How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases
Abstract
:1. Introduction
1.1. Literature Review
1.2. Current Study
- Can different ways of framing criteria have an impact on how decision makers evaluate them?
- If framing and loss aversion biases are induced at early stages of weight elicitation (i.e., at the stage of pairwise comparisons), does it affect both the final ranking of criteria weights and the final ranking of alternatives? (see Figure 1)
- the stage of individual pairwise comparisons (AHP)
- the stage of criteria ranking (AHP)
- the stage of alternative selection (TOPSIS)
1.3. Theoretical Background
1.3.1. The Prospect Theory and the Framing Bias
- Reference dependence bias: the value function (gains and losses) is defined in terms of deviations from a reference point and not in terms of absolute magnitudes. Thus, decisions are made relative to some status quo or baseline and are sensitive to framing. This differs from expected utility theory, in which a rational agent is indifferent to the reference point.
- Loss aversion bias: the value function is steeper for losses than for gains. This suggests that the same amount of losses is perceived as being larger than the same amount of gains (e.g., the aversion of losing 10 euros seems stronger than the attractiveness of gaining 10 euros). In other words, humans are oversensitive to losses. Again, this differs from expected utility theory where individuals should value the same amount equally, independently of whether it is a gain or a loss.
- Risk aversion bias: the value function is concave for gains and convex for losses. This means that when choices involve gains, people are risk averse and prefer a certain gain to a probable gain, even if the later has equal or greater expected utility. Conversely, when choices involve losses, people are risk seeking and prefer options that help avoid sure losses.
1.3.2. AHP
- is the pairwise comparison matrix
- is the priorities vector
- is the maximal eigenvalue
- maximal eigenvalue of the matrix
- size of the comparison matrix
- The Consistency Ratio () is then calculated in:
- ,
1.3.3. TOPSIS
2. Materials and Methods
2.1. Participants
2.2. Procedure
3. Results
3.1. Stage of Pairwise Comparisons
3.2. Criteria Weights
3.2.1. Aggregation Using Individual Priority Weights (AIP)
3.2.2. Aggregation Using Individual Judgements (AIJ)
3.3. Alternative Ranking
4. Discussion
- By framing the criteria in a particular way, it is possible to influence the responses given by decision makers during AHP pairwise comparisons.
- This caused the rank reversal of criteria weights across groups and resulted in the choice of different best alternatives.
- The exact influence of different framings is predictable by the Prospect theory and can be explained by the loss aversion bias.
4.1. Discussion of Results and Interpretation in Light of Prospect Theory
4.2. Implications for MCDM
4.3. Solutions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Group A | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
1 | 0.13 | 0.41 | 0.07 | 0.06 | 0.27 | 0.06 |
2 | 0.43 | 0.11 | 0.04 | 0.15 | 0.26 | 0.02 |
3 | 0.22 | 0.14 | 0.06 | 0.22 | 0.22 | 0.14 |
4 | 0.22 | 0.09 | 0.20 | 0.20 | 0.20 | 0.08 |
5 | 0.25 | 0.08 | 0.07 | 0.12 | 0.43 | 0.05 |
6 | 0.27 | 0.36 | 0.15 | 0.05 | 0.14 | 0.03 |
7 | 0.19 | 0.60 | 0.12 | 0.03 | 0.04 | 0.02 |
8 | 0.13 | 0.10 | 0.19 | 0.18 | 0.34 | 0.06 |
9 | 0.07 | 0.43 | 0.17 | 0.20 | 0.08 | 0.05 |
10 | 0.26 | 0.26 | 0.27 | 0.05 | 0.14 | 0.02 |
11 | 0.38 | 0.36 | 0.09 | 0.04 | 0.10 | 0.03 |
12 | 0.21 | 0.20 | 0.22 | 0.09 | 0.24 | 0.03 |
13 | 0.22 | 0.29 | 0.19 | 0.08 | 0.18 | 0.05 |
14 | 0.17 | 0.25 | 0.39 | 0.09 | 0.09 | 0.02 |
