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Abstract: An expectation–maximization (EM) likelihood estimation procedure is proposed to obtain
the maximum likelihood estimates of the parameters in a mixture distributions model based on type-I
hybrid censored samples when the mixture proportions are unknown. Three bootstrap methods are
applied to construct the confidence intervals of the model parameters. Monte Carlo simulations are
conducted to evaluate the performance of the proposed methods. Simulation results show that the
proposed methods can perform well to obtain reliable point and interval estimation results. Three
examples are used to illustrate the applications of the proposed methods.

Keywords: bootstrap method; EM algorithm; maximum likelihood estimation; mixture distributions
model; Monte Carlo simulation

1. Introduction

The finite mixture probability models have been applied to model heterogeneity in a
dataset. For example, Peel and McLachlan [1] proposed a mixture of t distributions with
the application of clustering multivariate data that contains atypical observations. For
more information, the reader may refer to the book by McLachlan and Peel [2]. Reliability
inference is one of the important issues in industrial management to maintain the good
quality of productions. In many practical cases, source items are coming from different
suppliers, which have been certified, to support the company’s production line. Hence, it
is imperative to investigate the mixture type probability model for life testing to deal with
the heterogeneity from different resources in industrial reliability analysis. For example,
Sultan et al. [3] explored the mixture of two inverse Weibull distributions and provided
some important properties, and Razali and Salih [4] provided a mixture of two Weibull
distributions to analyze the lifetimes of electronic components. Ruhi et al. [5] investigated
the mixture probability model using Weibull distributions as components and provided a
case study.

Recent technology advancement has successfully enhanced product reliability. Spend-
ing a long time collecting complete lifetime samples from life tests to conduct reliability
inference becomes unrealistic under the considerations of the scheduled test time and
budget. Different censoring schemes have been adopted in the literature for life testing to
conduct reliability inferences; see Balakrishnan and Aggarwala [6] and Balakrishnan and
Cramer [7] for comprehensive information. Among all censoring schemes developed in
industry life testing, the type-I and type-II censoring schemes have earned more attention
because of easy implementation. Place n items on a life test at the same initial time and
denote all failure times by X1, X2, · · · , Xn, respectively. Without loss of generality, let
the initial time be 0. The life test continues up to the scheduled time τ1 for the type-I
censoring scheme; while the life test under the type-II censoring scheme is carried out until
a preassigned number, r(≤ n), of failures is observed. Let X(1) < X(2) < · · · < X(n) be
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the ordered lifetimes of the sample {X1, X2, · · · , Xn}. Then the type-II censoring scheme
terminates the life test at lifetime X(r). Mendenhall and Hader [8] proposed approximate
maximum likelihood estimators (MLEs) of the mixture exponential distributions based
on a type II censored sample; while Jones and Ashour [9] proposed Bayesian estimation
method for the mixture exponential distribution parameters to compare with the MLE
results. We use the term MLE to denote maximum likelihood estimator/estimate here
and after. Amin [10] proposed a maximum likelihood estimation method for the mixture
generalized Rayleigh (GR) distribution under the type-I censoring scheme.

Epstein [11] presented the type-I hybrid censoring (TIHC) scheme where the life
test is ceased at a random time τ = min{X(r), τ1} and Childs et al. [12] considered
the type-II hybrid censoring scheme where the life test is stopped at a random time
τ∗ = max{X(r), τ1}. Balakrishnan and Kundu [13] provided comprehensive discussions
regarding the applications of hybrid censoring schemes. More reliability applications about
using hybrid censoring schemes can be found in [14,15]. Based on our best knowledge, no
literature deals with the expectation–maximization MLE (EM-MLE) estimation methods
for the mixture distributions model utilizing TIHC samples. In this study, we focus on
the applications of using the TIHC scheme for the reliability inferences of the mixture
distributions model. Let random variable D indicate the number of failures by the time τ1
for the TIHC scheme, then,

D =

{
r if X(r) ≤ τ1,
m if X(m) ≤ τ1 < X(m+1) ≤ · · · ≤ X(r).

Moreover, let τ denote the censored time of the TIHC scheme; it can be shown that:

τ =

{
X(r) if X(r) ≤ τ1,
τ1 if τ1 < X(r).

Hence, the TIHC sample with the scheduled r and τ can be denoted by

X = {X1, X2, · · · , XD, rep(τ, n− D)},

where rep(τ, n − D) indicates n − D items withdrawn at time τ. The EM algorithm is
simple to use, and hence the EM algorithm has been widely applied to obtain the MLEs of
the model parameters for censoring data and missing data. When the mixture proportions
and the data are type-I hybrid censored, it is not easy to obtain the MLE of the model
parameters. If the mixture proportions are known, the EM algorithm surely has a better
performance than the cases for which the mixture proportions are unknown.

The rest of this article will be structured as follows. Section 2 addresses the likelihood
function using the TIHC sample from the finite mixture distribution. The EM algorithm to
find the MLEs of the model parameters and survival function, as well as three bootstrap
procedures for confidence intervals, are presented in Section 2. In Section 3, a simulation
study will be conducted under the mixture model of two-component distributions with
Weibull, generalized exponential (GE) and GR distributions. The simulation results will
be discussed in Section 3. Moreover, one numerical TIHC sample is used for illustration.
Section 4 addresses applications by using three examples and Section 5 provides concluding
remarks.

2. Maximum Likelihood Estimation

Let the probability density function (PDF) of lifetimes be f (x|θ) and the cumulative
distribution function (CDF) be F(x|θ), where θ is the vector of parameters. Let the real-
izations of X(1), X(2), · · · , X(D) be denoted by x(1), x(2), · · · , x(D). The likelihood function
based on x = {x(1), x(2), · · · , x(D), rep(τ, n− D)} can be represented by:

L(θ|x) = n!
(n− D)!

ΠD
i=1 f (x(i)|θ){S(τ|θ)}n−D, (1)
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and the log-likelihood function can be presented as:

`(θ) = ln
(

n!
(n− D)!

)
+

D

∑
i=1

ln
(

f (x(i)|θ)
)
+ (n− D) ln(S(τ|θ)), (2)

where S(τ|θ) = 1− F(τ|θ).
In practical applications, the lifetime quality of items could not be consistent. For ex-

ample, if the items are provided by multiple suppliers and the lifetime quality of items from
those suppliers are inconsistent. In the aforementioned situation, a mixture distributions
model can be a good candidate for characterizing the lifetimes of items.

