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Abstract

:

The paper develops a sub-supersolution approach for quasilinear elliptic equations driven by degenerated p-Laplacian and containing a convection term. The presence of the degenerated operator forces a substantial change to the functional setting of previous works. The existence and location of solutions through a sub-supersolution is established. The abstract result is applied to find nontrivial, nonnegative and bounded solutions.
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1. Introduction


In this paper, we study the following quasilinear elliptic problem


       − div ( a  ( x )  | ∇ u  |  p − 2   ∇ u ) = f  ( x , u , ∇ u )      in  Ω          u = 0     on  ∂ Ω       



(P)




on a bounded domain    Ω ⊂   R  N     with    N ≥ 2    and    p ∈ ( 1 , N )   . We assume that the boundary    ∂ Ω    of   Ω   is locally Lipschitzian, i.e., each point of    ∂ Ω    has a neighborhood whose intersection with    ∂ Ω    is the graph of a Lipschitz continuous function. Throughout the text we denote by    | · |    and · the standard Euclidean norm and scalar product on    R N   , respectively. A main feature of the present work is that the leading part of the equation in (P) is the differential operator in divergence form    div ( a  ( x )  | ∇ u  |  p − 2   ∇ u )    known as the degenerated p-Laplacian with the weight    a ∈  L loc 1   ( Ω )    . It is supposed that the function a be positive almost everywhere in   Ω   and that the following condition holds


    a  − s   ∈  L 1   ( Ω )    for  some  s ∈   N p  , + ∞  ∩   1  p − 1   , + ∞  .   



(1)







In the case where    a ( x ) ≡ 1    we recover the ordinary p-Laplacian. Various examples of useful weights meeting the requirement (1) are given in [1]. For instance, it is obvious that defining    a ( x ) = dist ( x , S )    for    x ∈ Ω   , with a nonempty closed subset S of    ∂ Ω   , one obtains a function a on   Ω   for which (1) holds true with any listed s.



The natural space associated with problem (P) is     W 0  1 , p    ( a , Ω )     that is the closure of     C 0 ∞   ( Ω )     in the weighted Sobolev space     W  1 , p    ( a , Ω )    . In Section 2 we briefly survey the spaces     W  1 , p    ( a , Ω )     and     W 0  1 , p    ( a , Ω )    . The (negative) degenerated p-Laplacian with the weight    a ∈  L loc 1   ( Ω )     under condition (1) is defined on     W 0  1 , p    ( a , Ω )     and takes values in the dual space     (  W 0  1 , p    ( a , Ω )  )  *   .



Corresponding to the constant s in (1) we set


    p s  =    p s   s + 1      








and the Sobolev critical exponent     p s *  =   N  p s    N −  p s       (we note that    1 ≤  p s  < N   ). There is a continuous embedding     W  1 , p    ( a , Ω )  ↪  L  p s *    ( Ω )    , so a continuous embedding     L   (  p s *  )  ′    ( Ω )  ↪   (  W 0  1 , p    ( a , Ω )  )  *    , where     (  p s *  )  ′    stands for the Hölder conjugate of    p s *   , i.e.,      (  p s *  )  ′  =   p s *    p s *  − 1     . In order to handle problem (P) the idea is to arrange that the right-hand side    f ( x , u , ∇ u )    become an element of     L   (  p s *  )  ′    ( Ω )    , which basically will be achieved through an adequate growth condition (see Hypothesis 1). We emphasize that the nonlinearity    f ( x , u , ∇ u )    depends on the solution u and on its gradient    ∇ u   , which generally makes the variational methods be ineffective. Such a term    f ( x , u , ∇ u )    is often called convection. It is expressed by means of a function    f : Ω × R ×  R N  → R    that is Carathéodory, i.e.,    f ( · , t , ξ )    is measurable for every     ( t , ξ )  ∈ R ×  R N     and    f ( x , · , · )    is continuous for a.e.    x ∈ Ω   .



