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Abstract: Heat and water transport modeling is a widely explored topic in micro-meteorology,
agriculture, and forestry. One of the most popular models is the Simultaneous Heat and Water
(SHAW) model, which includes partial differential equations (PDEs) for air-soil temperature and
humidity, but with a priori discretized PDE for the foliage temperature in each canopy layer; it
is solved using the finite difference method and the canopy shape is defined as a simple rule of
proportionality of total quantities such as the total leaf area index. This work proposes a novel
canopy shape characterization based on Weibull distribution, providing a continuous vertical shape
function capable of fitting any tree species. This allows formulating a fully continuous SHAW-derived
model, which is numerically solved by a finite element approach of P1 Lagrange type. For this novel
approach, several numerical experiments were carried out to understand how the shape of well
distinguishable canopies influences heat and water transport.

Keywords: tree canopy; finite element method; Weibull distribution; SHAW model

1. Introduction

Forest and plant canopies have vertically varying profiles of different physical quanti-
ties related to complex transport processes. Variables as leaf temperature, water potential,
wind velocity, longwave and shortwave radiation, photosynthesis, air and soil tempera-
tures, but also the fluxes between soil-canopy-air have vertical profiles which change in
function of the vertical distribution of the canopy biomass—mainly its leaves—(see the
review by [1] and references therein). Such variability of physical properties deeply affects
evapotranspiration and heat fluxes within the soil-vegetation-atmosphere system (SVAT).

To study complex processes within the canopy, mathematical models with a single ho-
mogeneous biomass layer —the so-called “big leaf” models—were used as a first approach.
Later models were improved by including soil-vegetation-atmosphere heat and mass fluxes,
and finally, multi-layer models arise as a more realistic choice as the vertical canopy shape
is considered. However, the multi-layer models sometimes are not necessarily better; thus,
model selection is subject to the scope of study [1]. This allows the formulation of different
models, single or multi-layered, to study the different phenomena in forest and plants
canopies, some of which are harmful to human life quality. Several examples could be
enunciated: an evaluation of the radiation that reaches the soil and tree transpiration as
means to mitigate the urban heat island (UHI) [2], a study of trees resistance to wind loads,
and efficiency evaluation of trees as windbreakers [3], formulation of a multi-layer model
to estimate the radiation distribution inside the canopy [4], use of a high-resolution model
to study the water stress in a forest mulch layering [5], estimation of heat and water fluxes
in the soil layer [6].
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One of the well-known models is the Simultaneous Heat and Water (SHAW) model
formulated by Flerchinger et al. [7] as a PDEs’ model which has been updated several
times [8–10], improving with it resolution associated with radiation, mass, sensible and
latent heat fluxes, and recently [11] to model vertical profiles of temperature and humidity
in a given tree canopy.

The SHAW model significantly depends on the leaf area index (LAI, a parameter
that quantifies the canopy biomass) to model the leaf-air interchange of sensible heat and
humidity. Frequently LAI is estimated merely as the total surface of leaves projected on a
horizontal plane, known as total LAI, and holds no information about the vertical biomass
distribution through the canopy [12]. The SHAW model requires a known value of LAI
in each canopy layer, turning LAI in a priori discretized function; for example, in [11],
this requirement is fulfilled with in situ measurements. This mandates a semi-discretized
formulation of the SHAW model, leading to a finite difference scheme for its numerical
resolution. Therefore, a continuous vertical function of LAI is needed for a continuous
formulation of the SHAW model. The comments above lead us to focus on combining a
continuous vertical canopy biomass profile with a multi-layer model to better approach
vertical profiles of modeled state variables. As antecedents, in [13], the Weibull distribution
is used successfully in curve fitting the leaf area density LAD—a vertical function of
biomass canopy—of some tree species. On the other hand, in [14] a multi-layer, multi-
species, and soil coupled model uses a continuous vertical function of LAD to upscale CO2,
water, heat, and momentum exchange from the canopy, validating the methodology with
data from a tree canopy in Finland.

The accurate results shown in [14] suggest using a similar methodology to study
—from a numerical point of view—the influence of the vertical canopy profile on the
humidity and heat transport and air, leaf and soil temperatures. Therefore, in this paper,
a SHAW-derived model is formulated in a fully continuous form (Section 2.1) using a
continuous vertical profile of LAI drawn from the Weibull distribution (Section 2.2). After
a detailed description of the initial and boundary conditions (Section 2.3), a combination
of numerical techniques is proposed to solve the model (Section 2.4). It combines a finite
element approach of P1 Lagrange type for space discretization (a novelty in this kind of
models), a finite difference scheme for time discretization, and a relaxed fix-point algorithm
to address the resulting non-linear system. This method is applied in several numerical
experiments where the resulting vertical profiles of leaf-air-soil temperatures, and humidity
and heat fluxes corresponding to four different-shaped canopies showed notable variations
(Section 3). Final remarks, discussions, and future work are presented in Section 4.

2. Materials and Methods
2.1. The Mathematical Model

In the model an air column with height ha has within a tree canopy with height hc
and trunk height h0 (then 0 < h0 < hc < ha). Furthermore, a soil layer with depth hs is
considered. Then we define the following sub-domains, the air column Ωa = (0, ha), the
foliage layer of the canopy Ωc = (h0, hc) and the soil layer Ωs = (0, hs). All of them are
such that Ωc ⊂ Ωa and Ωs ∩Ωa = ∅.

Now, we look for the state functions of air temperature Ta(z, t), air humidity pv(z, t),
leaf temperature Tl(z, t), and soil temperature Ts(z, t) such that satisfies the following
nonlinear system of PDEs

ρaca∂tTa = ∂z[ρacaKe∂zTa + Hl(Ta, Tl)] on Ωa × [0, T] (1a)

∂t pv = ∂z[Ke∂z pv + El(pv, Tl)] on Ωa × [0, T] (1b)

mccc∂zTl = Sn + Ln − Hl(Ta, Tl)− LvEl(pv, Tl) on Ωc × [0, T] (1c)

ρscs∂tTs = ∂z(λs∂zTs) on Ωs × [0, T] (1d)
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The mathematical model (1a)–(1d) is similar to the called Simultaneous Heat and
Water (SHAW) model proposed by Flerchinger et al. [7,8] but not include a PDE related to
soil humidity and Equation (1c) is continuous instead of discrete. The system incorporates
air-canopy interchanges of sensible heat and humidity, absorbed shortwave and longwave
net radiations, and assumes a well-mixed air column by turbulent transport. Consequently,
the model needs complex empirical formulas, nonlinear coefficients, and correlations to
define interchanges rates, resistances, friction velocity, and vertical wind profile. All of
them are written down below as they were formulated in [7,8,11,15].

