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Abstract: The Estrada index of a graph G is defined as EE(G) = ∑n
i=1 eλi , where λ1, λ2, . . . , λn are the

eigenvalues of the adjacency matrix of G. A unicyclic graph is a connected graph with a unique cycle.
Let U (n, d) be the set of all unicyclic graphs with n vertices and diameter d. In this paper, we give
some transformations which can be used to compare the Estrada indices of two graphs. Using these
transformations, we determine the graphs with the maximum Estrada indices among U (n, d). We
characterize two candidate graphs with the maximum Estrada index if d is odd and three candidate
graphs with the maximum Estrada index if d is even.
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1. Introduction

In this paper, we only consider simple undirected graphs. Let G = (V(G), E(G)) be a
graph with n vertices and m edges. Let NG(v) be the set of vertices adjacent to v in G. The
degree of v in G, denoted by dG(v), is equal to |NG(v)|. A vertex of degree one is called
a pendant vertex. The edge incident with a pendant vertex is known as a pendant edge.
Let S 6= ∅ ⊆ V(G). Then denote by G[S] the subgraph induced by S. If D ⊆ E(G) (or
D ⊆ V(G)), then we write G− D for the graph obtained from G by deleting all of its edges
(or vertices, resp.) in D. If D ⊆ E(G), then we denote by G + D the graph obtained from G
by adding all of edges in D to the graph.

Let A(G) be the adjacency matrix of G. Denote the eigenvalues of A(G) by λ1, λ2, . . . , λn
and assume λ1 ≥ λ2 ≥ . . . ≥ λn. Then λ1, usually denoted by ρ(G), is called the spectral
radius of G. The Estrada index of G is defined as

EE(G) =
n

∑
i=1

eλi .

This graph invariant was first proposed as a measure of the degree of folding of
a protein [1] and now has been found multiple applications in various fields, such as
measurements of the subgraph centrality and the centrality of complex networks [2,3] and
the extended molecular branching [4]. Recently, the correlation between the Estrada index
and π-electronic energies for benzenoid hydrocarbons was investigated in [5], the results
of which warrant its further usage in quantitative structure–activity relationships. Given
these prominent applications of the Estrada index, the research on it is of theoretical and
practical significance. In the last few decades, some mathematical properties of the Estrada
index, including various bounds for it, have been established [6–12].

In 1986, Brualdi and Solheid [13] proposed the following problem concerning the
spectral radii of graphs: Given a set G of graphs, find an upper bound for the spectral
radius of graphs in G and characterize the graphs for which the maximal spectral radius is
attained. The corresponding problem of a given graph invariant has been widely studied
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(see [14–16], for example). Motivated by this, many results have been obtained on char-
acterizing graphs that maximize (or minimize) the Estrada index among a given set of
graphs. For example, some interesting results were obtained for the general trees [17], trees
with a given matching number [18], trees with a fixed diameter [19], trees with perfect
matching and a fixed maximum degree [20], and trees with a fixed number of pendant
vertices [21]. Du and Zhou [22] showed a graph with the maximal Estrada index and two
candidate graphs with the minimum Estrada index among all unicyclic graphs. Moreover,
they determined the unique graphs with maximum Estrada indices among graphs with
given parameters [23]. Wang et al. [24] and Zhu et al. [25] characterized the bicyclic graph
and the tricyclic graph with maximum Estrada indices, respectively. E. Andrade et al. [26]
presented the graph having the largest Estrada index of its line graph among all graphs on
n vertices with connectivity less than or equal to a fixed number. For more results on the
Estrada index and its variations, the readers may refer to [27–30].

A unicyclic graph is a connected graph with a unique cycle. Let Pn and Cn be the
path and the cycle on n vertices, respectively. Denote by U (n, d) the set of all unicyclic
graphs with n vertices and diameter d. In this paper, we characterize the graphs with the
maximum Estrada index in U (n, d).

This paper is organized as follows. In Section 2, we list some transformations which
can be used to compare the Estrada indices of two graphs. In Section 3, we determine the
graphs with the maximum Estrada index among unicyclic graphs in U (n, d). We show two
candidate graphs with the maximal Estrada index if d is odd and three candidate graphs
with the maximal Estrada index if d is even. We also propose a hypothesis on the structure
of the extremal graph with the maximum Estrada index in U (n, d).

2. Preliminaries

In order to obtain the main results of this paper, we give some definitions and
lemmas here.

A walk of length k in a graph G is any sequence of vertices and edges in G,
W = v1e1v2e2 · · · vkekvk+1, such that ei = vivi+1 for every 1 ≤ i ≤ k. For a subsequence
vieivi+1 · · · vj−1ej−1vj of W, we refer to it as a (vi, vj)-section of W. Usually, we write

W = v1v2 · · · vk+1 instead for simplicity and call it a (v1, vk+1)-walk. Let
−→
W = vk+1vk · · · v1.

Then
−→
W is called the reverse of W. If v1 = vk+1, then W is called a closed walk.

Let Mk(G) be the kth spectral moment of the graph G defined as Mk(G) = ∑n
i=1 λk

i .
It is well-known that Mk(G) equals the number of closed walks of length k in G; see [31].
Then by the Taylor expansion of the exponential function ex, we have

EE(G) =
∞

∑
k=0

Mk(G)

k!
. (1)

Let G and H be two graphs with x, y ∈ V(G), u, v ∈ V(H) and e ∈ E(G). Suppose k
is an arbitrary positive integer. Let Wk(G; x, [e]) be the set of all (x, x)-walks of length k
going through the edge e in G and let |Wk(G; x, [e])| = Mk(G; x, [e]). Let Wk(G; x, y) be the
set of all (x, y)-walks of length k in G and let |Wk(G; x, y)| = Mk(G; x, y). If Mk(G; x, y) ≤
Mk(H; u, v) for all positive integers k, then we write (G; x, y) � (H; u, v). If (G; x, y) �
(H; u, v), and Mk0(G; x, y) < Mk0(H; u, v) for some positive integer k0, then we write
(G; x, y) ≺ (H; u, v). For convenience, let Wk(G; x) = Wk(G; x, x), Mk(G; x) = Mk(G; x, x)
and (G; u) = (G; u, u).