15 | 0.22 | 0.37 | 0.30 | 0.06 | 0.02 | 0.02 |
16 | 0.12 | 0.21 | 0.37 | 0.04 | 0.21 | 0.05 |
17 | 0.11 | 0.49 | 0.19 | 0.05 | 0.10 | 0.05 |
18 | 0.18 | 0.29 | 0.05 | 0.05 | 0.40 | 0.02 |
19 | 0.26 | 0.27 | 0.20 | 0.09 | 0.12 | 0.06 |
20 | 0.24 | 0.43 | 0.15 | 0.05 | 0.12 | 0.02 |
21 | 0.27 | 0.14 | 0.15 | 0.19 | 0.17 | 0.07 |
22 | 0.18 | 0.44 | 0.22 | 0.03 | 0.07 | 0.05 |
23 | 0.17 | 0.30 | 0.16 | 0.08 | 0.26 | 0.04 |
24 | 0.23 | 0.24 | 0.14 | 0.15 | 0.22 | 0.02 |
25 | 0.20 | 0.33 | 0.16 | 0.09 | 0.17 | 0.05 |
26 | 0.33 | 0.33 | 0.12 | 0.14 | 0.08 | 0.02 |
27 | 0.05 | 0.47 | 0.15 | 0.21 | 0.10 | 0.02 |
28 | 0.25 | 0.26 | 0.22 | 0.14 | 0.10 | 0.03 |
29 | 0.03 | 0.57 | 0.17 | 0.06 | 0.17 | 0.02 |
30 | 0.31 | 0.29 | 0.12 | 0.09 | 0.15 | 0.05 |
31 | 0.22 | 0.35 | 0.11 | 0.08 | 0.18 | 0.06 |
32 | 0.15 | 0.17 | 0.25 | 0.18 | 0.24 | 0.02 |
33 | 0.28 | 0.41 | 0.08 | 0.04 | 0.16 | 0.02 |
34 | 0.33 | 0.29 | 0.08 | 0.08 | 0.18 | 0.04 |
35 | 0.21 | 0.28 | 0.16 | 0.14 | 0.10 | 0.09 |
36 | 0.14 | 0.22 | 0.17 | 0.05 | 0.39 | 0.03 |
37 | 0.22 | 0.37 | 0.23 | 0.06 | 0.10 | 0.02 |
38 | 0.29 | 0.40 | 0.10 | 0.08 | 0.11 | 0.03 |
39 | 0.15 | 0.18 | 0.23 | 0.21 | 0.20 | 0.03 |
40 | 0.09 | 0.18 | 0.18 | 0.04 | 0.43 | 0.08 |
41 | 0.19 | 0.23 | 0.21 | 0.15 | 0.16 | 0.06 |
42 | 0.19 | 0.23 | 0.21 | 0.23 | 0.09 | 0.05 |
43 | 0.21 | 0.31 | 0.11 | 0.07 | 0.26 | 0.04 |
44 | 0.15 | 0.49 | 0.14 | 0.09 | 0.09 | 0.04 |
45 | 0.16 | 0.39 | 0.17 | 0.06 | 0.21 | 0.02 |
46 | 0.36 | 0.36 | 0.06 | 0.13 | 0.07 | 0.02 |
47 | 0.33 | 0.31 | 0.08 | 0.05 | 0.21 | 0.03 |
48 | 0.19 | 0.21 | 0.29 | 0.19 | 0.09 | 0.03 |
49 | 0.22 | 0.23 | 0.22 | 0.10 | 0.16 | 0.08 |
50 | 0.34 | 0.41 | 0.07 | 0.10 | 0.04 | 0.04 |
51 | 0.12 | 0.29 | 0.29 | 0.12 | 0.16 | 0.02 |
52 | 0.08 | 0.18 | 0.22 | 0.08 | 0.40 | 0.05 |
53 | 0.25 | 0.25 | 0.17 | 0.15 | 0.16 | 0.03 |
54 | 0.11 | 0.11 | 0.28 | 0.39 | 0.07 | 0.04 |
55 | 0.24 | 0.31 | 0.19 | 0.08 | 0.14 | 0.05 |
56 | 0.12 | 0.19 | 0.24 | 0.19 | 0.16 | 0.09 |
57 | 0.23 | 0.22 | 0.12 | 0.15 | 0.15 | 0.13 |
58 | 0.13 | 0.21 | 0.28 | 0.28 | 0.08 | 0.02 |
59 | 0.44 | 0.14 | 0.09 | 0.09 | 0.21 | 0.03 |
60 | 0.19 | 0.10 | 0.17 | 0.34 | 0.15 | 0.05 |
61 | 0.19 | 0.50 | 0.19 | 0.08 | 0.02 | 0.02 |
62 | 0.25 | 0.15 | 0.13 | 0.12 | 0.29 | 0.06 |
63 | 0.24 | 0.36 | 0.17 | 0.06 | 0.12 | 0.05 |
64 | 0.11 | 0.27 | 0.20 | 0.19 | 0.17 | 0.05 |
65 | 0.20 | 0.44 | 0.09 | 0.07 | 0.12 | 0.08 |
66 | 0.19 | 0.50 | 0.07 | 0.04 | 0.10 | 0.09 |
67 | 0.30 | 0.41 | 0.11 | 0.02 | 0.12 | 0.03 |
68 | 0.18 | 0.06 | 0.52 | 0.19 | 0.02 | 0.02 |
69 | 0.27 | 0.46 | 0.09 | 0.05 | 0.10 | 0.03 |
70 | 0.25 | 0.44 | 0.11 | 0.06 | 0.11 | 0.03 |
71 | 0.28 | 0.18 | 0.11 | 0.07 | 0.26 | 0.09 |
72 | 0.28 | 0.30 | 0.07 | 0.25 | 0.06 | 0.03 |
73 | 0.17 | 0.18 | 0.10 | 0.07 | 0.46 | 0.03 |
74 | 0.07 | 0.13 | 0.43 | 0.20 | 0.13 | 0.05 |
75 | 0.14 | 0.45 | 0.09 | 0.07 | 0.16 | 0.09 |
76 | 0.29 | 0.21 | 0.13 | 0.13 | 0.19 | 0.06 |
77 | 0.24 | 0.30 | 0.16 | 0.11 | 0.13 | 0.07 |
78 | 0.28 | 0.32 | 0.04 | 0.03 | 0.28 | 0.05 |
79 | 0.24 | 0.38 | 0.16 | 0.06 | 0.13 | 0.03 |
80 | 0.17 | 0.09 | 0.39 | 0.25 | 0.06 | 0.03 |
81 | 0.24 | 0.27 | 0.14 | 0.09 | 0.21 | 0.06 |
82 | 0.48 | 0.21 | 0.19 | 0.04 | 0.07 | 0.02 |
83 | 0.19 | 0.33 | 0.07 | 0.06 | 0.26 | 0.09 |
84 | 0.31 | 0.36 | 0.12 | 0.03 | 0.16 | 0.02 |
85 | 0.08 | 0.12 | 0.09 | 0.36 | 0.27 | 0.09 |
86 | 0.26 | 0.24 | 0.16 | 0.13 | 0.15 | 0.07 |
87 | 0.21 | 0.60 | 0.05 | 0.03 | 0.04 | 0.07 |
88 | 0.15 | 0.29 | 0.24 | 0.23 | 0.07 | 0.02 |
89 | 0.12 | 0.36 | 0.21 | 0.14 | 0.13 | 0.04 |
90 | 0.27 | 0.29 | 0.25 | 0.09 | 0.07 | 0.03 |
91 | 0.35 | 0.13 | 0.10 | 0.16 | 0.18 | 0.09 |
92 | 0.27 | 0.24 | 0.15 | 0.11 | 0.15 | 0.08 |
93 | 0.04 | 0.31 | 0.21 | 0.21 | 0.18 | 0.06 |