The turbulent transport coefficient Ke is given by the widely use K-theory

Ke =

{
ku∗(z− d + zH)/φH z > d
ku∗zH/φH z ≤ d

(2)

being k the Von Karman constant, zH the canopy height, d ≈ 0.77hc the zero-level displace-
ment, φH is the dimensionless heat stability factor, and u∗ the friction velocity given by

u∗ = ure f k
[

ln
( zre f − d

zm

)
+ ψm

]−1

(3)

where ure f is the reference wind speed at a given height zre f .
This formulations of Ke and u∗ are simple and commonly accepted in Micrometerology

but has limitations. It draws constant transport coefficients below the zero displacement
height d; the stability factor φH is calculated by sensible heat fluxes above the canopy; the
effect of a sparse canopy and beyond the canopy could generate an undesirable damping
effect [16,17]. Alternatives to address those limitations could be a non-parabolic approach
for the free-surface layer given by a semi-theoretical coefficient of exponential type [17],
the extended K-theory [18] or the called L-theory based on a Lagrangian point view of
transport [16].

The interchange of sensible heat Hl and humidity El between air and canopy depends
on the amount of foliage quantified by the leaf index area (LAI) as a vertical profile of the
foliage mass, which will be defined later,

Hl = 2ρacaLAI
Tl − Ta

rh
(4a)

El =

{
LAI pvs−pv

rls+rv
pvs ≥ pv

0 pvs < pv
(4b)

The ideal gas law is used to estimate the humidity in the leaf stomata pvs as a function
of Tl ,

pvs =
Mv

RTl
es(Tl) (5)

where in turn Mv is the molecular mass of water, R the universal gas constant, and es(Tl)
is the water vapor pressure. Meanwhile, the interchange resistances to convective heat
between air and leaf rh, humidity between air and leaf rv, and the evaporation in the leaf
stomata rls, are all defined as

rh = 7.4
ρa

Ma

√
dl
u

= 7.4
P

RTa

√
dl
u

(6a)

rv = 6.8
ρa

Ma

√
dl
u

= 6.8
P

RTa

√
dl
u

(6b)

rls =
rls0

fSt fT fVPD

[
1 +

(
Ψl
Ψc

)ns]
(6c)
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being u the wind profile, dl the leaf characteristic length, P the atmospheric pressure, rls0 the
unstressed leaf interchange, Ψl the leaf water potential, Ψc the leaf critical water potential,
and fSt, fT , fVPD are corrections on the stomata resistance to solar radiation, temperature
and water vapor deficit, respectively. The wind profile has a logarithm profile above the
canopy but exponentially decline in its interior

u =


u∗
k

[
ln
(

z−d
zm

)
+ ψm

]
z ≥ hc

u∗
k

[
ln
(

hc−d
zm

)
+ ψm

]
exp

(
0.28

(
LAI2

tothc
wl

)1/3( z
hc − 1

))
z < hc

(7)

being u∗ the friction velocity, zm is the momentum transfer roughness, ψm is the diabatic
momentum stability factor, wl is the mean leaf width and LAItot is the total Leaf Area Index
of the canopy. Again, the velocity profile (7) is classical and agree with the comments to
Equation (2); there are alternatives, for example, in the free-surface beyond the canopy
z > hc, a non-parabolic profile proposed recently in [17].

Other relations needed for computing parameters related to atmospheric stability are:

ψH =


4.7ζ ζ ≥ 0

−2 ln
(

1 +
√

1− 16ζ

2

)
ζ < 0

(8a)

φH =

{
(1− 16ζ)−1/2 ζ ≥ 0
1 + 6ζ

1+ζ ζ < 0
(8b)

being the atmospheric stability ζ given by

ζ =
kzre f gHζ

ρacaTau3∗
(9)

with the total exchange of sensible heat formulated as

Hζ =
k2ρacau(z)[Ta(d + zH)− Ta(z)][
ln
(

z−d
zm

)
+ ψm

][
ln
(

z−d
zH

)
+ ψH

] (10)

where ψm = 0.6ψH for unstable conditions and ψm = ψH for stable conditions.
Finally, Ln and Sn in (1c) represent the net longwave and shortwave radiations ab-

sorbed within the canopy, computed with a multi-layer model [4,9,15,19] (see Appendix A).
To understand the effect of the canopy shape in the models’ state variables, ideal conditions
must be considered. Therefore, the soil layer has a water concentration constant along time,
justifying eliminate the PDE related to soil humidity in the model. Moreover, the water
vapor on leaf stomata is assumed to be saturated, implying that Equation (5) holds.

2.2. The Weibull Distribution and Canopy Shape Characterization

In the above subsection, the vertical interchange of heat and humidity between air
and canopy depends on the amount of foliage quantified by LAI and —implicitly— of the
foliage mass mc. However, LAI and mc are reported in field measurements as a 2D-flat
projection, which in this work are called total leaf area index LAItot and total canopy
biomass mc,tot, respectively. So a vertical parametrization of both LAI and mc is needed.
Therefore this subsection defines them as the most straightforward continuous vertical
functions using the well-known Weibull distribution, being so one of the main contributions
of this work.
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The Weibull distribution is a two-parameter distribution used widely in biology,
meteorology, sciences materials, and others. It can be described by its probability density
function f (v) and its cumulative distribution function F(v) as described in [20]:

f (v) =
β

α

( v
α

)β−1
exp

(
−
(v

c

)β
)

(11a)

F(v) = 1− exp
(
−
(v

c

)β
)

(11b)

where β is the Weibull module, α is the scale parameter and v is the independent variable.
Is very important to note that f (v) is the anti-derivative of F(v) ( f (v) = F′(v)). Applying
these concepts to the tree canopy, another element to consider is the called leaf area density
LAD = LAD(z), a vertical shape function that quantified mass change concerning the
canopy height. Assuming that LAD(z) is known, we can relate it with different LAI
definitions (see [13])

LAItot =

hc∫
0

LAD(z) dz (12a)

LAIa =

hc∫
z

LAD(s)ds (12b)

being LAIa the cumulative leaf area index. The shape function LAD(z) can be adjusted by
the following Weibulls’ probability distribution [14,21,22]

LAD = LAItot

(
βc

αc

(
1− z/hc

αc

)βc−1
exp

(
−
(

1− z/hc

αc

)βc
))