2.1. Likelihood Function

Let the lifetimes be taken from a mixture distributions model with k groups and the
PDFs and CDFs of the k groups be gj(x|θj) and Gj(x|θj) for j = 1, 2, · · · , k. The PDF and
CDF of the mixture distributions model can be represented by:

f (x|Θ) =
k

∑
j=1

δjgj(x|θj) (3)

and

F(x|Θ) =
k

∑
j=1

δjGj(x|θj), (4)

respectively, where 0 ≤ δj ≤ 1 is the proportion parameter to indicate the likelihood of the ran-
dom variable x from the jth distribution, ∑k

j=1 δj = 1 and Θ = (θ1, θ2, · · · , θk, δ1, δ2, · · · , δk).
Replacing f (x|Θ) and F(x|Θ) with Equations (3) and (4), Equations (1) and (2) can be
respectively represented by:

L(Θ|x) ∝ ΠD
i=1

(
k

∑
j=1

δjgj(xi|θj)

)(
1−

k

∑
j=1

δjGj(τ|θj)

)n−D

(5)

and

`(Θ) ∝
D

∑
i=1

ln

(
k

∑
j=1

δjgj(xi|θj)

)
+ (n− D) ln

(
1−

k

∑
j=1

δjGj(τ|θj)

)
. (6)

The normal equation is obtained as ∇`(Θ) ≡ 0, where ∇`(Θ) is a gradient of `(Θ)
with respect to Θ, and 0 is the zero vector with the same dimension of ∇`(Θ). The MLE Θ̂
of Θ is the solution of ∇`(Θ) ≡ 0. Because of the complicity of the normal equation, the
solution procedure is not tractable. The following EM algorithm is suggested to find the
MLE Θ̂ of Θ.

2.2. EM Algorithm

For i = 1, 2, · · · , n, let εi be the indicator of the lifetime of the ith tested item being
censored or not and defined as:

εi =

{
1 if Xi < τ,
0 if Xi ≥ τ.

If Xi is taken from the jth distribution, then the contribution to the joint PDF
can be presented by:

fi(Θ|xi) = δj
[
gj(xi|θj)

]εi
[
1− Gj(τ|θj)

]1−εi , i = 1, 2, · · · , n.
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Define latent variable by yij = 1 if xi is from the jth distribution; otherwise, yij = 0
for i = 1, 2, · · · , n and j = 1, 2, · · · , n. Then, the likelihood function of Equation (5) and
log-likelihood function of Equation (6) can be respectively represented as follows:

L(Θ|x) ∝ Πn
i=1Πk

j=1

{
δj
[
gj(xi|θj)

]εi
[
1− Gj(τ|θj)

]1−εi
}yij

(7)

and

`(Θ) ∝
n

∑
i=1

k

∑
j=1

yij
{

ln(δj) + εi ln
(

gj(xi|θj)
)
+ (1− εi) ln

(
1− Gj(τ|θj)

)}
. (8)

The following two steps of the EM algorithm can be iteratively used to obtain the
MLEs of the model parameters.
E-step: The conditional expected value of `(Θ)|x) is calculated and labeled by:

H(Θ, η, δ) = E[`(Θ)|x]

=
n

∑
i=1

k

∑
j=1

ηij
{

ln(δj) + εi ln(gj(xi|θj)) + (1− εi) ln(1− Gj(τ|θj))
}

, (9)

where ηij = E[yij|x] indicates the expected value of the ith sample observation from the
jth distribution under right censored at τ, η = {ηij, i = 1, 2, · · · , n, j = 1, 2, · · · , k} and
δ = {δj, j = 1, 2, · · · , k}. During the E-step, for each i in {1, 2, · · · , n}, ηij can be derived by
utilizing the conditional probability concept and the result is given as:

ηij =
δj
[
εigj(xi|θj) + (1− εi)(1− Gj(τ|θj))

]
∑k

m=1 δm[εigm(xi|θm) + (1− εi)(1− Gm(τ|θm))]
, j = 1, 2, · · · , k. (10)

M-step: There are two steps given as follows:
Step 1: Find δj0 by taking partial derivative of H(Θ, η, δ) with respective to δj0 :

∂H(Θ, η, δ)

∂δj0
=

n

∑
i=1

ηij0
1

δj0
−

n

∑
i=1

ηik
1
δk

(11)

for 1 ≤ j0 < k. Let ∂H(Θ,η,δ)
∂δj0

= 0, we obtain

δk

n

∑
i=1

ηij0 = δj0

n

∑
i=1

ηik. (12)

Taking summation for the two sides of Equation (12), we have:

δk

k−1

∑
j0=1

n

∑
i=1

ηij0 =
k−1

∑
j0=1

δj0

n

∑
i=1

ηik,

and then we obtain

δk(n−
n

∑
i=1

ηik) = (1− δk)
n

∑
i=1

ηik. (13)

Based on Equation (13), we obtain

δk =
1
n

n

∑
i=1

ηik. (14)

Plug Equation (14) into Equation (12) to get

δj0 =
1
n

n

∑
i=1

ηij0 , for 1 ≤ j0 < k. (15)
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Step 2: Find the MLE Θ̂ = (θ̂1, θ̂2, · · · , θ̂k) by

Θ̂ = arg max
θ1,θ2,··· ,θk

H(Θ, η, δ).

The EM algorithm is implemented based on the E-step and M-step until convergence
as follows:

At step s,

E-step: Update ηij by:

η
(s)
ij =

δ
(s−1)
j

[
εigj(xi|θ

(s−1)
j ) + (1− εi)(1− Gj(τ|θ

(s−1)
j ))

]
∑k

m=1 δ
(s−1)
m

[
εigm(xi|θ

(s−1)
m ) + (1− εi)(1− Gm(τ|θ(s−1)

m )),
]

for j = 1, 2, · · · , k and i = 1, 2, · · · , n.

M-step: Update δj and Θ, respectively, by

δ
(s)
j =

1
n

n

∑
i=1

η
(s)
ij , j = 1, 2, · · · , k

and
Θ(s) = arg max

θ1,θ2,··· ,θk
H(Θ(s−1), η(s), δ(s)).