The following four results are often used to compare the Estrada indices of two graphs.

Lemma 1 ([28]). Let H be a graph (not necessarily connected) with u, v ∈ V(H). Suppose
that wi ∈ V(H), and uwi, vwi /∈ E(H) for 1 ≤ i ≤ r. Let Eu = {uw1, uw2, . . . , uwr} and
Ev = {vw1, vw2, . . . , vwr}. Let Hu = H + Eu and Hv = H + Ev. If (H; u) ≺ (H; v) and
(H; wi, u) � (H; wi, v) for 1 ≤ i ≤ r, then EE(Hu) < EE(Hv).
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Lemma 2 ([32]). Let H1 and H2 be two non-trivial graphs with u, v ∈ V(H1), w ∈ V(H2). Let
Gu be the graph obtained from H1 and H2 by identifying u with w, and Gv be the graph obtained
from H1 and H2 by identifying v with w. If (H1; v) ≺ (H1; u), then EE(Gv) < EE(Gu).

Lemma 3 ([32]). Let G1 and G2 be two connected graphs with u ∈ V(G1) and v ∈ V(G2). Let
G be the graph obtained by joining u and v with and edge, and let G′ be the graph obtained by
identifying u with v, and attaching a pendant vertex to the common vertex. If dG(u), dG(v) ≥ 2,
then EE(G) < EE(G′).

Theorem 1 ([27]). Let G be a connected graph and Gu,v(p, q) be the graph obtained from G by
attaching p and q pendant edges to u and v, respectively, where u, v ∈ V(G) and p, q ≥ 1.
Then EE(Gu,v(p + q, 0)) ≥ EE(Gu,v(p, q)) or EE(Gu,v(0, p + q)) ≥ EE(Gu,v(p, q)). Fur-
thermore, EE(Gu,v(p + q, 0)) > EE(Gu,v(p, q)) if dG(u) ≥ dG(v) or EE(Gu,v(0, p + q)) >
EE(Gu,v(p, q)) if dG(v) ≥ dG(u).

3. Lemmas

In this section, we give some lemmas that can be used to prove (G; v) ≺ (G; u) in a
graph G, where u, v ∈ V(G).

Lemma 4. Let G be a simple graph and u, v ∈ V(G). If NG(v) ⊆ NG(u), then (G; v) � (G; u),
and (G; w, v) � (G; w, u) for each w ∈ V(G). Moreover, if dG(v) < dG(u), then (G; v) ≺ (G; u).

Proof of Lemma 4. Since G is simple, NG(v) ⊆ NG(u) implies uv /∈ E(G). Let k ≥ 0 and
W ∈ Wk(G; v). Then W can be written as W = vw1 · · ·w2v, where w1, w2 ∈ NG(v). Let
Ŵ = uw1 · · ·w2u. Since NG(v) ⊆ NG(u) and uv /∈ E(G), the map fk: Wk(G; v)→Wk(G; u),
defined as fk(W) = Ŵ is an injection. Thus, Mk(G; v) ≤ Mk(G; u). Since k ≥ 0 is arbitrary,
we get (G; v) � (G; u). Note that dG(v) = M2(G; v) and dG(u) = M2(G; u). Therefore,
(G; v) ≺ (G; u) if dG(v) < dG(u) further holds. Similarly, we can show (G; w, v) � (G; w, u)
for each w ∈ V(G).

Lemma 5. Let G be a graph and H = G + e such that e = uv ∈ E(G). If (G; v) � (G; u), then
(H; v) � (H; u). Moreover, if (G; v) ≺ (G; u), then (H; v) ≺ (H; u).

Proof of Lemma 5. For each z ∈ {u, v} and k ≥ 0, by the definition of Mk(H; z),

Mk(H; z) = Mk(G; z) + Mk(H; z, [e]). (2)

Since (G; v) � (G; u), we have Mk(G; v) ≤ Mk(G; u). Therefore, there exits an injec-
tion fk : Wk(G; v)→ Wk(G; u). In order to prove Mk(H; v) ≤ Mk(H; u), it suffices to show
Mk(H; v, [e]) ≤ Mk(H; u, [e]).

Let W ∈Wk(H; v, [e]). Then either veu or uev must be contained in W. If W does not
contain the section uev, or veu appears earlier than uev in W, then W can be decomposed
uniquely to W = W1eW2 such that W1 ∈Wk1(G; v) for some k1 ≥ 0 and W2 ∈Wk2(H; u, v)
for some k2 ≥ 0. In this case, we define hk(W) = fk1(W1)e

←−
W2. Then hk(W) ∈Wk(H; u, [e]).

If W does not contain the section veu, or uev appears earlier than veu in W, then
W can be decomposed uniquely to W = W1eW2e · · ·WteWr, where Wi is a (v, u)-walk in
G for each 1 ≤ i ≤ t, and Wr is a (v, v)-walk in H. Here, Wr either contains no e, or
contains no uev, or veu appears earlier than uev. Without loss of generality, we suppose
veu appears earlier than uev in Wr. Then Wr can be decomposed to Wr = Wt+1eWt+2 such
that Wt+1 ∈Wkt+1(G; v) for some kt+1 ≥ 0 and Wt+2 is a (u, v)-walk in H. In this case, we

define hk(W) =
←−
W1e
←−
W2e · · ·←−Wte fkt+1(Wt+1)e

←−−
Wt+2. Then hk(W) ∈ Wk(H; u, [e]). Now it is

easy to show that the map hk : Wk(H; v, [e]) ≤Wk(H; u, [e]) defined as above is an injection.
Therefore, Mk(H; v, [e]) ≤ Mk(H; u, [e]).