(13)

Similarly, the cumulative LAIa is defined as the following Weibulls’ cumulative distri-
bution

LAIa = LAItot

{
1− exp

[
−
(

1− z/hc

αc

)βc
]}

(14)

where in both cases LAItot is taken as a proportionality constant. Defining v = 1− z/hc,
we have that LAD(v) = LAI′a(v) holds, and LAI is computed straightforwardly in an
arbitrary canopy layer of length v1 − v0 in the following way

LAI =
v1∫

v0

LAD(v)dv = LAIa(v1)− LAIa(v0) (15)

taking v1 = 1− (z + ∆z)/hc and v0 = 1− z/hc as relative positions in the plant canopy, an
useful expression of LAI in a canopy layer of length ∆z is formulated as

LAI(z) = LAItot

(
exp

(
−
(

1− z/hc

αc

)βc
)
− exp

(
−
(

1− (z + ∆z)/hc

αc

)βc
))

(16)

In a totally similar way, the biomass of the foliage mc as a function of z could be
formulated as

mc(z) = mtot

(
exp

(
−
(

1− z/hc

αc

)βc
)
− exp

(
−
(

1− (z + ∆z)/hc

αc

)βc
))

(17)

being mtot the total biomass in the canopy.
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2.3. Initial and Boundary Conditions

In this subsection, the initial boundary conditions will be formulated. For this purpose,
it must be noted that the model domain has three physical borders: soil (z = hs), interface
soil-air (z = 0) and air column height (z = ha). There are no boundaries between the canopy
and air; instead, there are interchanges of heat and water, which can be computed using
the continuous function LAI (Equation (16)). Therefore, assuming that in an initial time the
air temperature, leaf temperature, humidity and soil temperature are known the following
initial conditions are imposed to the state variables of the model Ta(., 0) = T0

a (.), pv(., 0) =
p0

v(.), Tl(., 0) = T0
l (.) and Ts(., 0) = T0

s (.). Concerning the boundary conditions, a heat and
humidity flux is assumed in the upper part of the air column (z = ha), and the same in the
lower part of the soil layer (z = hs). Then, with knowing reference time functions Ta,re f (t),
pv,re f (t) and Ts,re f (t), the following boundary conditions are imposed for all t ≥ 0

ρacaKe∂zTa(ha, t) = ka(Ta,re f (t)− Ta(ha, t)) (18a)

Ke∂z pv(ha, t) = kv(pv,re f (t)− pv(ha, t)) (18b)

λ∂zTs(hs, t) = ks(Ts,re f (t)− Ts(hs, t)) (18c)

observing that for large value of the interchanges resistances ka, kv, ks → ∞, the previous
conditions are transformed into the Dirichlet type conditions Ta(ha, t) = Ta,re f (t), pv(ha, t) =
pv,re f (t) and Ts(hs, t) = Ts,re f (t).

Finally, in the border between the soil layer and the air column (z = 0), inter-
change of heat and water and soil heat balance are considered. Therefore we impose
the following conditions,

ρacaKe∂zTa(0, t) = −Hg(Ta, Ts) (19a)

Ke∂z pv(0, t) = −Eg(pv, Ts) (19b)

λs∂zTs(0, t) = Sn,0 + Ln,0 − Hg(Ta, Ts)− LvEg(pv, Ts) (19c)

where Hg and Eg are sensible heat and vaporization fluxes between air and soil, Lv is
the heat of vaporization, Sn,0 and Ln,0 are the net shortwave and longwave radiation
absorbed by the soil. These last quantities must consider the process, which begins when
the radiation reaches the upper part of the canopy and downward until reaching the soil.
Therefore, a multi-layer model is used to approach them (see Appendix A). To compute the
air-soil fluxes Hg and Eg similar formulations those above (in the canopy) are used, then

Hg = ρaca
(Ts − Ta)

rs

∣∣∣∣
z=0

(20a)

Eg =


(

pvg − pv
)

rs

∣∣∣∣∣
z=0

pvg ≥ pv

0 pvg < pv

(20b)

where in turn pvg is the water steam concentration in the soil surface and rs is the soil
resistance to convection [16], computed both by the following equations

pvg =
Mv

RTs
es(Ts)

∣∣∣∣
z=0

(21a)

rs =
1

u∗k

[
ln
( zre f ,s − ds + zH,s

zH,s

)
+ ψH

]
(21b)

where zre f ,s, ds, zH,s are the reference height, zero displacement height and heat transfer
roughness. As before, there are alternatives to the logarithm profile to estimate rs, for
example, which is derived from the extended K-Theory and introduced in [23].
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2.4. Numerical Solution
2.4.1. Finite Element Approach

On the part of Equations (1a), (1b), (1d) the usual finite element treatment will be
applied (see [24,25]); however, it must be observed that Equation (1c) has no spatial
gradient, so requires an accurate time discretization instead, using finite differences [26]. To
avoid tedious calculations and large formulations, a straightforward process is displayed
in this subsection. Let the Sobolev spaces V = H1(Ωa) and W = H1(Ωs) and its L2(Ω)
inner product denoted by 〈., .〉. Furthermore, the spacial domain Ωa ∪Ωs is meshed using
two meshes τa and τs, given by the partitions ha = zna > zna−1 > · · · > z0 = 0 and
0 = ẑ0 > ẑ1 > · · · > ẑns = hs with na + 1 and ns + 1 nodes respectively. It is important
consider the existence of a canopy mesh τc with nc + 1 nodes covering the foliage layer
Ωc = (h0, hc) and such that τc ⊂ τa. Once the meshes are defined let be the discrete
spaces Vh = {ϕh ∈ C(Ω̄a) : ϕh|Ii ∈ P1(Ii)} and Wh = {ϕ̂h ∈ C(Ω̄s) : ϕ̂h| Îi

∈ P1( Îi)}
such that V ≈ Vh and W ≈ Wh, then it is possible formulate the following semi-discrete
problem: Find (Ta, pv, Tl , Ts) ∈ Vh × Vh × Vh ×Wh and Tl ∈ C(Ωc) such that for ϕi ∈ Vh
and ϕ̂m ∈Wh satisfies the following system equations

〈ρaca∂tTa, ϕi〉+
〈
ρacaKe∂zTa, ϕ′i

〉
+ ka Ta(ha, t)ϕi(ha) + ka0 Ta(0, t)ϕi(0)

