A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization
Abstract
:1. Introduction
2. Literature Review
2.1. Stochastic Programming and Robust Optimization
2.2. Integration of Machine Learning and Optimization
2.3. Contribution
- Most of the studies on the integration of machine learning and optimization use a separated approach, i.e., they predict uncertain parameters from auxiliary data first, then optimize with predicted uncertain parameters. This approach neglects the effect of prediction error, which is of critical importance in operations research and management science. We propose a framework that integrates machine learning and robust optimization to safeguard against the case when the estimation error yields serious trouble.
- We make the nearest neighbor formulation advanced by Bertsimas and Kallus (2019) [7] resilient against the adverse effects of overfitting by formulating a robust counterpart. To form the robust counterpart, we propose the algorithm to form the minimum volume ellipsoid covering the k-nearest point. This ellipsoid is used as the uncertainty set in the robust counterpart. We indicate that the resulting robust supervised learning formulations are computationally as tractable as their nominal counterparts.
- We demonstrate that the worst-case expectation over an ellipsoidal uncertainty set enclosing the k-nearest neighbor can in fact display good performance. We also investigate the out-of-sample performance of the resulting optimal decisions experimentally and analyze its dependence on the number of training samples and nearest neighbors.
3. Modeling Framework
3.1. Preliminary
3.2. Predictive Prescription
3.3. Alternative Approach
4. Proposed Algorithm
4.1. k-Nearest-Neighbor
4.2. Minimum Volume Ellipsoid Around a Set
4.3. Robust Optimization
4.4. Overall Algorithm
Algorithm 1 Summary of algorithm. |
1. pick k-nearest points |
2. form minimum volume ellipsoid to cover |
3. solve robust optimization problem |
5. Numerical Example
5.1. Small-Size Instance
5.2. Large-Size Instances
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davenport, T.H. Competing on analytics. Harv. Bus. Rev. 2006, 84, 98. [Google Scholar] [PubMed]
- Keenan, P.T.; Owen, J.H.; Schumacher, K. Introduction to Analytics. In INFORMS Analytics Body of Knowledge; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–30. [Google Scholar]
- Lustig, I.; Dietrich, B.; Johnson, C.; Dziekan, C. The analytics journey. Anal. Mag. 2010, 3, 11–13. [Google Scholar]
- Evans, J.R.; Lindner, C.H. Business analytics: The next frontier for decision sciences. Decis. Line 2012, 43, 4–6. [Google Scholar]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009; Volume 28. [Google Scholar]
- Smith, J.E.; Winkler, R.L. The optimizer’s curse: Skepticism and postdecision surprise in decision analysis. Manag. Sci. 2006, 52, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Bertsimas, D.; Kallus, N. From predictive to prescriptive analytics. Manag. Sci. 2020, 66, 1025–1044. [Google Scholar] [CrossRef] [Green Version]
- Bertsimas, D.; Gupta, V.; Kallus, N. Data-driven robust optimization. Math. Program. 2018, 167, 235–292. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 6, 73–79. [Google Scholar] [CrossRef]
- Soyster, A.L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust convex optimization. Math. Oper. Res. 1998, 23, 769–805. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of uncertain linear programs. Oper. Res. Lett. 1999, 25, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 2000, 88, 411–424. [Google Scholar] [CrossRef] [Green Version]
- El Ghaoui, L.; Lebret, H. Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 1997, 18, 1035–1064. [Google Scholar] [CrossRef]
- El Ghaoui, L.; Oustry, F.; Lebret, H. Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 1998, 9, 33–52. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Selected topics in robust convex optimization. Math. Program. 2008, 112, 125–158. [Google Scholar] [CrossRef]
- Gorissen, B.L.; Yanıkoglu, İ.; den Hertog, D. A practical guide to robust optimization. Omega 2015, 53, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Gabrel, V.; Murat, C.; Thiele, A. Recent advances in robust optimization: An overview. Eur. J. Oper. Res. 2014, 235, 471–483. [Google Scholar] [CrossRef]
- Sozuer, S.; Thiele, A.C. The state of robust optimization. In Robustness Analysis in Decision Aiding, Optimization, and Analytics; Springer: Cham, Switzerland, 2016; pp. 89–112. [Google Scholar]
- Delage, E.; Iancu, D.A. Robust multistage decision making. In The Operations Research Revolution; INFORMS: Catonsville, MD, USA, 2015; pp. 20–46. [Google Scholar]
- Delage, E.; Ye, Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 2010, 58, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Bhadra, S.; Bhattacharyya, C.; Nath, J.S. Chance constrained uncertain classification via robust optimization. Math. Program. 2011, 127, 145–173. [Google Scholar] [CrossRef]
- Dupacova, J.; Kopa, M. Robustness in stochastic programs with risk constraints. Ann. Oper. Res. 2012, 200, 55–74. [Google Scholar] [CrossRef]
- Xu, H.; Caramanis, C.; Mannor, S. A distributional interpretation of robust optimization. Math. Oper. Res. 2012, 37, 95–110. [Google Scholar] [CrossRef]
- Zymler, S.; Kuhn, D.; Rustem, B. Distributionally robust joint chance constraints with second-order moment information. Math. Program. 2013, 137, 167–198. [Google Scholar] [CrossRef] [Green Version]
- Wiesemann, W.; Kuhn, D.; Sim, M. Distributionally robust convex optimization. Oper. Res. 2014, 62, 1358–1376. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Den Hertog, D.; De Waegenaere, A.; Melenberg, B.; Rennen, G. Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 2013, 59, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, P.M.; Kuhn, D. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Program. 2018, 171, 115–166. [Google Scholar] [CrossRef]
- Melin, P.; Castillo, O. A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. 2014, 21, 568–577. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E. Applications of signatures to expert systems modelling. Acta Polytech. Hung. 2014, 11, 21–39. [Google Scholar]
- Jammalamadaka, S.R.; Qiu, J.; Ning, N. Predicting a Stock Portfolio with the Multivariate Bayesian Structural Time Series Model: Do News or Emotions Matter? Available online: http://www.ceser.in/ceserp/index.php/ijai/article/view/6255 (accessed on 6 January 2021).