Moreover, if (G; v) ≺ (G; u), then Mk0(G; v) < Mk0(G; u) for some k0 > 0. Thus,
Mk0(H; v) < Mk0(H; u) by (2), which implies (H; v) ≺ (H; u).
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Lemma 6. Let G be a graph and P = v0v1 · · · vm be a path in G such that dG(v0) = 1. Let q and
l be two nonnegative integers such that 0 ≤ q < l and q + l ≤ m. Suppose v = vq and u = vl are
two vertices in P such that dG(vi) = 2 for each 0 < i < q+l

2 . Let a = b q+l
2 c. Then

(1) (G; v) � (G; u);
(2) If q + l < m, or q + l = m and the condition C does not hold, then (G; v) ≺ (G; u), where C

is: dG(vm) = 1 and dG(vi) = 2 for each a + 1 ≤ i ≤ m− 1.
(3) If q + l is even, then (G; w, v) � (G; w, u) for each w ∈ V(G)\{v0, v1, . . . , va−1}.

Proof of Lemma 6. Let ei = vivi+1 for each 0 ≤ i ≤ m− 1. For each walk W in G[{v0, v1,
. . . , vp+l}], denote by W the walk obtained from W by replacing each vertex vx with vx′

and the corresponding edges, where x′ = q + l− x. We distinguish the following two cases:
Case 1.q + l is even.
Let k ≥ 0 and W ∈Wk(G; v). Then va = v q+l

2
has the same distance from v and u in P.

If W contains va more than once, then it can be decomposed uniquely to W = W1W2W3,
such that W2 ∈Wk2(G; va) which is as long as possible, W1 is a (v, va)-walk in G, and W3 is

a (va, v)-walk in G. In this case, let f (1)k (W) = W1W2W3. Then f (1)k (W) ∈ Wk(G; u). If W

contains va at most once, then let f (1)k (W) = W. Obviously, the map f (1)k : Wk(G; v) −→
Wk(G; u) defined as above is an injection. Since k is arbitrary, we have (G; v) � (G; u).

If q + l < m, then f (1)k does not cover the walk vlvl+1 · · · vm−1vmvm−1 · · · vl+1vl .
Now suppose q + l = m and the condition C does not hold. Without loss of generality,

suppose there exists some a + 1 ≤ j ≤ m− 1 with dG(vj) 6= 2. Then there exists a vertex

s 6= vj−1, vj+1 such that vjs ∈ E(G). If a + 1 ≤ j ≤ l − 1, then f (1)k does not cover the

walk vlvl−1 · · · vj−1vjsvj · · · vl−1vl . If l ≤ j ≤ m − 1, then f (1)k does not cover the walk
vlvl+1 · · · vjsvj · · · vl+1vl . Therefore, if q + l < m, or q + l = m and the condition C does
not hold, then Mk0(G; v) < Mk0(G; u) for some k0 ≥ 0. This implies Lemma 6 (2) holds.

Let w ∈ V(G)\{v0, v1, . . . , va−1} and W ∈Wk(G; w, v). Then W must contain va. Thus,
W can be decomposed uniquely to W = W1W2 such that W1 ∈ Wk0(G; w, va) which is as
long as possible and W2 is a (va, v)-walk in G. Then the map gk: Wk(G; w, v)→Wk(G; w, u)
defined as gk(W) = W1W2 is an injection. Therefore, (G; w, v) � (G; w, u).

Case 2. q + l is odd.
Let k ≥ 0, W ∈ Wk(G; v), and ea = vava+1. If W contains ea, then it must contain

ea at least twice and can be decomposed uniquely to W = W1W2eaW3eaW4, such that
W1 ∈Wk1(G; v, va), which contains va only once; W2 ∈Wk2(G; va), which does not contain
ea; W3 ∈ Wk3(G; va+1), which is as long as possible; and W4 ∈ Wk4(G; va, v), which does

not contain ea. In this case, let f (2)k (W) = W1W3eaW2eaW4. If W does not contain ea, let

f (2)k (W) = W. Then the map f (2)k : Wk(G; v) −→Wk(G; u) defined as above is an injection.
Thus, (G; v) � (G; u).

The proof of (Case 2) when q + l is odd is the same as that of Case 1.

Remark 1. Lemma 6 (3) does not hold if q + l is odd. For example, let G be the graph obtained
from P8 = v0v1 · · · v7 and a new vertex w by adding the edge v3w. Let v = v1 and u = v4. Then
M3(G; w, v) ≥ 1 and M3(G; w, u) = 0. Thus, (G; w, v) � (G; w, u) does not hold in G.

4. Graphs with the Maximum Estrada Index in U(n, d)

In this section, we determine the graphs with the maximum Estrada index among
U (n, d).

Let Ct(n1, n2, . . . , nt) be the graph obtained from the cycle Ct = v1v2 · · · vtv1 by attach-
ing ni vertices to vi for i = 1, 2, . . . , l. Let C∗n ∼= Cn−1(1, 0, . . . , 0) and Xn ∼= C3(0, 0, n− 3).
Let U (n) be the set of all unicyclc graphs of order n.