= 〈∂z Hl , ϕi〉+ kaTa,re f ϕi(ha) + ka0Ts(0, t)ϕi(0) (22a)

〈∂t pv, ϕi〉+
〈
Ke∂z pv, ϕ′i

〉
+ kv pv(ha, t)ϕi(ha) + kv0 pv(0, t)ϕi(0)

= 〈∂zEl , ϕi〉+ kv pv,re f ϕi(ha) + kv0 pvg(0, t)ϕi(0) (22b)

mcCc∂tTl = Sn + Ln − Hl − LvEl (22c)〈
ρsCs∂tTs, ϕ̂j

〉
+
〈
λs∂zTs, ∂z ϕ̂j

〉
− ksTs(hs, t)ϕ̂j(hs)

= (Sn,0 + Ln,0 − Hg − LvEg)ϕ̂j(0)− ksTs,re f ϕ̂j(hs) (22d)

for each i = 0, . . . , na; j = 0, . . . , ns and being ka 0 = ρaca
rs

, kv 0 = 1
rs

. Using the function
basis for Vh and Wh is it possible to define over τa and τs the functions Ta, pv, Ts, Tl as the
following lineal combination

Φ(z, t) =
nx

∑
j=0

ξ j(t)Φ̂j(z) (23)

being ξ j(t) = Φ(zj, t) the time depend state variable and {Φ̂j(z)}nx
j=0 the set of nodal basis

functions. Thus, we define the following spacial discretized functions Ta(t) = {T̃a,j(t)}na
j=1,

pv(t) = { p̃v,j(t)}ns
j=1, Ts(t) = {T̃s,k(t)}ns

k=1, and Tl(t) = {T̃l,j(t)}na
j=n0

. From the initial

conditions, we have known the vectors Ta(0) = {T0
a,i}

na
i=0 , pv(0) = {pv,i}na

i=0 , Ts(0) =

{T0
s,m}0

m=ns , Tl(0) = {T0
l,i}

nc
i=n0

which are the initial conditions for the following system of
ordinary differential equations

ρacaM
dTa

dt
(t) + [Ra + Ba]Ta(t) = ha(t) + ba(t) (24a)

M
dpv

dt
(t) + [Rv + Bv]pv(t) = ev(t) + bv(t) (24b)

Ccmc
dTl
dt

(t) = Sn(t) + Ln(t)−Hl(t)− LvEl(t) (24c)

Ms
dTs

dt
(t) + RsTs(t) = bs(t) (24d)

where the contribution of 2× 2 matrices and 2× 1 vectors for arbitrary elements Il =
[zl , zl+1] of τa and Îr = [ẑr, ẑr+1] of τs are given by
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(M)l
i,l = 〈ϕm, ϕl〉 (25a)

(Ra)
l
i,j = −〈ρacaKe,j ϕ

′
j, ϕi〉 (25b)

(Ba)
l
i,j = kLa ϕj(ha)ϕi(ha) + ka0 ϕj(0)ϕi(0) (25c)

(ha)
l
i = 〈∂z Hl , ϕi〉 (25d)

(ba)
l
i = ka0Ts(0, t)ϕi(0) + kaTa,re f ϕi(ha) (25e)

(Rv)
l
i,j = −〈Ke,j ϕ

′
j, ϕi〉 (25f)

(Bv)
l
i,j = kv ϕj(ha)ϕi(ha) + kv0 ϕj(0)ϕi(0) (25g)

(bv)
l
i = kv0 pvg(0, t)ϕi(0) + kv pv,re f ϕi(ha) (25h)

(ev)
l
i = 〈∂zEl , ϕi〉 (25i)

(mc)
l
i = mc(zi), (Sn)

l
i(t) = Sn,i, (Ln)

l
i(t) = Ln,i (25j)

(Ms)
r
m,k = 〈ϕ̂k, ϕ̂m〉 (25k)

(Rs)
r
m,k = −〈λs ϕ̂′k, ϕ̂m〉+ ks ϕ̂m(hs)ϕk(hs) (25l)

(bs)
r
k(t) = (Sg + Lg − Hg − LvEg)ϕ̂k(0) + ksTs,re f ϕ̂k(hs) (25m)

for i, j = l, l + 1, and k, m = r, r + 1. The vectors ha and ev depend on nonlinear relations
of temperature and humidity. Taking advantage of the 1D mesh and by simplicity, they are
computed using a finite difference approach. A finite element approach is also possible,
and it is formulated in Appendix B.

2.4.2. Time Discretization and Relaxed Fixed Point Scheme

As was the case in spatial discretization, the treatment of the system equations will
not be the same. Therefore, Equations (24a), (24b), (24d) were time discretized using an
Euler Backward scheme. Meanwhile, in Equation (24c), a bi-level type discretization with
an Euler–Backward scheme was applied for the first level and a three-point derivative
approach on the second level and higher, as is described in [26]. Therefore our problem is
now: Given the initial vectors T0

a, p0
v, T0

s , T0
l find the vectors Tn+1

a , pn+1
v , Tn+1

s , Tn+1
l such

that for n = 0, . . . , N − 1 satisfies the following system

ρacaM
Tn+1

a − Tn
a

∆t
+ [Ra + Ba]Tn+1

a = hn+1
a + bn+1

a (26a)

M
pn+1

v − pn
v

∆t
+ [Rv + Bv]pn+1

v = en+1
v + bn+1

v (26b)

Ccmc
Tn+1

l − Tn
l

∆t
= Gn+1, n = 0

Ccmc
3Tn+1

l − 4Tn
l + Tn−1

l
2∆t

= Gn+1, n = 1, . . . , N − 1

 (26c)

Ms
Tn+1

s − Tn
s

∆t
+ RsTn+1

s = bn+1
s (26d)

being Gn+1 = Sn+1
n + Ln+1

n −Hn+1
l − LvEn+1

l .
The system above is nonlinear, so numerical methods such as Piccard iteration (Fix-

point), Newton–Galerkin, or others are needed to approximate the system solution. A
first choice is the Piccard method due to its simplicity (it is derivative-free) and when it
converges, it does to the solution. However, the complexity and different scales of the
empirical formulas, nonlinear coefficients, and correlations could make that the fix-point
fails. Anticipating this problem, a more robust variant of the Piccard method consisting of
a bi-level iteration of type predictor-corrector was applied
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uq+1 = F(uq) (27a)

ûq+1 = βuq+1 + (β− 1)uq (27b)

being q the fix-point index, uq = [Tq
a, pq

v, Tq
l , Tq

s] the state variables vector, F the application
derived at isolating the linear state variable in each equation of the system, β a relaxation
parameter such that 0 < β ≤ 1, ûq+1 the relaxed fix-point, uq+1 the predicted fix-point
and uq the initial guess. The idea of this bi-level scheme is made β → 0 as at least one
state variable has slow convergence in the fixed-point iterations, imposing with it the
same convergence velocity for all the state variables in the sense of the following error
criteria [25] √

(uq+1 − uq)2

(uq+1)2 < ε (28)

for a predefined tolerance ε.