The goal of our work is to build a systematical approach to problem (P) via the method of sub-supersolution. It is for the first time when the method of sub-supersolution is implemented for problem (P) involving the degenerated p-Laplacian and related convection. In this respect, the functional setting is adapted to the novel situation of degenerated operators relying in an essential way on the associated exponent    p s   . For results on the method of sub-supersolution applied to problems exhibiting convection terms but not driven by degenerated differential operators we refer to [2,3,4,5,6].



By a (weak) solution to problem (P) we mean a function    u ∈  W 0  1 , p    ( a , Ω )     such that    f  ( x , u , ∇ u )  ∈  L   (  p s *  )  ′    ( Ω )     and


      ∫ Ω  a  ( x )    | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  · ∇ v  ( x )  d x =  ∫ Ω  f  ( x , u  ( x )  , ∇ u  ( x )  )  v  ( x )  d x ,  ∀ v ∈  W 0  1 , p    ( a , Ω )  .   



(2)







A function     u ̲  ∈  W  1 , p    ( a , Ω )     is called a subsolution for problem (P) if     u ̲  ≤ 0    on    ∂ Ω    (in the sense of traces),    f  ( · ,  u ̲   ( · )  , ∇  u ̲   ( · )  )  ∈  L   (  p s *  )  ′    ( Ω )     and


        ∫ Ω  a  ( x )    | ∇  u ̲   ( x )  |   p − 2   ∇  u ̲   ( x )  · ∇ v  ( x )  d x ≤  ∫ Ω  f  ( x ,  u ̲   ( x )  , ∇  u ̲   ( x )  )  v  ( x )  d x       



(3)




for all    v ∈  W 0  1 , p    ( a , Ω )    ,    v ≥ 0    a.e. in   Ω  . Symmetrically, a function     u ¯  ∈  W  1 , p    ( a , Ω )     is called a supersolution for problem (P) if     u ¯  ≥ 0    on    ∂ Ω    (in the sense of traces),    f  ( · ,  u ¯   ( · )  , ∇  u ¯   ( · )  )  ∈  L   (  p s *  )  ′    ( Ω )     and


        ∫ Ω  a  ( x )    | ∇  u ¯   ( x )  |   p − 2   ∇  u ¯   ( x )  · ∇ v  ( x )  d x ≥  ∫ Ω  f  ( x ,  u ¯   ( x )  , ∇  u ¯   ( x )  )  v  ( x )  d x       



(4)




for all    v ∈  W 0  1 , p    ( a , Ω )    ,    v ≥ 0    a.e. in   Ω  . Corresponding to a subsolution    u ̲    and a supersolution    u ¯    with     u ̲  ≤  u ¯     a.e. in   Ω   we can consider the ordered interval


    [  u ̲  ,  u ¯  ]  =  { w ∈  W  1 , p    ( a , Ω )  :  u ̲  ≤ w ≤  u ¯  }  .   











The following hypothesis for    f ( x , s , ξ )    is adapted to an ordered sub-supersolution     u ̲  ≤  u ¯    .



Hypothesis 1.

Given an ordered sub-supersolution     u ̲  ≤  u ¯     for problem (P), the Carathéodory function    f : Ω × R ×  R N  → R    satisfies the growth condition


    | f  ( x , t , ξ )  |  ≤ σ  ( x )  +   b | ξ |  r   for   a . e .    x ∈ Ω  ,    for  all   t ∈ [  u ̲   ( x )  ,  u ¯   ( x )  ]  ,     ξ ∈  R N   ,   











with a function    σ ∈  L   p s  r    ( Ω )     and constants    b > 0    and    r ∈ ( 0 ,   p s    (  p s *  )  ′   )   .





According to Hypothesis 1 we have


   f  ( x , u , ∇ u )  ∈  L   (  p s *  )  ′    ( Ω )  ,  ∀ u ∈  [  u ̲  ,  u ¯  ]  ,   








thus the integrals in the definitions above exist since


   f  ( x , u , ∇ u )  v ∈  L 1   ( Ω )  ,  ∀ u ∈  [  u ̲  ,  u ¯  ]  ,  v ∈  W 0  1 , p    ( a , Ω )  .   