The following theorem characterizes the graphs with greatest, second-greatest, small-
est, and second-smallest Estrada indices among the unicyclic graphs in U (n).
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Theorem 2 ([33]). Among the unicyclic graphs in U (n),
(i) According to references [22,34], the cycle Cn has smalles tindex and the graph C∗n has second-

smallest Estrada index;
(ii) According to references [22,34], the graph Xn has the greatest Estrada index;
(iii) The graph C3(0, 1, n− 4) has the second-greatest Estrada index.

For G ∈ U (n, d), we have n ≥ 3 and 1 ≤ d ≤ n − 2. If d = 1, then G = C3. By
Theorem 2, the graphs with the maximum Estrada indices among the graphs in U (n, 2)
and U (n, 3) are Xn and C3(0, 1, n− 4), respectively. Therefore, we assume d ≥ 4 and n ≥ 6
in the following. Now we give some lemmas.

Lemma 7. Let P = v0v1 · · · vd−1vd be a path, where d ≥ 4 is even. Let H be the graph obtained
from P and a new vertex vd+1 by adding the edges v d

2−1vd+1 and v d
2
vd+1; see Figure 1. Then

(H; v d
2−1) ≺ (H; v d

2
).

r r r r r r r r
r

v0 v1 v2 v d
2−1 v d

2
v d

2 +1 vd−1 vd

vd+1

Figure 1. Graph H in Lemma 7.

Proof of Lemma 7. Let ei = vivi+1 for each 0 ≤ i ≤ d − 1. Let e = v d
2−1vd+1 and e =

v d
2
vd+1. For each walk W in H[{v0, v1, . . . , v d

2−1, vd+1}] and each 0 ≤ i ≤ d
2 − 1, denote by

W the walk obtained from W by replacing vi with vd−1−i and the corresponding edges.
Let k ≥ 0 and W ∈ Wk(H; v d

2−1). If W does not contain v d
2
, then define fk(W) = W. If

W contains v d
2
, then W can be decomposed uniquely to W = W1W2W3W4W5, such that

W1 ∈Wk1(G; v d
2−1) for some k1 ≥ 0, W5 ∈Wk5(H; v d

2−1) for some k5 ≥ 0, W3 ∈Wk3(H; v d
2
)

which is as long as possible, W2 = e d
2−1 or evd+1e, W4 = e d

2−1 or evd+1e. Obviously,

neither W1 nor W5 contains v d
2
. In this case, we define fk(W) = W3W4W5W2W1. Then

it is easy to show that the map fk : Wk(H; v d
2−1) −→ Wk(H; v d

2
) defined as above is an

injection. Since fk does not cover the walk v d
2
v d

2 +1 · · · vd−1vdvd−1 · · · v d
2 +1v d

2
, we have

(H; v d
2−1) ≺ (H; v d

2
).

Lemma 8. Let C4 = xvyux be a 4-cycle. Denote by H the graph obtained from C4 by attaching
two paths Pp = v1v2 · · · vp and Pq = u1u2 · · · uq at vertices v and u, respectively; see Figure 2. If
0 ≤ p < q, then (H; v) ≺ (H; u).

r r r r r r r r r
r

vp vp−1 v1 v y u u1 uq−1 uq

x

Figure 2. Graph H in Lemmas 8 and 9.

Proof of Lemma 8. For each walk W in H[{x, y, v, v1, . . . , vp}] and each 1 ≤ i ≤ p, de-
note by W the walk obtained from W by replacing vi with ui, v with u and the corre-
sponding edges. Let k ≥ 0 and W ∈ Wk(H; v). If W contains neither x nor y, then let
fk(W) = W. If W contains x or y, then W can be decomposed uniquely to W = W1W2W3,
such that W1 is a (v, s)-walk; W2 is a (s, t)-walk which is as long as possible, where
s, t ∈ {x, y}; and W3 is a (t, v)-walk. It is obvious that both of W1 and W3 are walks
in H[{x, y, v, v1, . . . , vp}]. In this case, we define fk(W) = W1W2W3. Then it is easy to show
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that the map fk : Wk(H; v) −→Wk(H; u) defined as above is an injection. Since p < q, fk
does not cover the walk uu1 · · · uq−1uquq−1 · · · u1u. Therefore, we have (H; v) ≺ (H; u).

Lemma 9. Let H be the graph depicted in Figure 2. If 0 ≤ p ≤ q and q ≥ 1, then (H; y) ≺ (H; u).

Proof of Lemma 9. Let k ≥ 0 be an arbitrary integer. By the definition of the walk, we have

Mk(H; y) = Mk−1(H; y, u) + Mk−1(H; y, v)

= Mk−1(H; u, y) + Mk−1(H; y, v)

= Mk−1(H; u, y) + Mk−1(H; x, v)

and

Mk(H; u) = Mk−1(H; u, y) + Mk−1(H; u, x) + Mk−1(H; u, u1)

= Mk−1(H; u, y) + Mk−1(H; x, u) + Mk−1(H; u, u1).

Since Mk−1(H; u, u1) ≥ 0, in order to prove Mk(H; y) ≤ Mk(H; u), it suffices to show
Mk−1(H; x, v) ≤ Mk−1(H; x, u), i.e., Mk(H; x, v) ≤ Mk(H; x, u) for each k ≥ 0. We prove
this by induction on k.