2.3. Applications

Three common used lifetime distributions of Weibull, GE and GR are used for illustra-
tion. Without loss of generality, it is assumed that the mixture distributions model has two
components. For simplification, let H ≡ H(Θ, η, δ) here and after.

2.3.1. The Mixture Weibull Distributions

Consider two Weibull distributions as the members for mixture, the PDF and CDF are
respectively given by:

gj(x|θj) =
αj

λj

(
x
λj

)αj−1

e
−( x

λj
)

αj

, x > 0,

and

Gj(x|θj) = 1− e
−( x

λj
)

αj

, x > 0,

where αj is shape parameter, λj is scale parameter and j = 1, 2. Hence,

H =
n

∑
i=1

2

∑
j=1

ηij

(
ln(δj) + εi

(
ln(αj)− αj ln(λj) + (αj − 1) ln(xi)− (

xi
λj

)αj
)

−(1− εi)(
τ

λj
)αj

)
,

∂H
∂αj

=
n

∑
i=1

ηij

[
εi

(
1
αj

+ ln(
xi
λj

)− (
xi
λj

)αj ln(
xi
λj

)

)
− (1− εi)(

τ

λj
)αj ln(

τ

λj
)

]
, (16)

∂H
∂λj

=
n

∑
i=1

ηij

[
εi

(
−

αj

λj
+ αjx

αj
i (λj)

−αj−1

)
+ αj(1− εi)τ

αj(λj)
−α−1

]
, (17)
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and

δj =
1
n

n

∑
i=1

ηij, j = 1, 2.

The MLEs of αj and λj, j = 1, 2 are the solutions of the system by letting the
Equations (16) and (17) be 0.

2.3.2. The Mixture GE Distributions

Consider two GE distributions for mixture, the PDF and CDF are respectively given by

gj(x|θj) = αjλje
−xλj(1− e−xλj)αj−1, x > 0,

and
Gj(x|θj) = (1− e−xλj)αj , x > 0,

where αj is shape parameter, λj is scale parameter and j = 1, 2. Hence,

H =
n

∑
i=1

2

∑
j=1

ηij

(
ln(δj) + εi

(
ln(αj) + ln(λj)− λjxi + (αj − 1) ln(1− e−xiλj)

)
+(1− εi) ln(1− (1− eτλj)αj)

)
,

∂H
∂αj

=
n

∑
i=1

ηij

[
εi

(
1
αj

+ ln(1− e−xiλj)

)
− (1− εi)

(1− e−τλj)αj ln(1− e−τλj)

1− (1− e−τλj)αj

]
, (18)

∂H
∂λj

=
n

∑
i=1

ηij

[
εi

(
1
λj
− xi +

(αj − 1)xie
−xiλj

1− e−xiλj

)

−(1− εi)
ταje

−τλj(1− e−τλj)αj−1

1− (1− e−τλj)αj

]
, (19)

and

δj =
1
n

n

∑
i=1

ηij, j = 1, 2.

The MLEs of αj and λj, j = 1, 2 are the solutions of the system by letting the
Equations (18) and (19) to 0.

2.3.3. The Mixture GR Distributions

Consider two GR distributions for mixture, the PDF and CDF are respectively given by

gj(x|θj) = 2αjλ
2
j xe−x2λ2

j (1− e−x2λ2
j )αj−1, x > 0,

and
Gj(x|θj) = (1− e−x2λ2

j )αj , x > 0,

where αj is shape parameter, λj is scale parameter and j = 1, 2. Hence,

H =
n

∑
i=1

2

∑
j=1

ηij

(
ln(δj) + εi

(
ln(2xiαj) + 2 ln(λj)− x2

i λ2
j + (αj − 1) ln(1− e−x2

i λ2
j )
)

+(1− εi) ln(1− (1− eτ2λ2
j )αj)

)
,

∂H
∂αj

=
n

∑
i=1

ηij

[
εi

(
1
αj

+ ln(1− e−x2
i λ2

j )

)
− (1− εi)

(1− e−τ2λ2
j )αj ln(1− e−τ2λ2

j )

1− (1− e−τ2λ2
j )αj

]
, (20)
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∂H
∂λj

=
n

∑
i=1

ηij

εi

 2
λj
− 2x2

i λj +
2λj(αj − 1)x2

i e−x2
i λ2

j

1− e−x2
i λ2

j


−(1− εi)

τ2αje
−τ2λ2

j 2λj(1− e−τ2λ2
j )αj−1

1− (1− e−τ2λ2
j )αj

, (21)

and

δj =
1
n

n

∑
i=1

ηij, j = 1, 2.

The MLEs of αj and λj, j = 1, 2 are the solutions of the system by letting the
Equations (20) and (21) be 0.

Analogously, the results of mixture Weibull, mixture GE and mixture GR distributions
can be extended to the mixture distributions with two different distributions; that is, the
mixture Weibull and GE distributions, the mixture Weibull and GR distribution and the
mixture GR and GE distributions. We skip the details here to save pages.

2.4. Maximum Likelihood Estimate of Survival Function

From Equation (4), the survival function at given time x0 > 0 is defined by

S(x0) ≡ S(x0|Θ) = 1− F(x0|Θ) =
k

∑
j=1

δj
(
1− Gj(x0|θj)

)
. (22)

Let Θ̂ denote the MLE of Θ by using the proposed EM algorithm. Then, the MLE of
S(x0) can be obtained by the plug-in method and be labeled by:

Ŝ(x0) =
k

∑
j=1

δ̂j
(
1− Gj(x0|θ̂j)

)
.

It is difficult to obtain the confidence intervals of Θ and S(x0) based on the sampling
distribution of Θ̂ and Ŝ(x0). To overcome this difficulty, the parametric bootstrap percentile
(PBP) procedure and two bootstrap correction methods are proposed to obtain approximate
confidence intervals of Θ and S(x0), respectively.