94 | 0.16 | 0.18 | 0.23 | 0.13 | 0.27 | 0.02 |
95 | 0.33 | 0.36 | 0.10 | 0.08 | 0.08 | 0.05 |
96 | 0.27 | 0.13 | 0.25 | 0.14 | 0.13 | 0.08 |
97 | 0.07 | 0.60 | 0.11 | 0.11 | 0.07 | 0.04 |
98 | 0.23 | 0.50 | 0.03 | 0.03 | 0.19 | 0.03 |
99 | 0.24 | 0.19 | 0.18 | 0.14 | 0.18 | 0.07 |
100 | 0.24 | 0.20 | 0.16 | 0.14 | 0.18 | 0.08 |
101 | 0.02 | 0.19 | 0.20 | 0.04 | 0.50 | 0.05 |
102 | 0.23 | 0.22 | 0.11 | 0.12 | 0.14 | 0.17 |
103 | 0.41 | 0.41 | 0.05 | 0.04 | 0.05 | 0.05 |
Group B | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
1 | 0.20 | 0.18 | 0.24 | 0.16 | 0.12 | 0.10 |
2 | 0.33 | 0.25 | 0.11 | 0.08 | 0.14 | 0.08 |
3 | 0.21 | 0.25 | 0.24 | 0.09 | 0.18 | 0.03 |
4 | 0.13 | 0.30 | 0.25 | 0.20 | 0.09 | 0.03 |
5 | 0.27 | 0.13 | 0.23 | 0.24 | 0.08 | 0.05 |
6 | 0.26 | 0.16 | 0.15 | 0.16 | 0.20 | 0.07 |
7 | 0.53 | 0.13 | 0.11 | 0.05 | 0.13 | 0.05 |
8 | 0.24 | 0.17 | 0.16 | 0.11 | 0.30 | 0.02 |
9 | 0.18 | 0.17 | 0.16 | 0.17 | 0.17 | 0.17 |
10 | 0.17 | 0.16 | 0.23 | 0.19 | 0.20 | 0.05 |
11 | 0.11 | 0.18 | 0.34 | 0.10 | 0.22 | 0.05 |
12 | 0.25 | 0.16 | 0.21 | 0.20 | 0.13 | 0.05 |
13 | 0.17 | 0.13 | 0.23 | 0.15 | 0.24 | 0.09 |
14 | 0.16 | 0.10 | 0.13 | 0.38 | 0.16 | 0.07 |
15 | 0.06 | 0.07 | 0.27 | 0.37 | 0.21 | 0.02 |
16 | 0.09 | 0.10 | 0.16 | 0.59 | 0.03 | 0.03 |
17 | 0.22 | 0.11 | 0.45 | 0.11 | 0.08 | 0.02 |
18 | 0.13 | 0.15 | 0.35 | 0.24 | 0.10 | 0.03 |
19 | 0.17 | 0.08 | 0.22 | 0.13 | 0.37 | 0.03 |
20 | 0.19 | 0.19 | 0.15 | 0.16 | 0.18 | 0.15 |
21 | 0.16 | 0.16 | 0.20 | 0.16 | 0.16 | 0.15 |
22 | 0.13 | 0.10 | 0.24 | 0.24 | 0.23 | 0.07 |
23 | 0.04 | 0.44 | 0.20 | 0.05 | 0.25 | 0.03 |
24 | 0.30 | 0.17 | 0.12 | 0.12 | 0.19 | 0.10 |
25 | 0.15 | 0.15 | 0.23 | 0.18 | 0.23 | 0.08 |
26 | 0.08 | 0.05 | 0.19 | 0.51 | 0.15 | 0.02 |
27 | 0.16 | 0.39 | 0.18 | 0.13 | 0.11 | 0.03 |
28 | 0.36 | 0.18 | 0.07 | 0.04 | 0.33 | 0.02 |
29 | 0.21 | 0.08 | 0.28 | 0.09 | 0.29 | 0.05 |
30 | 0.07 | 0.48 | 0.16 | 0.10 | 0.11 | 0.08 |
31 | 0.12 | 0.34 | 0.21 | 0.12 | 0.13 | 0.07 |
32 | 0.20 | 0.12 | 0.30 | 0.10 | 0.16 | 0.12 |
33 | 0.12 | 0.08 | 0.43 | 0.24 | 0.10 | 0.04 |
34 | 0.35 | 0.06 | 0.14 | 0.26 | 0.16 | 0.03 |
35 | 0.27 | 0.09 | 0.14 | 0.14 | 0.24 | 0.12 |
36 | 0.15 | 0.28 | 0.18 | 0.11 | 0.25 | 0.03 |
37 | 0.16 | 0.10 | 0.31 | 0.34 | 0.05 | 0.04 |
38 | 0.24 | 0.10 | 0.12 | 0.43 | 0.07 | 0.05 |
39 | 0.09 | 0.09 | 0.35 | 0.25 | 0.15 | 0.07 |
40 | 0.26 | 0.25 | 0.25 | 0.04 | 0.16 | 0.03 |
41 | 0.11 | 0.11 | 0.31 | 0.34 | 0.09 | 0.03 |
42 | 0.23 | 0.37 | 0.17 | 0.06 | 0.14 | 0.03 |
43 | 0.20 | 0.06 | 0.16 | 0.17 | 0.29 | 0.12 |
44 | 0.15 | 0.47 | 0.18 | 0.07 | 0.11 | 0.02 |
45 | 0.20 | 0.15 | 0.19 | 0.16 | 0.18 | 0.12 |
46 | 0.20 | 0.28 | 0.25 | 0.10 | 0.10 | 0.08 |
47 | 0.22 | 0.23 | 0.20 | 0.08 | 0.23 | 0.05 |
48 | 0.21 | 0.20 | 0.16 | 0.13 | 0.25 | 0.04 |
49 | 0.19 | 0.44 | 0.07 | 0.03 | 0.25 | 0.02 |
50 | 0.08 | 0.18 | 0.06 | 0.37 | 0.25 | 0.06 |
51 | 0.16 | 0.24 | 0.35 | 0.08 | 0.14 | 0.03 |
52 | 0.07 | 0.31 | 0.19 | 0.09 | 0.30 | 0.04 |
53 | 0.17 | 0.17 | 0.18 | 0.12 | 0.16 | 0.20 |
54 | 0.28 | 0.14 | 0.06 | 0.08 | 0.39 | 0.04 |
55 | 0.24 | 0.22 | 0.11 | 0.14 | 0.17 | 0.11 |
56 | 0.17 | 0.23 | 0.15 | 0.13 | 0.17 | 0.16 |
57 | 0.34 | 0.27 | 0.16 | 0.10 | 0.12 | 0.02 |
58 | 0.35 | 0.10 | 0.06 | 0.18 | 0.12 | 0.18 |
59 | 0.10 | 0.14 | 0.15 | 0.37 | 0.18 | 0.06 |
60 | 0.11 | 0.51 | 0.14 | 0.12 | 0.05 | 0.07 |
61 | 0.14 | 0.13 | 0.22 | 0.25 | 0.19 | 0.08 |
62 | 0.11 | 0.18 | 0.36 | 0.22 | 0.10 | 0.02 |
63 | 0.16 | 0.20 | 0.19 | 0.25 | 0.12 | 0.09 |
64 | 0.25 | 0.28 | 0.12 | 0.14 | 0.17 | 0.05 |
65 | 0.37 | 0.31 | 0.12 | 0.08 | 0.10 | 0.02 |
66 | 0.10 | 0.36 | 0.12 | 0.21 | 0.18 | 0.03 |
67 | 0.14 | 0.12 | 0.16 | 0.32 | 0.13 | 0.13 |
68 | 0.26 | 0.18 | 0.12 | 0.10 | 0.19 | 0.15 |