If k = 1, Mk(H; x, v) = Mk(H; x, u) = 1. If k = 2, Mk(H; x, v) = Mk(H; x, u) = 0.
Now suppose k ≥ 3 and let W ∈ Wk(H; x, v). We consider the edge e preceding the last
vertex v in W. If e = (x, v), then W can be written as W = W1(x, v)v. In this case, let
fk(W) = W1(x, u)u. If e = (y, v), then W can be written as W = W1(y, v)v. In this case, let
fk(W) = W1(y, u)u. If e = v1v, then W can be uniquely decomposed to W1W2, such that
W1 ∈ Wk1(x, v) for some 0 ≤ k1 < k which is as large as possible, and W2 ∈ Wk2(v, v) for
some k2 ≥ 0. Obviously, W2 is a walk in H[{v, v1, . . . , vp}]. Define W2 the walk obtained
from W2 by replacing vi with ui for each 1 ≤ i ≤ p, v with u, and the corresponding edges.
By the inductive hypothesis, there is an injection fk1 : Wk1(H; x, v)→ Wk1(H; x, u). In this
case, let fk(W) = fk1(W1)W2. Then it is easy to show that the map fk : Wk(H; x, v) −→
Wk(H; x, u) defined as above is an injection. Therefore, Mk(H; x, v) ≤ Mk(H; x, u).

Since q ≥ 1, M2(H; y) = dH(y) = 2 < 3 = dH(u) = M2(H; u). Thus, (H; y) ≺ (H; u).
This completes the proof.

Let P = v0v1 · · · vd be a path of length d with d ≥ 2. Let ∆d
n be the graph obtained

from P and a new vertex vd+1 by adding the edges vb d
2 c

vd+1 and vb d
2 c+1vd+1, and attaching

n− d− 2 pendant edges at the vertex vb d
2 c

(see Figure 3).

r r r r r r r r
r

v0 v1 v2 vb d
2 c

vb d
2 c+1 vd−2 vd−1 vd

vd+1rrrn− d− 2

Figure 3. Graph ∆d
n.

Lemma 10. Let P = v0v1 · · · vd be a path of length d ≥ 4. Let Gvk ,v be the graph with diameter d
obtained from P and a new vertex vd+1 by adding the edges vkvd+1 and vk+1vd+1, and attaching
n− d− 2 pendant edges at one vertex v ∈ V(P)∪ {vd+1}, where 0 ≤ k ≤ d− 1 and n− d− 2 ≥
0. Then EE(Gvk ,v) ≤ EE(∆d

n), with equality if and only if Gvk ,v ∼= ∆d
n, where ∆d

n is depicted in
Figure 3.

Proof of Lemma 10. Denote by B the set of all graphs Gvk ,v. Let G∗ be the graph in B with
the maximum Estrada index. Then there exists some 0 ≤ k ≤ d− 1 such that G∗ is obtained
from P and vd+1 by adding the edges vkvd+1 and vk+1vd+1, and attaching n− d− 2 pendant
edges at a vertex v for some vertex v ∈ V(P) ∪ {vd+1}. We show that vk = v = vb d

2 c
, i.e.,
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G∗ ∼= ∆d
n. For each vertex vi in P, let NG∗(vi) = NG∗(vi) ∩ (V(G∗) \V(P)). We distinguish

the following two cases.
Case 1. d is odd.
We show that for each vi ∈ V(P) \ {vb d

2 c
, vb d

2 c+1}, we have NG∗(vi) = ∅.

Let t be the minimum index with NG∗(vt) 6= ∅. Suppose NG∗(vt) = {w1, w2, . . . , ws}.
If t < b d

2 c, then t + (t + 2) < d and t + (t + 2) is even. Let G0 = G∗ − {vtwi | 1 ≤ i ≤ s}.
By Lemma 6, (G0; vt) ≺ (G0; vt+2), and for each 1 ≤ i ≤ s, (G0; wi, vt) � (G0; wi, vt+2).
Define G′ = G0 + {vt+2wi | 1 ≤ i ≤ s}. Then G′ ∈ B and EE(G∗) < EE(G′) by Lemma 1,
a contradiction to the choice of G∗. Therefore, t ≥ b d

2 c, i.e., NG∗(vi) = ∅ for each i <

b d
2 c. Similarly, we have NG∗(vi) = ∅ for each i > b d

2 c + 1. Thus, vk = vb d
2 c

and v ∈
{vb d

2 c
, vb d

2 c+1, vd+1}.
Obviously, G∗ ∼= ∆d

n if n − d − 2 = 0. Now we suppose n − d − 2 > 0. Then
dG∗(v) ≥ 3. Suppose v = vd+1. Let G0 = G∗ − vb d

2 c−1vb d
2 c

and G1 = G0 − vb d
2 c

vd+1.

Then NG1(vb d
2 c
) ⊆ NG1(vd+1) and dG1(vb d

2 c
) = 1 < 2 ≤ dG1(vd+1). Thus, we have

(G1; vb d
2 c
) ≺ (G1; vd+1) by Lemma 4 and (G0; vb d

2 c
) ≺ (G0; vd+1) by Lemma 5. Note that

for each k ≥ 0, Mk(G0; vb d
2 c−1, vb d

2 c
) = Mk(G0; vb d

2 c−1, vd+1) = 0. By Lemma 1, we get

EE(G∗) < EE(∆d
n), a contradiction to the choice of G∗. Therefore, v 6= vd+1, i.e., G∗ ∼= ∆d

n.
Case 2. d is even.
By an argument similar to that of Case 1, we have NG∗(vi) = ∅ for each i < b d

2 c − 1
and i > b d

2 c+ 1. Thus, vk = vb d
2 c−1 or vb d

2 c
, and v ∈ {vb d

2 c−1, vb d
2 c

, vb d
2 c+1, vd+1}. Without

loss of generality, we may suppose vk = vb d
2 c

. Then G∗ ∼= ∆d
n if n− d− 2 = 0. Now suppose

n − d − 2 > 0. By an argument similar to that in Case 1, we have v 6= vd+1. Suppose
v = vb d

2 c−1 or vb d
2 c+1. Let {u1, u2, . . . , un−d−2} be the set of all pendant vertices adjacent to

v and G0 = G∗ − {vui | 1 ≤ i ≤ n− d− 2}. Then by Lemmas 6 and 7, (G0; v) ≺ (G0; vb d
2 c
),

and for each 1 ≤ i ≤ n− d− 2, (G0; ui, v) � (G0; ui, vb d
2 c
). By Lemma 1, EE(G∗) < EE(∆d

n),

a contradiction to the choice of G∗. Therefore, v = vb d
2 c

, i.e., G∗ ∼= ∆d
n. This completes

the proof.

