New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators
Abstract
:1. Introduction
- i
- In case of , the generalized operator in (3) reduces to generalized fractional integral of Ψ with respect to another function such as Φ on :
- ii
- In case of , the operator in (3) overlaps with the generalized –fractional integral of Ψ, this relation is seen as:
- iii
- In case of , the operator in (3) coincides to generalized Hadamard –fractional integral of Ψ, this case can be shown as:
- iv
- In case of , for , the operator in (3) reduces to generalized –fractional integral of Ψ, associated definition can be given as:
- -
- If we take the definition turns into fractional integrals of function with respect to another function (see [10]).
- -
- If we set , then the definition reduces to -fractional operators (see [15]).
- -
- If we choose and the definition coincides with the Hadamard fractional integrals (see [10]).
- -
- If we select , for , the definition overlaps with –fractional integral operators (see [17]).
- -
- Finally, if we set , for and , the definition reduces to the Katugampola fractional integral operators (see [28]).
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chebyshev, P.L. Sur les expressions approximatives des intėgrales par les auters prises entre les mėmes limites. Proc. Math. Soc. Charkov. 1982, 2, 93–98. [Google Scholar]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Ntouyas, S.K.; Agarwal, P.; Tariboon, J. On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 2016, 10, 491–504. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Aktan, N.; Yıldırım, H. On weighted Chebyshev-Grüss like inequalities on time scales. J. Math. Inequal. 2008, 2, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Sarıkaya, M.Z.; Kiriş, M.E. On Ostrowski type inequalities and Chebyshev type inequalities with applications. Filomat 2015, 29, 123–130. [Google Scholar]
- Set, E.; Choi, J.; Mumcu, I. Chebyshev type inequalities involving generalized Katugampola fractional integral operators. Tamkang J. Math. 2019, 50, 381–390. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.E.; Demirbaş, S. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Math. 2020, 5, 3573–3583. [Google Scholar] [CrossRef]
- Set, E.; Sarıkaya, M.Z.; Ahmad, F. A generalization of Chebyshev type inequalities for first differentiable mappings. Miskolc Math. Notes 2011, 12, 245–253. [Google Scholar] [CrossRef]
- Set, E.; Dahmani, Z.; Mumcu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality. Int. J. Optim. Control Theor. Appl. 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA; London, UK; Tokyo, Japan; Toronto, ON, Canada, 1999; Volume 198. [Google Scholar]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential (s,m)—Convex functions. Eng. Appl. Sci. Lett. 2020, 3, 32–39. [Google Scholar]
- Farid, G. Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 2019, 3, 210–216. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Noor, M.A.; Cristescu, G.; Awan, M.U. Generalized fractional Hermite-Hadamard inequalities for twice differentiable s-convex functions. Filomat 2015, 29, 807–815. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Dahmani, Z.; Kiris, M.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 3, 77–89. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mapping whose derivatives are s—Convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Çelik, B. Generalized fractional Hermite-Hadamard type inequalities for m-convex and (α,m)-convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 333–344. [Google Scholar]
- Set, E.; Çelik, B. Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators. Creat. Math. Inform. 2017, 26, 321–330. [Google Scholar]
- Set, E.; Iscan, I.; Sarikaya, M.Z.; Özdemir, M.E. On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Noor, M.A.; Awan, M.U.; Gozpinar, A. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequalities Appl. 2017, 2017, 169. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Sarıkaya, M.Z.; Özdemir, M.E.; Yıldırım, H. The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 2014, 10, 69–83. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pachhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Tunc, T.; Budak, H.; Usta, F.; Sarikaya, M.Z. On New Generalized Fractional Integral Operators and Related Fractional Inequalities, ResearchGate Article. Available online: https://www.researchgate.net/publication/313650587 (accessed on 12 October 2020).
- Agarwal, R.P.; Luo, M.-J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 204, 5–27. [Google Scholar] [CrossRef]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k;h)-Riemann-Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics 2021, 9, 122. https://doi.org/10.3390/math9020122
Akdemir AO, Butt SI, Nadeem M, Ragusa MA. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics. 2021; 9(2):122. https://doi.org/10.3390/math9020122
Chicago/Turabian StyleAkdemir, Ahmet Ocak, Saad Ihsan Butt, Muhammad Nadeem, and Maria Alessandra Ragusa. 2021. "New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators" Mathematics 9, no. 2: 122. https://doi.org/10.3390/math9020122
APA StyleAkdemir, A. O., Butt, S. I., Nadeem, M., & Ragusa, M. A. (2021). New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics, 9(2), 122. https://doi.org/10.3390/math9020122