(a) PBP procedure

Step 1.Under the TIHC scheme with r and τ1, a TIHC sample,
x = {x(1), x(2), · · · , x(D), rep(τ, n−D)}, is collected from a mixture distribution;

Step 2.The MLEs Θ̂ based on TIHC sample from Step 1 is obtained by utilizing the
proposed EM algorithm and the MLE Ŝ(x0) is obtained via the plug-in method;

Step 3.A bootstrap TIHC sample with r and τ1 is drawn from the same mixture
distribution with the parameters Θ substituted by Θ̂. Let the bootstrap TIHC
sample be denoted by x∗ = {x∗(1), x∗(2), · · · , x∗(D), rep(τ, n− D)};

Step 4.The MLEs Θ̂∗ and Ŝ∗(x0) are derived based on the bootstrap TIHC sample x∗

from Step 3;
Step 5.Repeat Step 3 and Step 4 B times, where B is a given large positive number.

Label all MLEs by Θ̂∗j and Ŝ∗j (x0) for j = 1, 2, · · · , B;
Step 6.Let ω̂j, j = 1, 2, · · · , B be a B bootstrap MLEs obtained in Step 5 for a parameter

ω considered. The empirical distribution, ĜB
ω, of {ω̂j, j = 1, 2, · · · , B} can be

obtained. Given 0 < γ < 1, the γth empirical quantile, (ĜB
ω)
−1(γ), is defined

as the bγBcth order statistic, ω̂∗(bγBc), of ω̂j, j = 1, 2, · · · , B, where bγBc is the
greatest positive integer less than or equal to γB. Then an 1− γ bootstrap per-
centile confidence interval of ω can be obtained by (

(
ĜB

ω)
−1( γ

2 ), (Ĝ
B
ω)
−1(1− γ

2 )
)
.
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More information regarding PBP procedure, readers may refer to the books by
Efron [16], Efron and Tibshirani [17] and Shao and Tu [18]. The two bootstrap correc-
tion methods are presented as follows:

(b) Hybrid bootstrap percentile (HBP) procedure Shao and Tu [18] proposed the HBP
procedure is provided as follows:

Step 1.Repeat Step 1 to Step 5 of the PBP procedure. Let ω̂ be the MLE utilizing the
original TIHC sample. Moreover, let ω̂∗j , j = 1, 2, · · · , B be the B bootstrap
MLEs of ω;

Step 2.Let ĤB be the empirical distribution of ϕ̂j, which is defined by ϕ̂j =
√

n(ω̂∗j −
ω̂), j = 1, 2, · · · , B;

Step 3.Let Ĥ−1
B (γ) be the γth quantile of ĤB, where 0 < γ < 1. An 1 − γ HBP

confidence interval for ω can be obtained as the following interval:(
ω̂− n−1/2Ĥ−1

B (1− γ

2
), ω̂− n−1/2Ĥ−1

B (
γ

2
)
)

.

The second bootstrap correction method that can be found in the books by Efron and
Tibshirani [17], as well as in Shao and Tu [18], is addressed as follows:

(c) Bootstrap bias-corrected percentile (BCP) procedure

Step 1.Implement the Step 1 of the HBP procedure. Let the empirical distribution,
ĜB

ω, be constructed based on the bootstrap MLEs ω̂∗j , j = 1, 2, · · · , B;
Step 2.An 1− γ bootstrap BCP confidence interval for parameter ω can be obtained by:(

(ĜB
ω)
−1
(

Φ[Z γ
2
+ 2Φ−1(ĜB

ω(ω̂))]
)

, (ĜB
ω)
−1
(

Φ[Z1− γ
2
+ 2Φ−1(ĜB

ω(ω̂))]
))

,

where Φ(·) is standard normal distribution CDF and Φ(Zγ) = γ.

3. Simulation Study

To evaluate the accuracy of the proposed EM algorithm to obtain the MLEs of model
parameters using the censored sample under the TIHC scheme with r and τ1, an intensive
simulation study will be conducted in this section. The simulation study will utilize three
distributions that include Weibull, GE and GR distributions as the baseline component
distributions for the two-component mixture distributions model; that is, k = 2. All
computation work is obtained via using R codes. R is an open software and can be freely
downloaded. Population parameters (α1, λ1, α2, λ2) = (2, 1.5, 4, 2), mixture proportions
(δ1, δ2) = (0.6, 0.4) and (0.75, 0.25), as well as the pre-required failure numbers r = 0.6n and
0.75n, are considered in this simulation study for the sample sizes of n = 500 and 1000. τ1
is taken as the maximum of the 85th percentiles of the two distributions for mixture; that is,
τ1 = max{G−1

1 (0.85|θ1), G−1
2 (0.85|θ1)}.

For each set of simulation inputs, the simulation study was conducted 1000 iterations.
The maximal iteration for the convergence of EM algorithm is 50 and B = 10,000 is used
for bootstrap sampling. To evaluate the quality of the MLE ω̂ of parameter ω, relative
bias rBias = Bias

ω and relative squared root of mean square error rsMSE = sMSE
ω are used,

where:

Bias =
1

1000

1000

∑
i=1

(ω̂−ω)

and

sMSE =

√√√√ 1
1000

1000

∑
i=1

(ω̂−ω)2.

The simulation results for the MLEs of the model parameters are displaced in Tables 1–3.
Tables 1–3 show that almost all cells of rBias and rsMSE are reduced when either sample
size n or r increases. For the Weibull mixture distributions model, the high survival function
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value with small failure time input is underestimated by MLE and two other lower survival
function values with large failure time inputs are overestimated by MLEs. For the GE
mixture distributions model, the low survival function value with large failure time input is
overestimated by MLE and the other two higher survival function values with two smaller
failure time inputs are underestimated by MLEs. For the GR mixture distributions model, the
survival function at median with the failure time input at median is overestimated by MLE
and two other survival function values with either high failure time input or low failure time
input are underestimated by MLEs. Generally, except for the small survival function values,
the other two higher survival function values can be well estimated by MLEs with small rBias
and rsMSE.