Lemma 11. Let P = v0v1 · · · vd be a path of length d ≥ 4. Let Gk,t be the graph with diameter d
obtained from P and a new vertex vd+1 by adding the edges vkvd+1 and vk+2vd+1, and attaching
n− d− 2 pendant edges at vt, where 0 ≤ k ≤ d− 2, 1 ≤ t ≤ d− 1 and n− d− 2 ≥ 0. Let
G1 = Gb d

2 c,b d
2 c

and G2 = Gb d
2 c−1,b d

2 c−1 be depicted in Figure 4.

(i) If d is odd, then EE(Gk,t) ≤ EE(G1), with equality if and only if Gk,t
∼= G1.

(ii) If d is even, then EE(Gk,t) ≤ max{EE(G1), EE(G2)}, with equality if and only if Gk,t is
isomorphic to the graph with a larger Estrada index between G1 and G2.Mathematics 2021, 1, 0 8 of 11

r r r r r r r r r
r

v0 v1 v2 vb d
2 c

vb d
2 c+1 vb d

2 c+2 vd−2 vd−1 vd

vd+1rrrn− d− 2

G1

r r r r r r r r r
r

v0 v1 v2 vb d
2 c−1 vb d

2 c
vb d

2 c+1 vd−2 vd−1 vd

vd+1rrrn− d− 2

G2

Figure 4. Graphs G1 and G2.

Proof of Lemma 11. Denote by B the set of all graphs Gk,t. Let G∗ be the graph in B with
the maximum Estrada index. Then there exists some 0 ≤ k ≤ d− 2 and 1 ≤ t ≤ d− 1
such that G∗ is obtained from P and vd+1 by adding the edges vkvd+1 and vk+2vd+1, and
attaching n− d− 2 pendant edges at the vertex vt. We distinguish the following two cases.

Case 1. d is odd.
Without loss of generality, we suppose n− d− 2 > 0. Let {u1, u2, . . . , un−d−2} be the

set of all pendant vertices adjacent to vt. Let H = G∗ − {vtui | 1 ≤ i ≤ n− d− 2}. We
show in the following that either k = t− 2 = b d

2 c − 1, or k = t = b d
2 c.

Suppose k < b d
2 c − 1. Then k + (k + 4) < d and k + (k + 4) is even. Moreover,

(H; vi) ≺ (H; vk) for each 1 ≤ i < k by Lemma 6, (H; vk) ≺ (H; vk+2) and (H; vk+1) ≺
(H1; vk+2) by Lemmas 8 and 9. Thus, t ≥ k + 2 by Lemma 1. Now let G′ = G∗ − vkvd+1 +
vk+4vd+1. Then G′ ∈ B and EE(G∗) < EE(G′) by Lemmas 1 and 6, a contradiction to
the choice of G∗. Therefore, k ≥ b d

2 c − 1. Similarly, k ≤ b d
2 c. Thus, k = b d

2 c − 1 or b d
2 c.

Suppose k = b d
2 c − 1. Then (H; vi) ≺ (H; vb d

2 c+1) for each i 6= b d
2 c+ 1 with 1 ≤ i ≤ d− 1

by Lemmas 6, 8, and 9. Thus, t = b d
2 c+ 1 from the choice of G∗. Similarly, t = b d

2 c if
k = b d

2 c. Since d is odd, we get G∗ ∼= G1.
Case 2. d is even.
By a similar argument to that in Case 1, we can show that either k = t− 2 = b d

2 c − 2,
or k = t− 2 = b d

2 c − 1, or k = t = b d
2 c − 1, or k = t = b d

2 c. Note that G∗ has a maximum
among B. Therefore, G∗ is isomorphic to the graph between G1 and G2 with a larger
Estrada index.

Now we give our main results.

Theorem 3. Let G be the graph with the maximum Estrada index among U (n, d). Let ∆d
n, G1

and G2 be depicted in Figures 3 and 4. Then G ∈ {∆d
n, G1} if d is odd, and G ∈ {∆d

n, G1, G2}
otherwise.

Proof of Theorem 3. If d = 1, then G ∼= C3. If d = 2 or 3, then G ∼= ∆d
n by Theorem 2.

Thus, the result holds when d ≤ 3. We assume n− 2 ≥ d ≥ 4 below.
By Theorem 2, G 6∼= Cn. Let Pd = v0v1 · · · vd be an induced path of length d and Cq be

the unique cycle in G. Since G 6∼= Cn, min{d(v0), d(vd)} = 1—say, d(v0) = 1. Thus, we can
make some claims.

Claim 1. V(Pd) ∩V(Cq) 6= ∅.

Proof of Claim 1. Otherwise, since G is connected, there exists a shortest path Q =
viukuk+1 · · · ul−1ul connecting Cq and Pd, where ul ∈ V(Cq) and vi ∈ V(Pd), and uk, uk+1, . . .