2.5. Mesh Configuration, Adjustments, and Sensible Analysis

Several numerical experiments were conducted to evaluate the stability, convergence,
and parameter sensitivity of the solution. Those experiences showed the need for ad-
justments in the sub-domains meshes and some parameters. Therefore this subsection is
devoted to showing the mesh configuration and solution stabilization criteria.

The abrupt changes between air-foliage-soil suggest large heat and humidity gradients,
so to forestall instability, a standard strategy is using no regular meshes. Therefore we
maximize node concentration on the border of the different sub-domains. To this end, the
following criteria are used to concentrate the nodes of τa in the interface air-soil and the
upper part of the canopy,

zi =



h0

(
i

n0 − 1

)2
0 ≤ z < h0, 0 < i < n0

zi−1 +
hc − h0

nc
h0 ≤ z ≤ hc, n0 ≤ i < nc + n0

hc + (ha − hc)

(
i− NC− n0 + 1

na

)2
hc < z ≤ ha

nc + n0 ≤ i < na + nc + n0

(29)

and for τs these criteria concentrate the nodes in the interface between the soil and air,

zı̂ = hs

(
ı̂

ns − 1

)2
0 ≤ z < hs, 0 ≤ ı̂ < ns (30)

The stomata resistance rls is stressed by solar radiation, temperature, and humidity. We
made an adjustment substituted (6c) by a discrete function which is based on a minimum
value of radiation and heat to stabilize the interchange between leaf and air

rls,i =


rls0, if (Sn,i ≥ Sn,min) ∧ (Tl,i > Tl,min) ∧ (pvs > pv)

rls0
Sn,min

Sn,i
, if (Sn,i < Sn,min) ∧ (Tl,i > Tl,min) ∧ (pvs > pv)

∞, if (Sn,i = 0) ∧ (Tl,i < Tl,min) ∧ (pvs ≤ pv)

(31)

Finally, for the initial condition for Ts is imposed a piecewise function which is lineal
close to the interface soil-air and constant in-depth until z = hs,

Ts(zı̂, 0) =


(Ts,re f − Ta,re f

zbc

)
zı̂ + Ta,re f zı̂ ≤ hbc

Ts,re f zı̂ > hbc

(32)

being hbc < hs the maximum depth of linearization.
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3. Results
Numerical Experiments, Comparative between Different Artificial Canopies

We first define the values of the fixed parameters that characterize all the canopies con-
sidered in the numerical experiments and others parameters mentioned through this paper
(see Table A1 of Appendix C). However, we emphasizing here the follow parameter values,
air column height ha = 50 m, canopy height hc = 3 m, total leaf area index LAItot = 3.25, to-
tal foliage mass mc,tot = 10 kg m−2, leaves orientation coefficient x f = 1, length dl = 0.08 m,
width wl = 0.03 m and stomata resistance rls0 = 5 s m3 kg−1. Furthermore, parameters
related to turbulent transport and theoretical wind profile for the air column zre f = 50 m,
zH = 0.078 m, d = 0.77 hc and soil resistance, roughness, and soil level displacement zre f ,s
= 1 m, zH,s = 0.078 m, ds = 0.001 m which corresponds to grass [27]. In the boundary we
impose Dirichlet type conditions with constant values of Ta,re f , pv,re f and Ts,re f , similarly
for initial conditions with constants values for T0

a , p0
v and T0

s . Conversely, we define four
different shape canopies using the Weibull distribution, holding all of them the same LAItot
and mc,tot. To do it, we use different combinations of the pair (αc, βc) (see Table 1 and
Figure 1a). The intention is to define four distinguishable canopy shapes with maximum
foliage concentration at the top, middle and low parts of the canopy. Additionally, a
height-wise foliage concentration in the canopy is added as the last case (see Figure 1a).
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m
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(a) Different canopy shapes
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(b) Wind profile
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(c) Radiations forcing the model

Figure 1. Inputs for the SHAW-derived model. (a) Different canopies shapes derived with the
function LAI(z) given by (13) and different combinations of the parameters pair (αc, βc). Cases,
1 (solid), 2 (dashed), 3 (dotted), and 4 (dash-dot). (b) Zoom of the Wind-profile for the four canopies
shape, the black line is the canopy height. (c) 24 h radiation forcing from the sky at the upper layer in
the canopy, Short wave-direct (solid), Short wave-diffusive (dotted), and Long wave-direct (dashed).
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Table 1. Different pair values (αc, βc) of the parameters given to the Weibull distribution to define
four distinguishable canopy shapes.

Case 1 (Top) Case 2 (Low) Case 3 (Middle) Case 4 (Height-Wise)

αc 0.25 0.75 0.5 0.5

βc 3.5 11.0 7.5 3.25

Between the inputs of the model, we have the vertical wind profile computed by
Equation (7) and displayed in Figure 1b, including the line hc = 3 m, and the radiation
forcing on the top of the canopy and shown in Figure 1c. Concerning the vertical profile
of the wind, hold the decreasing values within the canopy and the exponential beyond it,
noting that the interchange resistance coefficients (6a) and (6b) depends on wind speed. For
radiation, diffusive and direct shortwave radiations reach their maximum at midday and
are zero at night time. Meanwhile, the longwave radiation is set to be constant throughout
the day, as it is dependent of the sky temperature.

Before showing the spatial-time evolution of the state variables, Figure 2 shows an
approach of the thermal energy change in the canopy computing as ∆E = mc cc (Tl − Ta,re f ).
As expected, the maximum energy change is located where is the maximum foliage mass
position from the soil and where the wind velocity is minimum, being Case 2, which both
conditions hold (Figure 2b). In contrast, the minimum energy change is a consequence
of a foliage mass upper located from the soil and faster wind. In Case 1, both conditions
hold with almost zero change (Figure 2a). Additionally, in all canopies (Figure 2), the
foliage mass quantity on its limits is so slight that the thermal energy change is practically
zero. This leads us to expect maximum leaf temperatures and quick humidity saturation
at canopies’ ends. However, these extremes values of temperature and humidity will be
mitigated within the canopies. This is confirmed by the results explained and shown below.