Table 1. Mixture Weibull distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4 and
S(x0) = 0.1, 0.5, 0.9 for (x01, x02, x03) = (2.13, 1.098, 0.444).

n r δ λ̂1 α̂1 λ̂2 α̂2 Ŝ(x01) Ŝ(x02) Ŝ(x03)

500 0.6n 0.6 rBias 0.187 0.039 −0.106 −0.408 0.512 0.039 −0.043
rsMSE 0.189 0.073 0.108 0.409 0.520 0.048 0.045

0.75 rBias 0.119 0.007 −0.150 −0.433 0.438 0.061 −0.024
rsMSE 0.123 0.056 0.151 0.434 0.457 0.066 0.027

0.8n 0.6 rBias 0.151 0.092 −0.122 −0.376 0.380 0.053 −0.029
rsMSE 0.153 0.107 0.123 0.377 0.385 0.059 0.031

0.75 rBias 0.097 0.040 −0.159 −0.413 0.322 0.061 −0.017
rsMSE 0.100 0.063 0.160 0.413 0.334 0.067 0.020

1000 0.6n 0.6 rBias 0.187 0.035 −0.106 −0.410 0.514 0.038 −0.043
rsMSE 0.188 0.056 0.107 0.411 0.518 0.042 0.044

0.75 rBias 0.119 0.004 −0.150 −0.435 0.440 0.060 −0.025
rsMSE 0.121 0.040 0.151 0.435 0.449 0.063 0.026

0.8n 0.6 rBias 0.151 0.088 −0.122 −0.378 0.381 0.052 −0.029
rsMSE 0.152 0.096 0.122 0.379 0.384 0.055 0.030

0.75 rBias 0.097 0.038 −0.159 −0.414 0.322 0.060 −0.017
rsMSE 0.098 0.051 0.160 0.415 0.328 0.063 0.019

Table 2. Mixture GE distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4 and
S(x0) = 0.1, 0.5, 0.9 for (x01, x02, x03) = (1.9, 0.862, 0.305).

n r δ λ̂1 α̂1 λ̂2 α̂2 Ŝ(x01) Ŝ(x02) Ŝ(x03)

500 0.6n 0.6 rBias 0.026 0.164 −0.129 −0.340 0.080 −0.002 −0.003
rsMSE 0.078 0.197 0.141 0.345 0.164 0.039 0.013

0.75 rBias 0.014 0.095 −0.141 −0.382 0.058 −0.003 −0.001
rsMSE 0.073 0.135 0.152 0.386 0.156 0.039 0.013

0.8n 0.6 rBias 0.045 0.180 −0.120 −0.330 0.043 −0.009 −0.002
rsMSE 0.076 0.206 0.128 0.334 0.124 0.037 0.013

0.75 rBias 0.026 0.105 −0.135 −0.375 0.030 −0.008 −0.001
rsMSE 0.065 0.137 0.142 0.378 0.121 0.037 0.013

1000 0.6n 0.6 rBias 0.022 0.157 −0.132 −0.344 0.083 −0.001 −0.003
rsMSE 0.056 0.175 0.138 0.346 0.132 0.027 0.010

0.75 rBias 0.010 0.090 −0.144 −0.385 0.061 −0.001 −0.001
rsMSE 0.051 0.112 0.149 0.386 0.119 0.028 0.009

0.8n 0.6 rBias 0.041 0.174 −0.122 −0.333 0.046 −0.008 −0.002
rsMSE 0.060 0.188 0.127 0.335 0.096 0.027 0.009

0.75 rBias 0.023 0.101 −0.137 −0.377 0.033 −0.007 −0.001
rsMSE 0.048 0.118 0.141 0.378 0.091 0.026 0.009
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Table 3. Mixture GR distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4 and
S(x0) = 0.1, 0.5, 0.9 for(x01, x02, x03) = (1.074, 0.708, 0.429).

n r δ λ̂1 α̂1 λ̂2 α̂2 Ŝ(x01) Ŝ(x02) Ŝ(x03)

500 0.6n 0.6 rBias 0.081 0.208 −0.101 −0.289 −0.076 0.001 −0.003
rsMSE 0.090 0.237 0.105 0.296 0.157 0.040 0.013

0.75 rBias 0.050 0.126 −0.125 −0.341 −0.062 <0.001 −0.002
rsMSE 0.063 0.160 0.128 0.345 0.153 0.040 0.013

0.8n 0.6 rBias 0.078 0.191 −0.111 −0.296 −0.061 0.005 −0.004
rsMSE 0.085 0.215 0.113 0.302 0.132 0.037 0.013

0.75 rBias 0.047 0.112 −0.135 −0.346 −0.049 0.004 −0.003
rsMSE 0.057 0.142 0.136 0.350 0.127 0.037 0.013

1000 0.6n 0.6 rBias 0.079 0.200 −0.103 −0.293 −0.072 0.002 −0.003
rsMSE 0.083 0.215 0.105 0.297 0.121 0.028 0.010

0.75 rBias 0.049 0.120 −0.126 −0.344 −0.060 0.002 −0.002
rsMSE 0.056 0.139 0.127 0.346 0.115 0.028 0.009

0.8n 0.6 rBias 0.076 0.184 −0.112 −0.300 −0.057 0.006 −0.004
rsMSE 0.079 0.196 0.113 0.302 0.101 0.027 0.010

0.75 rBias 0.045 0.107 −0.136 −0.349 −0.045 0.006 −0.003
rsMSE 0.051 0.124 0.137 0.351 0.096 0.027 0.009

To evaluate the interval estimator, the proposed bootstrap procedures of PBP, HBP
and BCP described in Section 2.4 with the B = 10, 000 bootstrap sample are used. For
each simulation run, the empirical distributions of the MLEs of the distribution parameters
and survival functions are constructed based on 10,000 bootstrap samples. Moreover, the
confidence intervals of the distribution parameters and survival function are obtained
based on the bootstrap methods of PBP, HBP and BCP. The quality of the PBP, HBP and
BCP bootstrap methods is evaluated based on the coverage probability (CP) with 1000
confidence intervals. Part of the simulated CPs for 90% confidence intervals of survival
function values based on sample size n = 1000 and r = 0.8n are given as follows:

1. For the mixture Weibull distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4,
δ = 0.6 and S(x0) = 0.5 at x0 = 1.098, the CP = 0.894, 0.895 and 0.897 by using
PBP, HBP and BCP procedures, respectively. Figure 1 shows that the lengths of the
obtained PBP confidence interval is more consistent than that of the obtained HBP
and BCP confidence intervals. The meam length of 1000 confidence intervals based on
the PBP, HBP and BCP methods are 0.0256, 0.0286 and 0.0218, respectively.