Figure 4. Graphs G1 and G2.
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Proof of Lemma 11. Denote by B the set of all graphs Gk,t. Let G∗ be the graph in B with
the maximum Estrada index. Then there exists some 0 ≤ k ≤ d− 2 and 1 ≤ t ≤ d− 1
such that G∗ is obtained from P and vd+1 by adding the edges vkvd+1 and vk+2vd+1, and
attaching n− d− 2 pendant edges at the vertex vt. We distinguish the following two cases.

Case 1. d is odd.
Without loss of generality, we suppose n− d− 2 > 0. Let {u1, u2, . . . , un−d−2} be the

set of all pendant vertices adjacent to vt. Let H = G∗ − {vtui | 1 ≤ i ≤ n− d− 2}. We
show in the following that either k = t− 2 = b d

2 c − 1, or k = t = b d
2 c.

Suppose k < b d
2 c − 1. Then k + (k + 4) < d and k + (k + 4) is even. Moreover,

(H; vi) ≺ (H; vk) for each 1 ≤ i < k by Lemma 6, (H; vk) ≺ (H; vk+2) and (H; vk+1) ≺
(H1; vk+2) by Lemmas 8 and 9. Thus, t ≥ k + 2 by Lemma 1. Now let G′ = G∗ − vkvd+1 +
vk+4vd+1. Then G′ ∈ B and EE(G∗) < EE(G′) by Lemmas 1 and 6, a contradiction to
the choice of G∗. Therefore, k ≥ b d

2 c − 1. Similarly, k ≤ b d
2 c. Thus, k = b d

2 c − 1 or b d
2 c.

Suppose k = b d
2 c − 1. Then (H; vi) ≺ (H; vb d

2 c+1) for each i 6= b d
2 c+ 1 with 1 ≤ i ≤ d− 1

by Lemmas 6, 8, and 9. Thus, t = b d
2 c+ 1 from the choice of G∗. Similarly, t = b d

2 c if
k = b d

2 c. Since d is odd, we get G∗ ∼= G1.
Case 2. d is even.
By a similar argument to that in Case 1, we can show that either k = t− 2 = b d

2 c − 2,
or k = t− 2 = b d

2 c − 1, or k = t = b d
2 c − 1, or k = t = b d

2 c. Note that G∗ has a maximum
among B. Therefore, G∗ is isomorphic to the graph between G1 and G2 with a larger
Estrada index.

Now we give our main results.

Theorem 3. Let G be the graph with the maximum Estrada index among U (n, d). Let ∆d
n, G1

and G2 be depicted in Figures 3 and 4. Then G ∈ {∆d
n, G1} if d is odd, and G ∈ {∆d

n, G1, G2}
otherwise.

Proof of Theorem 3. If d = 1, then G ∼= C3. If d = 2 or 3, then G ∼= ∆d
n by Theorem 2.

Thus, the result holds when d ≤ 3. We assume n− 2 ≥ d ≥ 4 below.
By Theorem 2, G 6∼= Cn. Let Pd = v0v1 · · · vd be an induced path of length d and Cq be

the unique cycle in G. Since G 6∼= Cn, min{d(v0), d(vd)} = 1—say, d(v0) = 1. Thus, we can
make some claims.

Claim 1. V(Pd) ∩V(Cq) 6= ∅.

Proof of Claim 1. Otherwise, since G is connected, there exists a shortest path Q =
viukuk+1 · · · ul−1ul connecting Cq and Pd, where ul ∈ V(Cq) and vi ∈ V(Pd), and uk, uk+1, . . .
and ul−1 ∈ V(G) \ (V(Cq) ∪V(Pd)). Denote by G1 and G2 the connected components con-
taining vi and uk in G− viuk, respectively. Let G′ be the graph obtained from G1 and G2 by
identifying vi with uk, and attaching a pendant vertex to the common vertex. Then G′ ∈ U d

n
and EE(G) < EE(G′) by Lemma 3, a contradiction.

By Claim 1, V(Cq) ∩ V(Pd) 6= ∅. Denote Cq = vkvk+1 · · · vl−1vlvd+1vd+2 · · · vsvk,
where s ≥ d + 1, {vk, vk+1, . . . , vl−1, vl} = V(Cq) ∩ V(Pd) and {vd+1, vd+2, . . . , vs} =
V(Cq) \V(Pd). By a similar argument, we have

Claim 2. d(v) = 1 for each vertex v ∈ V(G) \ (V(Cq) ∪V(Pd)).

By Theorem 1, we have

Claim 3. All pendant vertices except v0 and vd in G are adjacent to one common vertex v.

Claim 4. k 6= l.
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Proof of Claim 4. Suppose k = l. Then s ≥ d + 2 and k 6= 0, d. Since d ≥ 4, we can assume
k ≥ 2 (otherwise, relabel the vertices in Pd). Let NG(vd+1) \ {vk, vd+2} = {w1, w2, . . . , wt},
H = G − {vd+1vd+2} ∪ {vd+1wi | 1 ≤ i ≤ t} and G′ = H + {vk−1vd+2} ∪ {vk−1wi |
1 ≤ i ≤ t}. Then NH(vd+1) ⊆ NH(vk−1), dH(vd+1) = 1 < dH(vk−1) and G′ ∈ U d

n . By
Lemma 4, we have (H; vd+1) ≺ (H; vk−1) and for each vertex w ∈ {vd+2, w1, w2, . . . , wt},
(H; w, vd+1) � (H; w, vk−1). Thus, EE(G) < EE(G′) by Lemma 1, a contradiction.

Claim 5. If l = k + 1, then s = d + 1; and if l ≥ k + 2, then l = k + 2 and s = d + 1.