69 | 0.22 | 0.31 | 0.12 | 0.14 | 0.18 | 0.04 |
70 | 0.16 | 0.12 | 0.13 | 0.24 | 0.29 | 0.06 |
71 | 0.07 | 0.34 | 0.21 | 0.14 | 0.21 | 0.04 |
72 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
73 | 0.15 | 0.17 | 0.21 | 0.12 | 0.29 | 0.06 |
74 | 0.22 | 0.11 | 0.03 | 0.06 | 0.56 | 0.02 |
75 | 0.41 | 0.03 | 0.23 | 0.24 | 0.07 | 0.03 |
76 | 0.19 | 0.19 | 0.39 | 0.10 | 0.11 | 0.02 |
77 | 0.05 | 0.30 | 0.35 | 0.10 | 0.18 | 0.02 |
78 | 0.17 | 0.20 | 0.25 | 0.13 | 0.21 | 0.05 |
79 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
80 | 0.13 | 0.32 | 0.21 | 0.10 | 0.19 | 0.06 |
81 | 0.29 | 0.24 | 0.12 | 0.11 | 0.22 | 0.02 |
82 | 0.15 | 0.12 | 0.31 | 0.14 | 0.16 | 0.11 |
83 | 0.19 | 0.32 | 0.10 | 0.13 | 0.13 | 0.13 |
84 | 0.26 | 0.06 | 0.32 | 0.10 | 0.20 | 0.06 |
85 | 0.11 | 0.10 | 0.22 | 0.42 | 0.11 | 0.04 |
86 | 0.26 | 0.26 | 0.19 | 0.09 | 0.18 | 0.02 |
87 | 0.13 | 0.40 | 0.26 | 0.06 | 0.12 | 0.03 |
88 | 0.22 | 0.39 | 0.17 | 0.09 | 0.07 | 0.05 |
89 | 0.06 | 0.24 | 0.16 | 0.15 | 0.37 | 0.02 |
90 | 0.14 | 0.33 | 0.22 | 0.14 | 0.09 | 0.07 |
91 | 0.15 | 0.16 | 0.29 | 0.26 | 0.10 | 0.04 |
92 | 0.35 | 0.12 | 0.06 | 0.05 | 0.33 | 0.08 |
93 | 0.41 | 0.24 | 0.11 | 0.04 | 0.16 | 0.04 |
94 | 0.24 | 0.15 | 0.42 | 0.09 | 0.06 | 0.03 |
95 | 0.29 | 0.24 | 0.12 | 0.14 | 0.13 | 0.08 |
96 | 0.15 | 0.06 | 0.23 | 0.32 | 0.20 | 0.04 |
References
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–292. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A. Elimination by aspects: A theory of choice. Psychol. Rev. 1972, 79, 281–299. [Google Scholar] [CrossRef]
- Loke, W.H.; Tan, K.F. Effects of framing and missing information in expert and novice judgment. Bull. Psychon. Soc. 1992, 30, 187–190. [Google Scholar] [CrossRef]
- Turskis, Z.; Dzitac, S.; Stankiuviene, A.; Šukys, R. A Fuzzy Group Decision-making Model for Determining the Most Influential Persons in the Sustainable Prevention of Accidents in the Construction SMEs. Int. J. Comput. Commun. Control 2019, 14, 90–106. [Google Scholar] [CrossRef]
- Kazak, J.K.; van Hoof, J. Decision support systems for a sustainable management of the indoor and built environment. Indoor Built Environ. 2018, 27, 1303–1306. [Google Scholar] [CrossRef] [Green Version]
- Hämäläinen, R.P.; Luoma, J.; Saarinen, E. On the importance of behavioral operational research: The case of understanding and communicating about dynamic systems. Eur. J. Oper. Res. 2013, 228, 623–634. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Choices, values, and frames. Am. Psychol. 1984, 39, 341–350. [Google Scholar] [CrossRef]
- Barberis, N.C. Thirty years of prospect theory in economics: A review and assessment. J. Econ. Perspect. 2013, 27, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Zhang, Y.; Yang, Z.; Huang, Y.; Feng, J.; Zhang, W. The framing effect in medical decision-making: A review of the literature. Psychol. Health Med. 2013, 18, 645–653. [Google Scholar] [CrossRef]
- Montibeller, G.; von Winterfeldt, D. Cognitive and Motivational Biases in Decision and Risk Analysis. Risk Anal. 2015, 35, 1230–1251. [Google Scholar] [CrossRef]
- O’Keefe, R.M. Experimental behavioural research in operational research: What we know and what we might come to know. Eur. J. Oper. Res. 2016, 249, 899–907. [Google Scholar] [CrossRef]
- Borrero, S.; Icesi, U.; Henao, F.; Icesi, U. Can mangers be really objective? Bias in Multicriterial Decision Analysis. Acad. Strateg. Manag. J. 2017, 16, 244–259. [Google Scholar]
- Tversky, A.; Kahneman, D. The Framing of Decisions and the Psychology of Choice. In Environmental Impact Assessment, Technology Assessment, and Risk Analysis; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1, pp. 107–129. ISBN 9781315196350. [Google Scholar]
