On Some New Contractive Conditions in Complete Metric Spaces
Abstract
:1. Introduction and Preliminaries
- is increasing;
- for any sequence of positive real numbers, if and only if ;
- there exists such that .
- (a)
- is non-decreasing;
- (b)
- for all .
- (i)
- -admissible if for all ,
- (ii)
- a triangular -admissible if it is -admissible and if for all holds
- is -admissible;
- there exists such that
- is continuous.
- If is a sequence in such that for all and as , then there exists a subsequence of such that for all k.
- is -admissible;
- there exists such that ;
- holds.
- For all , let hold true, where denotes the set of fixed points of . Unicity can be obtained. After that, authors in [15] proved the following result:
2. Main Results
- is -admissible;
- there exists such that ;
- is continuous.
- is -admissible;
- there exists such that ;
- holds.
- is -admissible;
- there exists such that ;
- either is continuous or holds, such that the following inequalities hold true:
- Ćirić 1: a generalized contraction of first order if there exists such that for all holds:
- Ćirić 2: a generalized contraction of second order if there exists such that for all holds:
- Ćirić 3: a quasi-contraction if there exists such that for all holds:
3. Some Examples
- 1.
- 2.
- 3.
Author Contributions
Funding
Conflicts of Interest
References
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 1. [Google Scholar] [CrossRef]
- Proinov, P.D. A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. 2007, 67, 2361–2369. [Google Scholar] [CrossRef]
- Lukács, A.; Kajánto, S. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Skoff, F. Teoremi di punto fisso per applicazioni negli spazi metrici. Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 1977, 111, 323–329. [Google Scholar]
- Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Acad. Naz Lincei Rend Cl. Sci. Fiz. Mat. Natur. 1968, 45, 212–216. [Google Scholar]
- Banach, S. Sur les opérations dans les ensambles abstrait et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Gopal, D.; Abbas, M.; Patel, D.K.; Vetro, C. Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation. Acta Math. Sci. 2016, 36, 957–970. [Google Scholar] [CrossRef]
- Mebawondu, A.A.; Mewomo, O.T. Some fixed point results for TAC-Suzuki contractive mappings. Commun. Korean Math. Soc. 2019, 34, 1201–1222. [Google Scholar]
- Consentino, M.; Vetro, P. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning α-F-contraction mappings in metric spaces. Appl. Gen. Topol. 2019, 20, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Fulga, A.; Agarwal, R. A survey: F-contractions with related fixed point results. Fixed Point Theory Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Popescu, O.; Stan, G. Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-Contraction via α-Admissible Mappings and Application to Integral Equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
- Vujaković, J.; Radenović, S. On some F-contraction of Piri-Kumam-Dung type mappings in metric spaces. Vojnotehnički Glas. Tech. Cour. 2020, 68, 697–714. [Google Scholar]
- Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning F-contraction in generalized metric spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
- Wardowski, D.; Van Dung, N. Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Kumam, P.; Salimi, P. α-ψ- Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
- Aljančić, S. Uvod u Realnu i Funkcionalnu Analizu; Naučna knjiga: Beograd, Srbija, 1969. [Google Scholar]
- Ćirić, L.J. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Willey and Sons Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Radenović, S.; Kadelburg, Z.; Jandrlić, D.; Jandrlić, A. Some results on weakly contractive maps. Bull. Iran. Math. Soc. 2012, 38, 625–645. [Google Scholar]
- Radenović, S.; Vetro, F.; Vujaković, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 5, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Chandock, S. Simulation type functions and coincidence points. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujaković, J.; Ljajko, E.; Pavlović, M.; Radenović, S. On Some New Contractive Conditions in Complete Metric Spaces. Mathematics 2021, 9, 118. https://doi.org/10.3390/math9020118
Vujaković J, Ljajko E, Pavlović M, Radenović S. On Some New Contractive Conditions in Complete Metric Spaces. Mathematics. 2021; 9(2):118. https://doi.org/10.3390/math9020118
Chicago/Turabian StyleVujaković, Jelena, Eugen Ljajko, Mirjana Pavlović, and Stojan Radenović. 2021. "On Some New Contractive Conditions in Complete Metric Spaces" Mathematics 9, no. 2: 118. https://doi.org/10.3390/math9020118
APA StyleVujaković, J., Ljajko, E., Pavlović, M., & Radenović, S. (2021). On Some New Contractive Conditions in Complete Metric Spaces. Mathematics, 9(2), 118. https://doi.org/10.3390/math9020118