(a) (b)

(c) (d)

Figure 2. Energy change ∆E at 24 h for all canopy shapes. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.
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We show in the following figures the space-time evolution of the state variables of the
SHAW-derived model for all canopies. Numerical solutions have been computed in the
mesh defined in Section 3 and a time interval of 24 h. As initial conditions to leaf-air-soil
temperatures and leaf humidity were taken the outputs of a previous models’ run of
four days.

For the leaf temperature, Cases 1, 2, and 3 are all characterized by maximum tempera-
tures on canopy ends due to minimum foliage mass and forcing by radiation from sky and
soil (see Figure 3a–c). In particular, Case 4 shows notably more forcing on the low end of
the canopy, in consequence, showing notably more significant temperature change there
(due to a small foliage mass and a very short distance to the soil that radiates longwave
energy and reflects part of the short wave radiation due to its albedo). Inside the canopy,
the foliage mass allows moderate temperatures due to a significant net heat capacity.

(a) (b)

(c) (d)

Figure 3. Leaf temperature variations at 24 h for all canopy shapes. (a) Case 1; (b) Case 2; (c) Case 3;
(d) Case 4.

Now, the temperature of the air column is shown in Figure 4, taking only the part
of the air column that matches the canopy height of 3 m. It is important to note that
all canopies have the same temperature profile: maximum values close to the soil and
decreasing through the canopy. We highlighted Case 2 (Figure 4a), which has a lower
located foliage mass and higher energy change ∆E with air. In consequence, this canopy
presents the maximum temperatures. Conforming the foliage mass is located in upper
positions, the temperatures shown lower values due to a significant distance from the soil
and less energy change capacity. Concerning Case 4, a well-mixed air temperature column
(Figure 4d) is shown due to its height-wise foliage distribution. Nevertheless, all canopies
show a scant variation (≈0.4 K). This could be partly due to a high reference wind velocity
ure f = 10 m/s. To demonstrate that, we take lower velocity values ure f = 5 m/s and ure f =
2.5 m/s for Case 2, and results are shown in Figure 5a,b where a major variation (≈1 K)
is observed. There are others factors than potentially influence too, such as the constant
temperature Ta,re f = 293.15 K imposed as boundary condition in the top of the air column
and some parameters as the total biomass mtot.
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(a) (b)

(c) (d)

Figure 4. Air column temperatures at 24 h for all canopy shapes. (a) Case 1; (b) Case 2; (c) Case 3;
(d) Case 4.

(a) (b)

Figure 5. Wind velocity partly explains the scant variability of the temperature in the air column.
Temperatures at 24 h for the canopy shape 2 subjected to different wind velocities. (a) Case 2
ure f = 5 m/s; (b) Case 2 ure f = 2.5 m/s.

About humidity, it is greatly influenced by the saturated soil (because of the more
significant moisture flux in the soil-air inter-phase) is apparent the effect of the canopy
shape, trapping, and adding (due to leaf stoma) humidity, avoiding its distribution along
with the canopy. This can be observed clearly in opposites Cases 1 and 2 (Figure 6a,b)
wherein the humidity line reaches 2.5 m in the first case, meanwhile only reaches 1.5 m in
Case 1, matching with their respective canopies top.
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(a) (b)

(c) (d)

Figure 6. Leaf humidity at 24 h for all canopy shapes. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Finally, the soil temperature is computed from surface to a depth of −2 m but only
presents a notable variation in a thick layer. Due to this, is shown only an average soil tem-
perature. Then in Figure 7a is shown the average leaf temperature focuses our attention in
the midday, wherein Case 2 (low foliage mass location) reaches the maximum temperature,
opposite to its minimum corresponding to Case 1 (top foliage mass location). This indicates
that to an upper location of the foliage, less soil temperature (due to a higher sensible heat
soil cooling caused by steeper air and soil temperature difference).

0 5 10 15 20

t [hrs]

293

293.5

294

294.5

K

(a)

0 5 10 15 20

t [hrs]

-50

0

50

100

 W
 m

-2
 

(b)

Figure 7. Temperature and heat balance in the soil, Cases 1 (solid), 2 (dashed), 3 (dotted), and
4 (dash-dot). In essence, the soil temperature and heat balance is the same for all the canopies,
maximum values at midday and energy released at night. However, Cases 1 and 2 represent the
extreme values from the rest of them. (a) Soil temperature (averaged in width); (b) Energy balance.

Of course, the model generates other interesting outputs: the net shortwave and long-
wave radiations in both soil and canopy. Energy fluxes at the soil surface (Equation (19c))
are shown in Figure 7b for all canopies. We expect that the canopy absorbs energy during
the day and releases it at night. The shape canopy made a clear difference in magnitude of
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released-absorbed energy with all canopies having the same exposed behavior. We point
out that at midday, a difference of 20 Wm−2 between Cases 1 and 2, being the maximum
and minimum values of the four cases.

4. Discussions

In this work, a SHAW-derived model was formulated and solved numerically with
the finite element method, being an alternative to finite difference schemes used by
Flerchinger et al. [7–11] and other authors (see reference list [28]). This new approach
allows using irregular meshes and potentially scaling the model to a higher dimension
which was possible thanks to the continuous vertical function LAI proposed in Section 2.2.
Moreover, numerical solutions were derived by combining relaxed fix-point iterations (to
address nonlinearity) and a time scheme of predicted-corrector type (to yield stability).

Typically, theoretical and experimental studies of heat and humidity fluxes in canopies
are made on a fixed foliage profile either take it as a simple geometry shape —commonly
triangular or rectangular— or derivate it by curve fitting of in situ measures. In this work,
were compared different canopies characterized exclusively by their foliage profile or shape
and analyzed their heat and water transport dynamics. Numerical results suggested that
the canopy shape notably influences the vertical profile of leaf, air and soil temperatures,
humidity and heat fluxes. Therefore, this work could be a first step in selecting a canopy
tree to maximize its benefits. Examples could be several: windbreak, soil cooling or heating,
reduced air temperature, maximized air humidity, covering the soil from radiation, and
others. Furthermore, the simplicity of the Weibull distribution to characterize a canopy
shape with only two parameters opens the possibility of formulating optimization problems
related to minimizing harmful phenomenons.

