we conclude that our model is superior to the model
given in [10]. In future research, we will study the bifurcation and chaos behavior of the
model under various fractional operators.
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