2. For the mixture GE distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4, δ = 0.6
and S(x0) = 0.5 at x0 = 0.862, the CP = 0.898, 0.897 and 0.899 by using PBP, HBP
and BCP procedures, respectively. Figure 2 shows that the lengths of the obtained
PBP confidence interval are more consistent than those of the obtained HBP and BCP
confidence intervals. The meam lengths of 1000 confidence intervals based on the PBP,
HBP and BCP methods are 0.0425, 0.0449 and 0.0358, respectively.

3. For the mixture GR distributions model with λ1 = 1.5, α1 = 2, λ2 = 2, α2 = 4, δ = 0.6
and S(x0) = 0.5 at x0 = 0.708, the CP = 0.894, 0.894 and 0.896 by using PBP, HBP
and BCP procedures, respectively. Figure 3 shows that the lengths of the obtained
PBP confidence interval is more consistent than that of the obtained HBP and BCP
confidence intervals. The meam lengths of 1000 confidence intervals based on the PBP,
HBP and BCP methods are 0.0424, 0.045 and 0.0357, respectively.

Based on the simulation results, the PBP, HBP and BCP methods are competitive, and
the PBP method slightly outperforms the other two due to the length of the PBP confidence
interval is shorter than that of the other two bootstrap methods.
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Figure 1. The box plots of bootstrap confidence intervals based on the PBP, HBP and BCP methods
for the mixture Weibull distributions.

Figure 2. The box plots of bootstrap confidence intervals based on the PBP, HBP and BCP methods
for the mixture GE distributions.

The simulation study is also conducted to evaluate the PDF and CDF for the three
mixture distributions models, which include the mixture model with GR and GE distribu-
tion, the mixture model with GR and Weibull distributions, and the mixture model with
Weibull and GE distributions. Additional simulation parameter inputs include population
parameters (α1, λ1, α2, λ2) = (2, 1, 5, 1) and mixture proportion, (δ1, δ2) = (0.2, 0.8), (0.50,
0.50). We skip the outputs to save pages. Generally, all the empirical PDFs and CDFs are
close to their true function curves.

A simulated example is used to show the applications of the proposed EM-MLE
method. The two datasets in Table 4 present the strength of carbon fibers measured in GPa
for single carbon fibers and impregnated 1000-carbon fiber tows; see Murthy et al. [19]
Kundu and Raqab [20]. These two datasets were originally reported by Badar and Pries [21]
and later studied by Kundu and Raqab [20]. The first and second datasets contain 63 and
69 strength measurements, respectively, which are tested under tension at gauge lengths of
10 mm and 20 mm. The histograms and empirical density plots are given in Figure 4.
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Figure 3. The box plots of bootstrap confidence intervals based on the PBP, HBP and BCP methods
for the mixture GR distributions.

The Kolmogorov–Smirnov test is used to check the goodness-of-fit of using the Weibull
distribution to model these two datasets. The first dataset provides the MLEs λ̂1 = 2.651
and α̂1 = 5.502, and the second dataset provides the MLEs λ̂2 = 3.31 and α̂1 = 5.048.
Replacing the parameters with their MLEs, we obtain the Kolmogorov–Smirnov distances
D = 0.067 with p-value = 0.965 for the first dataset and D = 0.09 with p-value = 0.775 for
the second dataset. The testing results indicate that the Weibull distribution can characterize
these two datasets well.

Figure 4. The histograms and empirical density plots of the strength of carbon fibers from the two
datasets in Table 4.
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Table 4. The strength measurements of carbon fibers.

Gague length of 10 mm

1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397
2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614
2.616 2.618 2.624 2.659 2.675 2.738 2.74 2.856 2.917
2.928 2.937 2.937 2.977 2.996 3.03 3.125 3.139 3.145
3.22 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346
3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.02

Gague length of 20 mm

1.312 1.314 1.479 1.552 1.7 1.803 1.861 1.865 1.944
1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.14 2.179 2.224 2.24 2.253 2.27 2.272 2.274 2.301
2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.49
2.511 2.514 2.535 2.554 2.566 2.57 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.77 2.773 2.8 2.809
2.818 2.821 2.848 2.88 2.954 3.012 3.067 3.084 3.09
3.096 3.128 3.233 3.433 3.585 3.585

These two datasets are not TIHC samples. Assuming a future pool of these two
datasets could be coming from a mixture distributions model with Weibull(α1 = 5.502,
λ1 = 2.651) and Weibull(α2 = 5.048, λ2 = 3.315) and δ = 0.6. We regenerate a TIHC sample
with r = 0.8n and n = 500, τ1 = 1.95, and x0 = 3.76. We are interested in estimating the
parameters of the mixture model of two Weibull distributions and the survival function
at 0.5(or at x0 = 3.76). Utilizing the proposed EM algorithm for the maximum likelihood
estimation method and the regenerated sample. The generated TIHC sample is given in
Table 5. The obtained MLEs are λ̂1 = 2.672, α̂1 = 5.435, λ̂2 = 3.306, α̂2 = 5.261, δ̂ = 0.593
and the estimated survival function is 0.498. Using the three proposed bootstrap methods
with 5000 iterations to construct the bootstrap empirical distribution of the survival, we
obtain the confidence intervals of (0.482, 0.521) for the parametric PBP procedure, (0.474,
0.512) for the HBC procedure and (0.473, 0.513) for the bootstrap BCP procedure.

Table 5. The generated TIHC numerical sample.

1.099 1.822 2.045 2.247 2.382 2.476 2.614 2.723 2.921 3.044
1.109 1.828 2.054 2.248 2.384 2.482 2.619 2.726 2.927 3.051
1.167 1.839 2.054 2.25 2.384 2.487 2.62 2.738 2.929 3.056
1.241 1.841 2.054 2.251 2.388 2.492 2.628 2.741 2.934 3.06
1.255 1.844 2.067 2.258 2.388 2.493 2.63 2.745 2.935 3.067
1.26 1.853 2.067 2.26 2.391 2.494 2.634 2.747 2.936 3.069

1.293 1.856 2.073 2.268 2.392 2.495 2.639 2.759 2.937 3.075
1.314 1.862 2.076 2.269 2.393 2.497 2.639 2.765 2.938 3.093
1.35 1.865 2.077 2.269 2.396 2.509 2.639 2.769 2.94 3.102