We emphasize that the model could be sensitive to other canopy parameters: leaf
width, orientation and diameter, stomata resistance, and specific heat capacity. Moreover,
latitude, day of the year, and meteorological parameters are significant too. Therefore,
changing these parameters would imply changes in the model outputs. However, address
a model sensibility analysis would overextend this paper leaving it to future work.

A value-added of this work is a complete description of the mathematical methodology
to obtain the numerical solution of the model, this could be attractive for researchers to
reproduce results, update the model, or as another example of how to approach a nonlinear
system of PDEs.

Finally, a comparison between the SHAW model and the SHAW-derived model
(Equations (1a)–(1d)) could be interesting. However, there are essential differences between
them: turbulent transport (K-theory), soil humidity, shape canopy characterization and
numerical approach, which have been pointed out through the paper. Indeed, in [16]
the substitution of the K-theory by the L-theory made a better approach of the modeled
variables to the data. This motivates us to a model update for reach goals such as validation
or model comparison. However, we do not consider this observations as a step backward
but a direction for future work.
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Appendix A. A Multi-Layer Model to Estimate the Radiation Extinction through
the Canopy

Solar radiation is divided into long and shortwave radiation. Moreover, shortwave
radiation is subdivided into diffusive or direct; longwave radiation is always diffusive.
Moreover, the radiation could be downward or upward, reflected or absorbed. These
radiation patterns are essential in the model, so this appendix shows how the amount of
solar radiation in the canopy was estimated.

Let be the discrete functions {Sd,j}nc+1
j=1 , {Sb,j}nc+1

j=1 the diffusive and direct radiation
on each layer of the canopy, so in its upper part (j = nc + 1)

Sd,nc+1 = τd,sky Isky (A1)

Sb,nc+1 =
(

τt,sky − τd,sky

)
Isky (A2)

where τd,sky is the atmospheric coefficient of diffuse transmission, τt,sky is the maximum
transmission at the clear sky and Isky is the radiation reaching the upper section of the
canopy. The detailed process to compute these parameters could be viewed in [29].

Once the radiation penetrates the canopy, an estimation of the absorbed radiation is
needed. This is done by a multi-layer model [4,10,30], which divided the canopy into a finite
number of layers, considering that one part of the radiation could pass to the following layer.
Another part is reflected turn in diffusive downward and diffusive upward radiations.
Therefore, let us consider the case of the short wave radiation, then for an arbitrary layer i,
the direct radiation that passes between leaves is

Sb,i = τb,iSb,i+1 (A3)

meanwhile the diffuse downward radiation Sd,i is given by

Sd,i =
[
τd,i +

(
αl fd,i,↓↓ + τl fd,i,↓↑

)
(1− τd,i)

]
Sd,i+1

+
(
αl fb,i,↓↓ + τl fb,i,↓↑

)
(1− τb,i)Sb,i+1 (A4)

+
(
αl fd,i,↓↑ + τl fd,i,↓↓

)
(1− τd,i)Su,i−1

and the diffuse upward radiation Su,i is given by

Su,i =
[
τd,i +

(
αl fd,i,↓↓ + τl fd,i,↓↑

)
(1− τd,i)

]
Su,i−1

+
(
αl fd,i,↓↑ + τl fd,i,↓↓

)
(1− τd,i)Sd,i+1 (A5)

+
(
αl fb,i,↓↑ + τl fb,i,↓↓

)
(1− τb,i)Sb,i+1

where fb,i,↓↑ and fd,i,↓↑ are, respectively, the upward fraction of direct and diffusive ra-
diation, fb,i,↓↓ and fd,i,↓↓ are, respectively, the downward fraction of direct and diffuse
radiation, τb,i and τd,i are the percentage of direct and diffuse radiation which pass trough
the gap between leaf; meanwhile, τl is the percentage of radiation which pass trough the
leaves, and αl is the leaf albedo (see [4,9,15,19]).

Finally, the upwards reflected radiation by the soil is computed as the reflected sum of
the direct and diffuse radiations that reach the soil,

Su,0 = αs(Sd,1 + Sb,1) (A6)

and with this last equation, is completed the multi-layer model (A3)–(A6) for the shortwave
radiation.
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Once the system (A3)–(A6) is solved, the net short wave radiation absorbed by the
canopy and soil is computed by the following conservative equations

Sn,i = (Sb,i+1 + Sd,i+1 + Su,i−1)− (Sb,i + Sd,i + Su,i) (A7a)

Sn,0 = Sb,1 + Sd,1 − Su,0 (A7b)

With completely similar reasoning, the multi-layer model for the diffuse longwave
radiation could be written. Therefore, the longwave radiation that reaches the upper part
of the canopy (j = nc + 1) is computed with the Stephan-Boltzman law

Ld,nc+1 = εaσT4
sky (A8)

being εa the sky emissivity, σ the Stephan-Boltzman constant, Tsky the sky temperature in
Kelvin and Ld,nc+1 the longwave radiation reaching the canopy.

On an arbitrary layer i of the canopy, the longwave radiation is divided in diffuse
downward

Ld,i = [τd,i + (1− τd,i)(1− εc
)

fd,i,↓↓
]
Ld,i+1

+(1− τd,i)(1− εc) fd,i,↓↑Lu,i−1 (A9)

+(1− τd,i)εcσT4
l,i

and diffuse upward

Lu,i = [τd,i + (1− τd,i)(1− εc
)

fd,i,↓↓
]
Lu,i−1

+(1− τd,i)(1− εc) fd,i,↓↑Ld,i+1 (A10)

+(1− τd,i)εcσT4
l,i

meanwhile the longwave radiation absorbed by the soil is given by the balance

Lu,0 = (1− εs)Ld,1 + εsσT4
s,0 (A11)

being Ts,0 the ground surface temperature and εs the soil emissivity. This last equation
completes the multi-layer model by the longwave radiation in the canopy (A9)–(A11).