- Arnott, D. Cognitive biases and decision support systems development: A design science approach. Inf. Syst. J. 2006, 16, 55–78. [Google Scholar] [CrossRef]
- Montibeller, G.; Von Winterfeldt, D. Biases and debiasing in multi-criteria decision analysis. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2015, 1218–1226. [Google Scholar] [CrossRef]
- George, J.F.; Duffy, K.; Ahuja, M. Countering the anchoring and adjustment bias with decision support systems. Decis. Support Syst. 2000, 29, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.; Vazquez Novoa, N. The decoy effect in relative performance evaluation and the debiasing role of DEA. Eur. J. Oper. Res. 2016, 249, 959–967. [Google Scholar] [CrossRef]
- Ferretti, V.; Guney, S.; Montibeller, G.; Von Winterfeldt, D. Testing best practices to reduce the overconfidence bias in multi-criteria decision analysis. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2016, 2016, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.P.; Schneider, S.L.; Gaeth, G.J. All Frames Are Not Created Equal: A Typology and Critical Analysis of Framing Effects. Organ. Behav. Hum. Decis. Process. 1998, 76, 149–188. [Google Scholar] [CrossRef] [Green Version]
- Kühberger, A. The Influence of Framing on Risky Decisions: A Meta-analysis. Organ. Behav. Hum. Decis. Process. 1998, 75, 23–55. [Google Scholar] [CrossRef]
- Steiger, A.; Kühberger, A. A meta-analytic re-appraisal of the framing effect. J. Psychol. 2018, 226, 45–55. [Google Scholar] [CrossRef]
- Beratšová, A.; Krchová, K.; Gažová, N.; Jirásek, M. Framing and Bias: A Literature Review of Recent Findings. Cent. Eur. J. Manag. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Piñon, A.; Gambara, H. A meta-analytic review of framming effect: Risky, attribute and goal framing. Psicothema 2005, 17, 325–331. [Google Scholar]
- Kahneman, D.; Knetsch, J.L.; Thaler, R.H. Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias. J. Econ. Perspect. 1991, 5, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. Advances in Prospect Theory: Cumulative Representation of Uncertainty. J. Risk Uncertain. 1992, 323, 44–66. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Weber, M.; Borcherding, K. Behavioral influences on weight judgments in multiattribute decision making. Eur. J. Oper. Res. 1993, 67, 1–12. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Zavadskas, E.K.; Peldschus, F. Multi-criteria optimization system for decision making in construction design and management. Eng. Econ. 2009, 1, 7–17. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Russo, R.D.F.S.M.; Camanho, R. Criteria in AHP: A systematic review of literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Pöyhönen, M.; Hämäläinen, R.P. On the convergence of multiattribute weighting methods. Eur. J. Oper. Res. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks; Springer: Pittsburgh, PA, USA, 2006; ISBN 9780387338590. [Google Scholar]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossadnik, W.; Schinke, S.; Kaspar, R.H. Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Gr. Decis. Negot. 2016, 25, 421–457. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Ishizaka, A.; Lusti, M. How to derive priorities in AHP: A comparative study. Cent. Eur. J. Oper. Res. 2006, 14, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Aull-Hyde, R.; Erdogan, S.; Duke, J.M. An experiment on the consistency of aggregated comparison matrices in AHP. Eur. J. Oper. Res. 2006, 171, 290–295. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Edwards, W. How to Use Multiattribute Utility Measurement for Social Decisionmaking. IEEE Trans. Syst. Man Cybern. 1977, 7, 326–340. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H.; Rajala, D.W. Decisions with Multiple Objectives: Preferences and Value Trade-Offs. IEEE Trans. Syst. Man. Cybern. 1979, 9, 403. [Google Scholar] [CrossRef]