- Den Hertog, D.; Postek, K. Bridging the Gap between Predictive and Prescriptive Analytics-New Optimization Methodology Needed; Technical report; Tilburg University: Tilburg, The Netherlands, 2016. [Google Scholar]
- Elmachtoub, A.N.; Grigas, P. Smart “Predict, then Optimize”. arXiv 2017, arXiv:1710.08005. [Google Scholar]
- Larsen, E.; Lachapelle, S.; Bengio, Y.; Frejinger, E.; Lacoste-Julien, S.; Lodi, A. Predicting solution summaries to integer linear programs under imperfect information with machine learning. arXiv 2018, arXiv:1807.11876. [Google Scholar]
- Bertsimas, D.; Dunn, J.; Mundru, N. Optimal Prescriptive Trees. Available online: https://pubsonline.informs.org/doi/10.1287/ijoo.2018.0005 (accessed on 16 April 2019).
- Dunn, J.W. Optimal Trees for Prediction and Prescription. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Bertsimas, D.; Van Parys, B. Bootstrap robust prescriptive analytics. arXiv 2017, arXiv:1711.09974. [Google Scholar]
- Yiannis, K.; Poulicos, P. Forecasting traffic flow conditions in an urban Network-comparison of multivariate and univariate approaches. Transp. Res. Rec. 2003, 1857, 74–84. [Google Scholar]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Symbol | Description |
---|---|
dimension of uncertain parameter | |
dimension of auxiliary variable associate covariate | |
dimension of the 1st-stage decision | |
dimension of the 2nd-stage decision | |
M | the sample size of training data set |
N | the sample size of validation data set |
uncertain parameter | |
auxiliary variable associate covariate | |
training data set | |
test data set | |
index set for training data set | |
index set for test data set | |
observation of v | |
1st-stage decision variable | |
2nd-stage decision variable | |
1st-stage objective function | |
2nd-stage objective function | |
predictor | |
c | cost vector of the 1st-stage decision variable |
X | feasible region of x |
feasible region of y given uncertain data u | |
certificate (the objective function value of the data-driven solution, i.e., ) | |
data-driven solution | |
out-of-sample performance |
SAA | PP | PR | RO |
---|---|---|---|
40.2 | 111.3 | 23.9 | 12.5 |
k | PP | PR | RO |
---|---|---|---|
10 | 111.3 | 33.4 | 12.5 |
20 | 173.3 | 40.9 | 37.1 |
30 | 230.6 | 32.4 | 30.6 |
40 | 240.5 | 28.1 | 35.0 |
50 | 327.5 | 26.0 | 119.2 |
60 | 396.3 | 25.1 | 134.2 |
70 | 446.7 | 24.5 | 209.7 |
80 | 475.6 | 23.9 | 263.8 |
90 | 566.1 | 37.0 | 497.3 |
M | SAA | PP | PR | RO | RO | RO |
---|---|---|---|---|---|---|
( M) | ( M) | ( M) | ||||
10 | 11.09 | 0.53 | 0.53 | 0.35 | 4.56 | 1.19 |
100 | 12.30 | 13.36 | 0.39 | 0.22 | 0.72 | 1.70 |
1000 | 21.99 | 19.93 | 1.12 | 0.03 | 0.13 | 1.62 |
M | SAA | PP | PR | RO | RO | RO |
---|---|---|---|---|---|---|
( M) | ( M) | ( M) | ||||
10 | 0.014 | 0.001 | 0.007 | 0.027 | 0.059 | 0.169 |
100 | 0.257 | 0.002 | 0.593 | 0.037 | 0.027 | 0.071 |
1000 | 13.917 | 0.002 | 0.184 | 0.018 | 0.089 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohmori, S. A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization. Mathematics 2021, 9, 119. https://doi.org/10.3390/math9020119
Ohmori S. A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization. Mathematics. 2021; 9(2):119. https://doi.org/10.3390/math9020119
Chicago/Turabian StyleOhmori, Shunichi. 2021. "A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization" Mathematics 9, no. 2: 119. https://doi.org/10.3390/math9020119
APA StyleOhmori, S. (2021). A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization. Mathematics, 9(2), 119. https://doi.org/10.3390/math9020119