Under Hypothesis 1, our main result establishes the existence of a weak solution to problem (P) with the additional location property    u ∈ [  u ̲  ,  u ¯  ]   . We stress that this location property represents a significant qualitative information for the solution giving actually a priori estimates for it. As an application we prove the existence of a nontrivial nonnegative solution for a class of problems of type (P). The applicability of the stated result is demonstrated by an example.




2. Preliminary Material


The notation    | Ω |    stands for the Lebesgue measure of the bounded domain   Ω   in    R N   . In this section we discuss a few facts about the degenerated p-Laplacian entering problem (P). More details can be found in [1].



We note that (1) implies


    a  −  1  p − 1     ∈  L 1   ( Ω )  .   











Indeed, it is seen that


       ∫ Ω  a   ( x )   −  1  p − 1     d x    =     ∫  { a ( x ) < 1 }   a   ( x )   −  1  p − 1     d x +  ∫  { a ( x ) ≥ 1 }   a   ( x )   −  1  p − 1     d x       ≤     ∫  { a ( x ) < 1 }   a   ( x )   − s   d x +  | Ω |  < ∞      








since according to (1) one has    s ≥  1  p − 1      and     a  − s   ∈  L 1   ( Ω )    .



The weighted Sobolev space     W  1 , p    ( a , Ω )     consists of all the functions    u ∈  L p   ( Ω )     for which     a  1 p    | ∇ u |  ∈  L p   ( Ω )    . It is endowed with the norm


     ∥ u ∥   1 , p , a   =    ∫ Ω    | u |  p  d x +  ∫ Ω  a  ( x )    | ∇ u |  p  d x   1 p     








becoming a uniformly convex Banach space (due to the preceding property of the weight    a ( x )   , see ([1], [Theorem 1.3])), thus reflexive, that contains     C 0 ∞   ( Ω )    . The space     W 0  1 , p    ( a , Ω )     is the closure of     C 0 ∞   ( Ω )     with respect to the norm     ∥ · ∥   1 , p , a    .



There is an extensive literature devoted to the weighted Sobolev spaces including embeddings and traces related to different boundary value problems (see, e.g., [1,7,8]). The results depend strongly on what type of weight is used, generally attempting reduction to nonweighted spaces. As described below, under assumption (1), we can embed the space     W  1 , p    ( a , Ω )     into the ordinary Sobolev space     W  1 ,  p s     ( Ω )    , hence automatically having the trace (note the boundary    ∂ Ω    is Lipschitz). This fact is needed in the definition of the sub-supersolution.



From (1) it is known that    s ≥  1  p − 1     , so one has     p s  ≥ 1    and the continuous embedding


    W  1 , p    ( a , Ω )  ↪  W  1 ,  p s     ( Ω )  ,   



(5)




which is relation (1.22) in [1]. More precisely, observing that    p >  p s    , through Holder’s inequality and (1) we get


    ∫ Ω    | ∇ u |   p s   d x =  ∫ Ω   a  −   p s  p     a   p s  p     | ∇ u |   p s   d x ≤    ∫ Ω   a  − s   d x   1  s + 1       ∫ Ω  a   | ∇ u |  p  d x    p s  p     








for all    u ∈  W  1 , p    ( a , Ω )    . As a consequence of the above inequality, we can endow     W 0  1 , p    ( a , Ω )     with an equivalent norm


    ∥ u ∥  =    ∫ Ω  a  ( x )    | ∇ u |  p  d x   1 p     








for which it holds


     ∥ u ∥    W 0  1 ,  p s     ( Ω )     ≤ ∥   a  − s     ∥    L 1   ( Ω )    1  p s     ∥ u ∥  .   



(6)







The Sobolev embedding theorem ensures the continuous embedding     W 0  1 ,  p s     ( Ω )  ↪  L  p s *    ( Ω )    , with the critical exponent     p s *  =   N  p s    N −  p s       (note that    1 ≤  p s  < N   ). Hence there exists a constant     T 0  > 0    such that


     ∥ u ∥    L  p s *    ( Ω )    ≤  T 0    ∥ u ∥    W 0  1 ,  p s     ( Ω )    ,  ∀ u ∈  W 0  1 ,  p s     ( Ω )  .   