- Bates, D.M.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Cho, F. Analytic Hierarchy Process for Survey Data in R. Vignettes Ahpsurvey Package (ver 0.4.0). 2019, 26. Available online: https://cran.r-project.org/web/packages/ahpsurvey/vignettes/my-vignette.html (accessed on 30 October 2020).
- Salo, A.A.; Hämäläinen, R.P. On the measurement of preferences in the analytic hierarchy process. J. Multi-Criteria Decis. Anal. 1997, 6, 309–319. [Google Scholar] [CrossRef]
- Pöyhönen, M.A.; Hämäläinen, R.P.; Salo, A.A. An experiment on the numerical modelling of verbal ratio statements. J. Multi-Criteria Decis. Anal. 1997, 6, 1–10. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Almashat, S.; Ayotte, B.; Edelstein, B.; Margrett, J. Framing effect debiasing in medical decision making. Patient Educ. Couns. 2008, 71, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Ivlev, I.; Kneppo, P.; Bartak, M. Multicriteria decision analysis: A multifaceted approach to medical equipment management. Technol. Econ. Dev. Econ. 2014, 20, 576–589. [Google Scholar] [CrossRef]
- Oddershede, A.M.; Quezada, L.E.; Cordova, F.M.; Carrasco, R.A. Decision support for healthcare ICT network system appraisal. Int. J. Comput. Commun. Control 2012, 7, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Lukic, D.; Cep, R.; Vukman, J.; Antic, A.; Djurdjev, M.; Milosevic, M. Multi-Criteria Selection of the Optimal Parameters for High-Speed Machining of Aluminum Alloy Al7075 Thin-Walled Parts. Metals 2020, 10, 1570. [Google Scholar] [CrossRef]
- Loke, W.H.; Lau, S.L.L. Effects of framing and mathematical experience on judgments. Bull. Psychon. Soc. 1992, 30, 393–395. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.P.; Werner, M.D. Putting Framing in Perspective: A Review of Framing and Frame Analysis across the Management and Organizational Literature. Acad. Manag. Ann. 2014, 8, 181–235. [Google Scholar] [CrossRef]
- O’Sullivan, E.; Schofield, S. Cognitive bias in clinical medicine. J. R. Coll. Physicians Edinb. 2018, 48, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ritter, J.R. Behavioral finance. Pacific Basin Financ. J. 2003, 11, 429–437. [Google Scholar] [CrossRef]
- Zindel, M.L.; Zindel, T.; Quirino, M.G. Cognitive Bias and their Implications on the Financial Market. Int. J. Eng. Technol. 2014, 14. [Google Scholar]
- Baybutt, P. The validity of engineering judgment and expert opinion in hazard and risk analysis: The influence of cognitive biases. Process Saf. Prog. 2018, 37, 205–210. [Google Scholar] [CrossRef]
- Vermillion, S.D.; Malak, R.J.; Smallman, R.; Linsey, J. A Study on Outcome Framing and Risk Attitude in Engineering Decisions under Uncertainty. J. Mech. Des. Trans. ASME 2015, 137, 1–4. [Google Scholar] [CrossRef]
- Zamir, E. Law, Psychology, and Morality: The Role of Loss Aversion; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Wu, Z.; Abdul-Nour, G. Comparison of Multi-Criteria Group Decision-Making Methods for Urban Sewer Network Plan Selection. CivilEng 2020, 1, 26–48. [Google Scholar] [CrossRef]
- Maghsoodi, A.I.; Afezalkotob, A.; Ari, I.A.; Maghsoodi, S.I.; Hafezalkotob, A. Selection of waste lubricant oil regenerative technology using entropy-weighted risk-based fuzzy axiomatic design approach. Informatica 2018, 29, 41–74. [Google Scholar] [CrossRef]
- Peng, X.; Huang, H. Fuzzy Decision Making Method Based on Cocoso With Critic for Financial Risk Evaluation. Technol. Econ. Dev. Econ. 2020, 26, 695–724. [Google Scholar] [CrossRef] [Green Version]