1.365 1.867 2.078 2.278 2.4 2.511 2.642 2.773 2.941 3.102
1.413 1.873 2.092 2.279 2.404 2.518 2.642 2.774 2.943 3.102
1.417 1.877 2.097 2.283 2.407 2.52 2.643 2.777 2.95 3.105
1.452 1.886 2.1 2.284 2.408 2.53 2.645 2.778 2.959 3.114
1.465 1.888 2.102 2.286 2.413 2.532 2.648 2.794 2.96 3.122
1.486 1.894 2.102 2.296 2.414 2.534 2.653 2.799 2.961 3.125
1.498 1.895 2.108 2.297 2.416 2.538 2.656 2.808 2.964 3.13
1.505 1.904 2.116 2.301 2.417 2.54 2.658 2.813 2.964 3.133
1.529 1.912 2.121 2.302 2.419 2.545 2.659 2.814 2.967 3.135
1.547 1.916 2.122 2.31 2.424 2.547 2.666 2.822 2.967 3.148
1.572 1.918 2.125 2.313 2.424 2.551 2.669 2.832 2.975 3.148
1.611 1.924 2.133 2.316 2.424 2.552 2.67 2.833 2.985 3.149
1.629 1.925 2.137 2.319 2.424 2.571 2.672 2.835 2.986 3.149
1.648 1.948 2.137 2.32 2.429 2.572 2.673 2.849 2.989 3.15
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Table 5. Cont.

1.669 1.955 2.138 2.321 2.431 2.575 2.677 2.852 2.992 3.151
1.688 1.975 2.157 2.325 2.433 2.577 2.685 2.854 2.996 3.151
1.699 1.976 2.173 2.328 2.433 2.579 2.686 2.859 2.997 3.151
1.729 1.977 2.174 2.328 2.439 2.58 2.688 2.869 2.997 3.154
1.733 1.991 2.176 2.333 2.441 2.582 2.691 2.873 2.998 3.161
1.749 1.994 2.177 2.335 2.444 2.584 2.694 2.878 3.001 3.171
1.75 1.994 2.182 2.338 2.444 2.585 2.695 2.882 3.003 3.174

1.768 2.001 2.183 2.354 2.445 2.586 2.696 2.883 3.006 3.187
1.78 2.003 2.205 2.355 2.446 2.586 2.699 2.884 3.007 3.19

1.787 2.004 2.209 2.356 2.446 2.589 2.704 2.887 3.011 3.192
1.788 2.005 2.213 2.36 2.451 2.592 2.706 2.888 3.021 3.196
1.798 2.009 2.219 2.364 2.452 2.593 2.711 2.904 3.026 3.196
1.798 2.014 2.224 2.369 2.453 2.595 2.712 2.904 3.026 3.212
1.799 2.016 2.233 2.369 2.461 2.596 2.715 2.906 3.028 3.222
1.804 2.016 2.235 2.37 2.465 2.599 2.718 2.912 3.03 3.224
1.808 2.021 2.236 2.374 2.468 2.603 2.72 2.913 3.038 3.232
1.811 2.027 2.244 2.379 2.47 2.614 2.722 2.914 3.039 3.234

4. Illustrative Examples

Three practical datasets will be used for the further investigation on the mixture
modeling and the illustration of the proposed EM-MLE algorithm. To save space, only the
first example dataset is reported in Table 6. Table 6 has 20 electronic failure times that were
used by Razali and Salih [4] for the mixture distribution based on two Weibull distributions
where one has a positive support with a positive left boundary and the other has the whole
positive support. The second dataset regarding 153 aircraft windshield failure times in
terms of 1000 h was originally given in Blischke and Murthy [19]. This dataset was also
used by Ruhi et al. [5] for the twofold Weibull mixture model. The third dataset contains
600 lifetimes of adapters which are used in the liquid-crystal display (LCD) assembling
monitors. Tsai et al. [22] has studied this dataset and their suggested model of two Weibull
mixture distributions can characterize this dataset well.

4.1. Example 1

Table 6 has 20 electronic failure times that were used by Razali and Salih [4] for the
mixture distribution based on two Weibull distributions, where one has a positive support
with a positive left boundary and the other has the whole positive support. In this example,
the mixture model of Weibull and GE distributions is used to model TIHC samples that can
be generated from 20 electronic failure times with r = 0.5n, 0.6n, 0.75n, 0.8n, 0.9n, n with
n = 20, and a large value of τ1 is used to allow all observations are not censored.

Table 6. Twenty electronic failure times.

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79

1.80 1.94 2.38 2.40 2.87 2.99 3.14 3.17 4.72 5.09

Given a TIHC sample generated by the TIHC with each given r and τ1, the MLEs of
the mixture distribution parameters were obtained through the proposed EM algorithm.
Then the corresponding six mixture distribution PDFs using six different sets of MLEs as
the parameter inputs were obtained and drawn in Figure 5.

All six MLEs of mixture PDFs are very close except at x0 = 2, where the estimated
PDFs using smaller r values have higher peak. Moreover, the 95% confidence intervals of
S(x0) are reported in Table 7 based on the PBP, HBP and BCP procedures, where the LB
and UB denote the lower and upper bounds of a bootstrap confidence interval, respectively.
All PBP, HBP and BCP confidence intervals at each line of given r are closed. Moreover,
two boundaries from the PBP and BCP procedures are closed for each given value of r
among three procedures.
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Figure 5. The MLEs of Mixture PDFs of Example 1.

Table 7. 95% Confidence intervals of the survival function at x0 = 2.

r S(x0) PBP HBP BCP

LB UB LB UB LB UB

0.5 n 0.4436 0.4170 0.4625 0.4247 0.4702 0.4150 0.4612
0.6 n 0.4496 0.4326 0.4606 0.4386 0.4666 0.4319 0.4548
0.75 n 0.4178 0.4080 0.4412 0.3943 0.4275 0.4088 0.4471
0.8 n 0.4409 0.4300 0.4533 0.4287 0.4519 0.4300 0.4533
0.9 n 0.4542 0.4508 0.4562 0.4522 0.4576 0.4533 0.4562

n 0.4489 0.4463 0.4512 0.4465 0.4514 0.4463 0.4512

4.2. Example 2

In this example, aircraft windshield failure times will be used to check the mixture
model through the three proposed distributions. Similar to the procedure used by Ruhi
et al. [5], we separated 153 observations into two groups; one group has 88 observations
and the other group has 65 observations. Ruhi et al. [5] checked Weibull distribution
as good-of-fit for both groups. The Kolmogorov–Smirnov test is used to further check
the goodness-of-fit of using GE distribution to model these two groups. The first group
provides the MLEs λ̂1 = 0.7593 and α̂1 = 3.648, and the second group provides the MLEs
λ̂2 = 0.7024 and α̂2 = 1.9458. Replacing the parameters by their MLEs, we obtain the
Kolmogorov–Smirnov distances D = 0.11287 with p-value = 0.2122 for the first group and
D = 0.14015 with p-value = 0.1413 for the second group. The testing results indicate that
the GE distribution can characterize these two groups well.