(7)







The best embedding constant    T 0    has been estimated by Talenti [9] as follows


    T 0  ≤  π  −  1 2     N  −  1  p s          p s  − 1   N −  p s      1 −  1  p s         Γ  1 +  N 2   Γ  ( N )    Γ   N  p s    Γ  1 + N −  N  p s        1 N   ,   








where   Γ   is the Euler function


   Γ  ( t )  =  ∫ 0  + ∞    z  t − 1    e  − z   d z ,  ∀ t > 0 .   











Moreover, by the Rellich–Kondrachov compact embedding theorem, if    1 ≤ r <  p s *     then the embedding     W 0  1 ,  p s     ( Ω )  ↪  L r   ( Ω )     is compact.



By (7) and Hölder’s inequality we infer that


     ∥ u ∥    L r   ( Ω )    ≤  T 0    | Ω |     p s *  − r   p s *      ∥ u ∥    W 0  1 ,  p s     ( Ω )      



(8)




for every    u ∈  W 0  1 ,  p s     ( Ω )     and    r ∈ [ 1 ,  p s *  ]   . Combining (6) and (8) we arrive at


     ∥ u ∥    L r   ( Ω )    ≤  κ r   ∥ u ∥    



(9)




for all    u ∈  W 0  1 , p    ( a , Ω )     and    r ∈ [ 1 ,  p s *  ]   , with the constant


    κ r  =  T 0    | Ω |     p s *  − r   p s *      ∥  a  − s   ∥    L 1   ( Ω )    1  p s    .   











The (negative) degenerated p-Laplacian with the weight    a ∈  L loc 1   ( Ω )     satisfying condition (1) is the operator    A :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     defined by


    〈 A  ( u )  , v 〉  =  ∫ Ω  a  ( x )    | ∇ u |   p − 2   ∇ u · ∇ v d x ,  ∀ u , v ∈  W 0  1 , p    ( a , Ω )  .   



(10)







We readily check that the operator A in (10) is well defined noticing by means of Hölder’s inequality that for all    u , v ∈  W 0  1 , p    ( a , Ω )     it holds


            ∫ Ω  a  ( x )    | ∇ u |   p − 2   ∇ u · ∇ v d x  ≤  ∫ Ω  a   ( x )    p − 1  p     | ∇ u |   p − 1   a   ( x )   1 p    | ∇ v |  d x       ≤       ∫ Ω  a  ( x )    | ∇ u |  p  d x    p − 1  p      ∫ Ω  a  ( x )    | ∇ v |  p  d x   1 p   < ∞ .      



(11)







Important properties of the operator A introduced in (10) are listed in the statement below.



Proposition 1.

Assume that the measurable function    a : Ω → R    satisfies condition (1). Then the (negative) degenerated p-Laplacian    A :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     defined by (10) has the following properties:




	(i) 

	
A is a bounded operator in the sense that it maps bounded sets to bounded sets;




	(ii) 

	
A is a coercive operator, i.e.,


    lim  ∥ u ∥ → ∞     〈 A u , u 〉   ∥ u ∥   = + ∞ ;   












	(iii) 

	
A is a strictly monotone operator, i.e.,


   〈 A u − A v , u − v 〉 > 0 ,  u ≠ v ;   












	(iv) 

	
A has the    S +    property meaning that any sequence     {  u n  }  ⊂  W 0  1 , p    ( a , Ω )     that satisfies     u n  ⇀ u    in     W 0  1 , p    ( a , Ω )     and


    lim sup  n → ∞    〈 A  (  u n  )  ,  u n  − u 〉  ≤ 0   



(12)







is strongly convergent.











Proof.

   ( i )    From (10) and (11) we infer that


    |  〈 A u , v 〉  |  =   ∫ Ω  a  ( x )    | ∇ u |   p − 2   ∇ u · ∇ v d x  ≤   ∥ u ∥   p − 1    ∥ v ∥  ,  ∀ u , v ∈  W 0  1 , p    ( a , Ω )  .   