- Just, M.; Luczak, A. Assessment of conditional dependence structures in commodity futures markets using copula-GARCH models and fuzzy clustering methods. Sustainability 2020, 12, 2571. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, K.; Karayannis, V. Supportiveness of low-carbon energy technology policy using fuzzy multicriteria decision-making methodologies. Mathematics 2020, 8, 1178. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. Multiple criteria decision making (MCDM) methods in economics: An overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.F.; Wu, C.S. Debiasing the framing effect: The effect of warning and involvement. Decis. Support Syst. 2010, 49, 328–334. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Z.; Gu, J. An extended TODIM based on cumulative prospect theory and its application in venture capital. Informatica 2019, 30, 413–429. [Google Scholar] [CrossRef]
- Wang, T.C.; Chen, Y.H. A new method on decision-making using fuzzy linguistic assessment variables and fuzzy preference relations. In Proceedings of the WMSCI 2005—The 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 10–13 July 2005; Volume 1, pp. 360–363. [Google Scholar]
- Chandrawati, T.B.; Ratna, A.A.P.; Sari, R.F. Path selection using fuzzy weight aggregated sum product assessment. Int. J. Comput. Commun. Control 2020, 15, 1–19. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wang, T.-C.; Wu, C.-Y. Multi-criteria decision making with fuzzy linguistic preference relations. Appl. Math. Model. 2011, 35, 1322–1330. [Google Scholar] [CrossRef]
- Kabir, G.; Ahsan Akhtar Hasin, M. Comparative Analysis of Ahp and Fuzzy Ahp Models for Multicriteria Inventory Classification. Int. J. Fuzzy Log. Syst. 2011, 1, 1–16. [Google Scholar]
- Mulubrhan, F.; Mokhtar, A.A.; Muhammad, M. Comparative analysis between fuzzy and traditional analytical hierarchy process. MATEC Web Conf. 2014, 13, 01006. [Google Scholar] [CrossRef] [Green Version]
- Reig-Mullor, J.; Pla-Santamaria, D.; Garcia-Bernabeu, A. Extended fuzzy analytic hierarchy process (E-fahp): A general approach. Mathematics 2020, 8, 2014. [Google Scholar] [CrossRef]
- Phochanikorn, P.; Tan, C. An Integrated Multi-Criteria Decision-Making Model Based on Prospect Theory for Green Supplier Selection under Uncertain Environment: A Case Study of the Thailand Palm Oil Products Industry. Sustainability 2019, 11, 1872. [Google Scholar] [CrossRef] [Green Version]
- Deniz, N. Cognitive biases in MCDM methods: An embedded filter proposal through sustainable supplier selection problem. J. Enterp. Inf. Manag. 2020, 33, 947–963. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Yeh, S.H.; Chang, W.C. Multi-criteria decision making of contractor selection in mass rapid transit station development using bayesian fuzzy prospect model. Sustainability 2020, 12, 4606. [Google Scholar] [CrossRef]
- Li, N.; Zhang, H.; Zhang, X.; Ma, X.; Guo, S. How to select the optimal electrochemical energy storage planning program? a hybridmcdmmethod. Energies 2020, 13, 931. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wei, G.; Wei, C.; Wu, J.; Guo, Y. Extended TODIM Based on Cumulative Prospect Theory for Picture Fuzzy Multiple Attribute Group Decision Making. Informatica 2020, 1–22. [Google Scholar] [CrossRef]
Intensity of Importance on an Absolute Scale | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
3 | Moderate importance | Experience and judgment slightly favor one activity over another |
5 | Essential or strong importance | Experience and judgment strongly favor one activity over another |
7 | Very strong importance | An activity is very strongly favored and its dominance demonstrated in practice |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