In this study, the mixture model with Weibull and GE distributions is suggested to
model TIHC samples that were generated from these 153 observations with
r = 0.5 n, 0.6 n, 0.75 n, 0.8 n, 0.9 n, n, n = 153 and τ1 = 2. Given a TIHC sample gener-
ated by the TIHC with each given r and τ1, the MLEs of mixture distribution parameters
were obtained through the proposed EM algorithm. Then the corresponding six mixture
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distribution PDFs using the calculated six different sets of MLEs as the parameter inputs
were obtained.

The 95% confidence intervals of S(t0) are reported in Table 8 based on the PBP, HBP
and BCP procedures, where the LB and UB denote the lower and upper bounds of a
bootstrap confidence interval, respectively. Table 8 shows that all estimated values for
r ≥ n

2 are very closed to the corresponding estimated results by using all 153 observations.
Moreover, the 95% confidence intervals by BP and BC are very closed and have shorter
lengths than the 95% confidence intervals by HB.

Table 8. 95% Confidence intervals of survival function at x0 = 2 for windshield.

r S(t0) PBP HBP BCP

LB UB LB UB LB UB

0.5n 0.6011 0.5949 0.6067 0.5946 0.6073 0.5949 0.6067
0.6n 0.6277 0.6077 0.6497 0.6057 0.6477 0.6076 0.6496

0.75n 0.6336 0.6079 0.6643 0.6028 0.6592 0.6088 0.6649
0.8n 0.6248 0.6083 0.6400 0.6095 0.6412 0.6077 0.6395
0.9n 0.6123 0.6064 0.6212 0.6035 0.6182 0.6076 0.6213

n 0.6218 0.6085 0.6372 0.6063 0.6351 0.6085 0.6372

4.3. Example 3

This example was based on a past statistical consultation project for a LCD manufac-
turer in Asia. The manufacturer’s information is not disclosed here due to confidentiality.
We refer to this manufacturer as the company. The dataset is regarding the failure time of
a type of video graphics array (VGA) adapter used for the liquid-crystal display (LCD)
assembling monitors. The work done by Tsai et al. [22] was suggested and the company
continued to purchase adapters from two suppliers and started to record the exact failure
time in terms of hours and the originality of each adapter. In this example, the dataset
that contains a sample of n = 600 failure times in terms of days, with their originality, are
considered. Therefore, all 600 failure times can be separated into two groups. The first
group has 266 observations and the second group has 334 observations. The Kolmogorov–
Smirnov test is used to check the goodness-of-fit of using the Weibull distribution to model
these two groups. The first group provides the MLEs λ̂1 = 58.18 and α̂1 = 2.027, and the
second group provides the MLEs λ̂2 = 39.62 and α̂2 = 4.145. Replacing the parameters
with their MLEs, we obtain the Kolmogorov–Smirnov distances D = 0.0000+ with p-value
> 0.999 for the first group and D = 0.0000+ with p-value > 0.999 for the second group. The
testing results indicate that the Weibull distribution can characterize the dataset of two
groups well.

In this study, the mixture model with Weibull and Weibull distributions is suggested
to model TIHC samples, which were generated based on these 600 observations. The TIHC
scheme is r = 0.8n = 480 and τ1 = 80. Based on the generated sample, the MLEs of
mixture distribution parameters were obtained by λ̂1 = 58.479, α̂1 = 2.01, λ̂2 = 39.396 and
α̂1 = 3.978. The 95% confidence intervals of S(t0) = 0.5 were also obtained and reported in
Table 9 based on the PBP, HBP and BCP procedures. Table 9 shows that all 95% bootstrap
confidence intervals cover the true survival function.

Table 9. 95% confidence intervals of the survival function at x0 = 39 for adapters.

r S(x0) PBP HBP BCP

LB UB LB UB LB UB

0.8 n 0.5129 0.4804 0.5374 0.4745 0.5315 0.4774 0.5350

5. Conclusions and Remarks

In the real world, source items could come from different suppliers to support a
company’s production line. The heterogeneity from different resources may cause inconsis-



Mathematics 2021, 9, 2483 17 of 18

tencies in the production quality. In these circumstances, it would be more reasonable to
utilize a mixture distributions model to characterize the product’s lifetime quality. More-
over, it is very difficult to collect the entire lifetime sample from the life test because of
the finite test schedule and restricted budget. Hence, the TIHC scheme with the given
failure number r and life test schedule τ1 has been proposed for collecting lifetime data
from numerous practitioners. In this work, the EM algorithm has been proposed to find
the MLEs of the mixture distribution model parameters and the survival function. Three
different bootstrap procedures—the PBP, HBC and BCP procedures—are provided to es-
tablish the empirical distribution of the MLE of the mixture distribution model parameters
and the survival function based on TIHC samples, and to obtain the confidence intervals.
The parameter estimation for the mixture distributions model requires a large sample; even
the mixture proportions are known with a complete sample. The TIHC scheme renders
the sample censored and incomplete. Hence, the proposed EM-MLE requests a very large
sample in order to obtain good quality MLEs for the model parameters. This is a drawback
of the proposed EM-MLE method, and how to reduce the sample size can be left for future
study.

All existing studies on the mixture distributions model have been focused on the
mixture of common distributions but with different distribution parameters. In the current
work, we extended the EM-MLE method to the mixture distribution model with different
distributions as members. The approximate MLE approach proposed by Mendenhall and
Hader [8] is a very interesting procedure for mixture distribution modeling. This will be
the focus of a future research project. Meanwhile, the Bayesian estimation approach and
some other censoring schemes might provide novel future research potential to add to the
mixture distributions model. These two topics will be studied in the future.
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