We obtain


     ∥ A u ∥    (  W 0  1 , p    ( a , Ω )  )  *   =  sup  v ∈  W 0  1 , p    ( a , Ω )  ,   ∥ v ∥  ≤ 1    |  〈 A u , v 〉  |  ≤   ∥ u ∥   p − 1   ,  ∀ u ∈  W 0 p   ( a , Ω )  ,   








whence A is bounded.



   ( i i )    By (10) we have that


    〈 A u , u 〉  =  ∫ Ω    a  ( x )  | ∇ u |  p  d x =   ∥ u ∥  p  ,  ∀ u ∈  W 0  1 , p    ( a , Ω )  .   











Taking into account that    p > 1   , it follows that the operator A is coercive.



   ( i i i )    In view of the strict monotonicity of the mapping    ξ ↦   | ξ |   p − 2   ξ    on    R N   , it turns out


    〈 A u − A v , u − v 〉  =  ∫ Ω  a  ( x )     | ∇ u |   p − 2   ∇ u −   | ∇ v |   p − 2   ∇ v  ·  ( ∇ u − ∇ v )  d x > 0 ,  u ≠ v ,   








so A is a strictly monotone operator.



   ( i v )    Let a sequence     {  u n  }  ⊂  W 0  1 , p    ( a , Ω )     satisfy     u n  ⇀ u    in     W 0  1 , p    ( a , Ω )     and (12). Using the monotonicity of the operator A and (12) we have


    lim  n → ∞    〈 A  (  u n  )  − A  ( u )  ,  u n  − u 〉  = 0 .   











Through Hölder’s inequality we obtain


          〈 A  (  u n  )  − A  ( u )  ,  u n  − u 〉  =  ∫ Ω  a  ( x )    | ∇   u n    |   p − 2   ∇  u n  −   | ∇ u |   p − 2   ∇ u  ·  ( ∇  u n  − ∇ u )  d x       =       ∫ Ω   a  ( x )  | ∇   u n    |  p  d x −  ∫ Ω   a  ( x )  | ∇   u n    |   p − 2   ∇  u n  · ∇ u d x −  ∫ Ω    a  ( x )  | ∇ u |   p − 2   ∇ u · ∇  u n  d x +  ∫ Ω  a  ( x )    | ∇ u |  p  d x       ≥       ∫ Ω  a  ( x )    | ∇  u n  |  p  d x −    ∫ Ω  a  ( x )    | ∇  u n  |  p  d x    p − 1  p      ∫ Ω  a  ( x )    | ∇ u |  p  d x   1 p             −    ∫ Ω  a  ( x )    | ∇ u |  p  d x    p − 1  p      ∫ Ω  a  ( x )    | ∇  u n  |  p  d x   1 p   +  ∫ Ω  a  ( x )    | ∇ u |  p  d x       =       ( ∥   u n   ∥ − ∥ u ∥ ) ( ∥   u n    ∥   p − 1   −   ∥ u ∥   p − 1    ) ≥ 0 ,        








from which we find that     lim  n → + ∞    ∥   u n   ∥ = ∥ u ∥    . Due to the uniform convexity of     W 0  1 , p    ( a , Ω )     it follows that     u n  → u    in     W 0  1 , p    ( a , Ω )    , thus completing the proof. □





We also need the first eigenvalue    λ 1    of the operator    A :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     in (10). Precisely,     λ 1  > 0    is the least (positive) number for which the equation


       −   div ( a  ( x )  | ∇ u |   p − 2    ∇ u ) =   λ 1    | u |   p − 2   u     in  Ω          u = 0     on  ∂ Ω       



(13)




admits a nontrivial solution called eigenfunction corresponding to the first eigenvalue    λ 1   . A solution to (13) is understood in the weak sense, i.e.,    u ∈  W 0  1 , p    ( a , Ω )     satisfying


        ∫ Ω    a  ( x )  | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  · ∇ v  ( x )  d x =  λ 1   ∫ Ω    | u  ( x )  |   p − 2   u  ( x )  v  ( x )  d x ,  ∀ v ∈  W 0  1 , p    ( a , Ω )  .       