Proof of Claim 5. Suppose l = k + 1. If s ≥ d + 3, by letting NG(vd+1) \ {vk+1, vd+2} =
{w1, w2, . . . , wt}, H = G− {vd+1vd+2} ∪ {vd+1wi | 1 ≤ i ≤ t} and G′ = H + {vkvd+2} ∪
{vkwi | 1 ≤ i ≤ t}, then NH(vd+1) ⊆ NH(vk), dH(vd+1) = 1 < dH(vk) and G′ ∈
U d

n . Moreover, (H; vd+1) ≺ (H; vk) and (H; w, vd+1) � (H; w, vk) for each vertex w ∈
{vd+2, w1, w2, · · · , wt} by Lemma 4. Thus, EE(G) < EE(G′) by Lemma 1, a contradiction.
Hence, s = d + 2 or d + 1.

Suppose s = d + 2 when l = k + 1. Since d ≥ 4, we can assume k ≥ 2 (oth-
erwise, relabel the vertices in Pd). Let NG(vd+2) \ {vk, vd+1} = {w1, w2, . . . , wt}, H =
G− {vd+2vd+1} ∪ {vd+2wi | 1 ≤ i ≤ t} and G′ = H + {vk−1vd+1} ∪ {vk−1wi | 1 ≤ i ≤ t}.
Then NH(vd+2) ⊆ NH(vk−1), dH(vd+2) = 1 < dH(vk−1) and G′ ∈ U d

n . By Lemma 4,
(H; vd+2) ≺ (H; vk−1) and for each vertex w ∈ {vd+1, w1, w2, . . . , wt}, (H; w, vd+2) �
(H; w, vk−1). Thus, EE(G) < EE(G′) by Lemma 1, a contradiction. This implies s = d + 1
if l = k + 1.

Now suppose l ≥ k + 2. Suppose s ≥ d + 2. Let NG(vs) \ {vk, vs−1} = {w1, . . . , wt},
H = G− {vsvs−1} ∪ {vswi | 1 ≤ i ≤ t} and G′ = H + {vk+1vs−1} ∪ {vk+1wi | 1 ≤ i ≤ t}.
Then NH(vs) ⊆ NH(vk+1), dH(vs) = 1 < dH(vk+1) and G′ ∈ U d

n . By Lemma 4, (H; vs) ≺
(H; vk+1) and for each vertex w ∈ {vs−1, w1, w2, . . . , wt}, (H; w, vs) � (H; w, vk+1). Thus,
EE(G) < EE(G′) by Lemma 1, a contradiction. Therefore, s = d+ 1. Since s− d+ 1 ≥ l− k,
we have l = k + 2.

By Claims 5 and 3, if l = k + 1, then G is the unicyclic graph with maximum Estrada
index of diameter d obtained from Pd and vd+1 by adding the edges vkvd+1 and vk+1vd+1,
and attaching n− d− 2 pendant edges at one vertex v ∈ V(P) ∪ {vd+1} for some 1 ≤ k ≤
d− 1. By Lemma 10, we get

Claim 6. If l = k + 1, then G ∼= ∆d
n.

By Claims 5 and 3, if l = k+ 1, then G is the unicyclic graph with the maximum Estrada
index of diameter d obtained from Pd and vd+1 by adding the edges vkvd+1 and vk+2vd+1,
and attaching n− d− 2 pendant edges at one vertex v ∈ V(P) for some 1 ≤ k ≤ d− 2. By
Lemma 11, we get

Claim 7. If l = k + 2, then G ∼= G1 if d is odd, and G ∈ {G1, G2} if d is even.

Now the proof is complete.

By Theorem 3, we can easily obtain the following corollary.

Corollary 1. Let G be a graph in U (n, d). If the girth of G is odd, then EE(G) ≤ EE(∆d
n), with

equality if and only if G ∼= ∆d
n.

Liu et al. in [35] showed the following result on the spectral radii of unicyclic graphs.

Theorem 4 ([35]). Let G be a graph in U (n, d), d ≥ 1. Then ρ(G) ≤ ρ(∆d
n), and equality holds

if and only if G ∼= ∆d
n.
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Based on Theorems 3 and 4 and previous results on extremal values of Estrada index
and spectral radius, we propose the following hypothesis.

Hypothesis 1. Let G be a graph in U (n, d). Then EE(G) ≤ EE(∆d
n), with equality if and only

if G ∼= ∆d
n.

Remark 2. To prove Hypothesis 1, it suffices to show that EE(∆d
n) > EE(G1) and EE(∆d

n) >
EE(G2) by Theorem 3. To show this, by previous methods and (1), it suffices to show that for
i = 1, 2, the inequality Mk(∆d

n) ≥ Mk(Gi) holds for each k ≥ 0 and is strict for some k0 > 0.

However, this can not happen since M4(∆d
n) = 2

n
∑

j=1
d∆d

n
(vj)

2 − 2m = 2
n
∑

j=1
dGi (vj)

2 − 2m <

2
n
∑

j=1
dGi (vj)

2 − 2m + 8 = M4(Gi) for i = 1, 2. Notice that G1 and G2 are both bipartite graphs.

The hypothesis is true if we can show that for i = 1, 2, M2k−1(∆d
n)

(2k−1)! + M2k(∆d
n)

(2k)! ≥
M2k(Gi)
(2k)! holds for all

k > 0 and is strict for some k0 > 0.

5. Conclusions

In [1], Estrada proposed a graph invariant (the Estrada index) based on a Taylor series
expansion of spectral moments. In this paper, we gave some transformations that can be
used to compare the Estrada indices of two graphs. As applications, we determined the
graphs with the maximum Estrada indices among all unicyclic graphs with fixed diameter
d. We showed two candidate extremal graphs if d is odd and three candidate extremal
graphs if d is even. For future research, it would be interesting to study Hypothesis 1.
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