Once the system (A9)–(A11) is solved, the net radiation absorbed by the canopy and
the soil is given by the following conservative equations

Ln,i = Ld,i+1 + Lu,i−1 − (Ld,i + Lu,i) (A12a)

Ln,0 = Ld,1 − Lu,0 (A12b)

Appendix B. Computing Contributions Matrices of the Gradients of El and Hl

We focus on two terms in the semi-discrete problem (22), which was approached
by a finite difference scheme, is now listed as a finite element approach. We begin with
〈∂zEl , ϕi〉, doing formal operations we have

〈∂zEl , ϕi〉 =
〈

∂z
LAI

rls+rv
(pvs − pv), ϕi

〉
=
〈

∂z

(
LAI

rls+rv
pvs

)
, ϕi

〉
−
〈

∂z

(
LAI

rls+rv
pv

)
, ϕi

〉
(A13)

being pvs = pvs(Tl) a nonlinear relation and where pv admits a representation as lineal
combination, then we write〈

∂z
LAI

rls+rv
(pvs − pv), ϕi

〉
=
〈

∂z,j

(
LAI

rls+rv
pvs(T̃l,j)

)
, ϕi

〉
−

na

∑
j=1

ηj

〈
∂z

(
LAI

rls+rv
ϕj

)
, ϕi

〉
(A14)
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now, taking an arbitrary element Ii = [zi, zi+1] we compute its contribution to the sys-
tem matrix〈

∂z

(
LAI

rls+rv
ϕl

)
, ϕm

〉i

ml
=
∫ zi+1

zi

∂z

(
LAI

rls+rv
ϕl

)
ϕm dz = LAI

rls+rv

∫ zi+1

zi

ϕ′l ϕm dz

for m, l = i, i + 1 and where LAI, rls + rv are the average on the element Ii. Given the value
to sub-indexes m, l the follow contribution matrix is obtained

Kv
i = LAI

rls+rv

∫ zi+1

zi

[
−ϕ′i ϕi ϕ′i+1 ϕi
−ϕ′i ϕi+1 ϕ′i+1 ϕi+1

]
dz = LAI

rls+rv

[
−1 1
−1 1

]
On other part the first term at element Ii is computed as〈

∂z,j

(
LAI

rls+rv
pvs(T̃l,j)

)
, ϕi

〉i

m
= LAI

rls+rv

∫ zi+1

zi

[
∂z pvs(T̃l)ϕi

∂z pvs(T̃l)ϕi+1

]
dz

applying a forward-backward derivative approximation and a simple quadrature rule
we have

kv
i = LAI

rls+rv

∫ zi+1

zi

[
∂z pvs(T̃l)ϕi

∂z pvs(T̃l)ϕi+1

]
dz = LAI

rls+rv

[
∂pvs,i ϕi,i+∂pvs,i+1 ϕi,i+1

2 ∆z
∂pvs,i ϕi+1,i+∂pvs,i+1 ϕi+1,i+1

2 ∆z

]
=

LAI
rls+rv

[
pvs,i+1−pvs,i

2
pvs,i+1−pvs,i

2

]
=

 LAI
2rls+rv

(pvs,i+1 − pvs,i)

[
1
1

]
pvs ≥ pv

0 pvs < pv

(A15)

Respect to the second term 〈∂z Hl , ϕi〉 in the semi-discretized model (22), as above,
with formal operations we have

〈∂z Hl , ϕi〉 =
〈

∂z

(
2ρaca LAI

rh
(Tl,j − Ta,j)

)
, ϕi

〉
= 2ρaca

[〈
∂z

(
LAI
rh

Tl,j

)
, ϕi

〉
−
〈

∂z

(
LAI
rh

Ta,j

)
, ϕi

〉]
= 2ρaca

na

∑
j=1

[
ξl,j

〈
∂z(

LAI
rh

ϕj), ϕi

〉
− ξa,j

〈
∂z(

LAI
rh

ϕj), ϕi

〉]
(A16)

evaluating on arbitrary element Ii = [zi, zi+1]〈
∂z

(
LAI
rh

ϕl

)
, ϕm

〉
=
∫ zi+1

zi

∂z

(
LAI
rh

ϕl

)
ϕmdz = LAI

rh

∫ zi+1

zi

ϕ′l ϕmdz (A17)

being rh is an average resistance in the element. Using a simple quadrature rule and
forward-backward derivative approximation

Ka
i = 2ρaca

LAI
rh

∫ zi+1

zi

[
−ϕ′i ϕi ϕ′i+1 ϕi
−ϕ′i ϕi+1 ϕ′i+1 ϕi+1

]
dz = ρaca

LAI
rh

[
−1 1
−1 1

]
therefore〈

∂z

(
2ρaca LAI

rh
(Tl,j − Ta,j)

)
, ϕi

〉
= ρaca

na

∑
j=1

{
ξl,j

LAI
rh

[
−1 1
−1 1

]
− ξa,j

LAI
rh

[
−1 1
−1 1

]}
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Appendix C. Nomenclature and Values of the SHAW-derived Model Parameters

Table A1. Paremeter values used in the numerical experiences.

Symbol/Value Definition Symbol/Value Definition

t f (h) = 24 h Simulation time Lv = 2.45× 106 J kg−1 vaporization enthalpy
ca = 1004.5 J (kg K)−1 specific heat air ρscs = 3.7× 106 J m−3 K−1 soil conductivity
cc = 2200 J (kg K)−1 specific heat foliage λ = 53.66o latitude
cs = 3.77 × 106 J (kg K)−1 specific heat soil d = 0.77hc zero level displacemet
dl = 0.08 m characteristic leaf length ds = 0.01 soil level displacement
dn = 172 day number of the year τl = 0.35 foliage transitivity
ha = 50 m air column height Ω = 0.9 pile leaves factor
hc = 3 m canopy height τt = 0.6 air transitivity
hs = 2 m soil layer width mc = 10 kg m−2 canopy biomass
αs = 0.08 soil albedo wl = 0.03 m mean leaf width
αc = 0.513 foliage vertical profile ρa = 1.21 kg m−3 air density
αl = 0.15 leaf albedo LAIt = 2.25 total LAI
εc = 0.90 canopy emissivity rls0 = 5 s m−1 stomata resistance
εs = 0.94 soil emissivity Tsky = 278.15 K sky temperature
ure f = 10 m s−1 reference velocity Ta,re f = 293.15 K air reference temperature
zre f = 50 m reference height T0

a = 293.15 K initial air temperature
zre f ,s = 1 soil reference height T0

l = 280 K initial leaf temperature
zH,s = 0.001 soil convection roughness Ts,re f = 293.0 K reference soil temperature
na = 30 mesh elements in air T0

s = 293.15 K initial soil temperature
nc = 500 mesh elements in canopy λs = 2.9 J/(m K) soil thermal conductivity
ns = 30 mesh elements in soil ∆t = 15 s time step
n0 = 25 mesh elements in trunk pv,re f = 0.013 kg/m3 air reference humidity
Sn,min = 0.5 W m−2 minimum canopy radiation p0

v = 0.012 kg/m3 initial humidity
Tl,min = 277 K minimum stomata temperature
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