Reciprocals | If activity i has one of the above numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i | |
2, 4, 6, 8 | Intermediate values can be used when compromise is needed |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.40 | 1.49 |
Group A | Group B | |||
---|---|---|---|---|
test | Criterion 1− | Criterion 3 constant | Criterion 1+ | Criterion 3 constant |
Criterion 2− | Criterion 4 constant | Criterion 2+ | Criterion 4 constant | |
Criterion 2− | Criterion 3 constant | Criterion 2+ | Criterion 3 constant | |
Criterion 1− | Criterion 4 constant | Criterion 1+ | Criterion 4 constant | |
control | Criterion 5 constant | Criterion 3 constant | Criterion 5 constant | Criterion 3 constant |
Criterion 6 constant | Criterion 4 constant | Criterion 6 constant | Criterion 4 constant | |
Criterion 6 constant | Criterion 3 constant | Criterion 6 constant | Criterion 3 constant | |
Criterion 5 constant | Criterion 4 constant | Criterion 5 constant | Criterion 4 constant |
A Group | B Group | |||
---|---|---|---|---|
Criterion | Weight | Rank | Weight | Rank |
C1: Doctors | 0.192 | 2 | 0.172 | 3 |
C2: Hospital beds | 0.262 | 1 | 0.174 | 2 |
C3: Local outbreaks | 0.144 | 3 | 0.180 | 1 |
C4: Imported cases | 0.094 | 5 | 0.140 | 5 |
C5: PCR tests | 0.139 | 4 | 0.157 | 4 |
C6: Disinfectant & protective equipment | 0.041 | 6 | 0.050 | 6 |
A Group | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 | 1.00 | 0.96 | 1.03 | 2.07 | 1.49 | 4.33 |
C2 | 1.04 | 1.00 | 2.37 | 3.09 | 1.89 | 5.49 |
C3 | 0.97 | 0.42 | 1.00 | 1.60 | 0.96 | 3.27 |
C4 | 0.48 | 0.32 | 0.62 | 1.00 | 0.67 | 2.61 |
C5 | 0.67 | 0.53 | 1.04 | 1.49 | 1.00 | 3.59 |
C6 | 0.23 | 0.18 | 0.31 | 0.38 | 0.28 | 1.00 |
CR = 0.008 |
B Group | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 | 1.00 | 1.01 | 1.01 | 1.14 | 1.07 | 3.06 |
C2 | 0.99 | 1.00 | 0.97 | 1.31 | 1.08 | 3.21 |
C3 | 0.99 | 1.03 | 1.00 | 1.45 | 0.98 | 3.55 |
C4 | 0.87 | 0.76 | 0.69 | 1.00 | 0.92 | 3.14 |
C5 | 0.94 | 0.93 | 1.02 | 1.09 | 1.00 | 3.00 |
C6 | 0.33 | 0.31 | 0.28 | 0.32 | 0.33 | 1.00 |
CR = 0.002 |
A Group | B Group | |||
---|---|---|---|---|
Criterion | Weight | Rank | Weight | Rank |
C1: Doctors | 0.223 | 2 | 0.193 | 3 |
C2: Hospital beds | 0.300 | 1 | 0.197 | 2 |
C3: Local outbreaks | 0.163 | 3 | 0.203 | 1 |
C4: Imported cases | 0.107 | 5 | 0.162 | 5 |
C5: PCR tests | 0.160 | 4 | 0.185 | 4 |
C6: Disinfectant & protective equipment | 0.048 | 6 | 0.059 | 6 |
A Group | B Group | |||
---|---|---|---|---|
Alternative | Relative Closeness | Rank | Relative Closeness | Rank |
Alternative1 | 0.3769 | 3 | 0.4054 | 3 |
Alternative2 | 0.4930 | 2 | 0.5242 | 1 |
Alternative3 | 0.5618 | 1 | 0.4582 | 2 |
A Group | B Group | |||
---|---|---|---|---|
Alternative | Relative Closeness | Rank | Relative Closeness | Rank |
Alternative1 | 0.3804 | 3 | 0.4046 | 3 |
Alternative2 | 0.4896 | 2 | 0.5245 | 1 |
Alternative3 | 0.5607 | 1 | 0.4604 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnik-Leroy, G.A.; Dzemyda, G. How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases. Mathematics 2021, 9, 121. https://doi.org/10.3390/math9020121
Melnik-Leroy GA, Dzemyda G. How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases. Mathematics. 2021; 9(2):121. https://doi.org/10.3390/math9020121
Chicago/Turabian StyleMelnik-Leroy, Gerda Ana, and Gintautas Dzemyda. 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases" Mathematics 9, no. 2: 121. https://doi.org/10.3390/math9020121
APA StyleMelnik-Leroy, G. A., & Dzemyda, G. (2021). How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases. Mathematics, 9(2), 121. https://doi.org/10.3390/math9020121