It is known that there exists an eigenfunction     u 1  ∈  W 0  1 , p    ( a , Ω )     corresponding to the first eigenvalue    λ 1    such that     u 1   ( x )  ≥ 0    for a.e.    x ∈ Ω   ,     u 1  ¬ ≡ 0   , and     u 1  ∈  L ∞   ( Ω )    . For the proofs of these properties we refer to ([1], Chapter 3).




3. Main Results


Our main abstract result provides the existence of a solution to problem (P) and its location within the ordered interval determined by a sub-supersolution.



Theorem 1.

Let the weight    a ∈  L loc 1   ( Ω )     fulfill the requirement (1) and assume that Hypothesis 1 for a subsolution    u ̲    and a supersolution    u ¯    with     u ̲  ≤  u ¯     a.e. is satisfied. Then problem (P) possesses at least a solution    u ∈  W 0  1 , p    ( a , Ω )     with the location property     u ̲  ≤ u ≤  u ¯     for a.e.    x ∈ Ω   .





Proof. 

By means of the given sub-supersolution     u ̲  ≤  u ¯     for problem (P), we introduce some related mappings. The cut-off function for problem (P), we introduce some related mappings. The cut-off function    π : Ω × R → R    is defined by


   π  ( x , t )  =      −   (  u ̲   ( x )  − t )   r   p s  − r        if  t <  u ̲   ( x )       0    if   u ̲   ( x )  ≤ t ≤  u ¯   ( x )         ( t −  u ¯   ( x )  )   r   p s  − r       if  t >  u ¯   ( x )  ,        



(14)




where s and r are the constants given in (1) and Hypothesis 1. Using (14) in conjunction with     u ̲  ,  u ¯  ∈  L  p s *    ( Ω )     enables us to find that


    | π  ( x , t )  |  ≤   c | t |   r   p s  − r    + ϱ  ( x )   for   a . e .    x ∈ Ω  ,  all   t ∈ R  ,   



(15)




with a constant    c > 0    and a function    ϱ ∈  L    p s *   (  p s  − r )   r    ( Ω )    . Moreover, proceeding as in [4], we can establish that


    ∫ Ω  π  ( x , u  ( x )  )  u  ( x )   d x ≥  b 1    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r    −  b 2    for  all  u ∈  W 0  1 , p    ( a , Ω )  ,   



(16)




with positive constants    b 1    and    b 2   .



In view of (15), the Nemytskij operator    u ↦ π ( · , u ( · ) )    generated by   π   maps continuously     L  p s *    ( Ω )     to     L    p s *   (  p s  − r )   r    ( Ω )    . Therefore, the mapping    Π :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     defined by


    〈 Π  ( u )  , v 〉  =  ∫ Ω  π  ( x , u )  v d x ,  ∀ u , v ∈  W 0  1 , p    ( a , Ω )    








is completely continuous. This is true because the inclusion     L    p s *   (  p s  − r )   r    ( Ω )  ⊂   (  W 0  1 , p    ( a , Ω )  )  *     is compact being the adjoint of the compact inclusion     W 0  1 , p    ( a , Ω )  ⊂  L    p s *   (  p s  − r )     p s *   (  p s  − r )  − r     ( Ω )     (note that       p s *   (  p s  − r )     p s *   (  p s  − r )  − r   <  p s *     owing to the assumption    r ∈ ( 0 ,   p s    (  p s *  )  ′   )    in Hypothesis 1).



Hypothesis 1 and (5) imply that the Nemytskij operator    u ↦ f ( · , u ( · ) , ∇ u ( · ) )    maps continuously     [  u ̲  ,  u ¯  ]  ⊂  W  1 , p    ( a , Ω )     to     L   p s  r    ( Ω )     with    r ∈ ( 0 ,   p s    (  p s *  )  ′   )   . Composing the preceding Nemytskij operator with the inclusion     L   p s  r    ( Ω )  ⊂   (  W 0  1 , p    ( a , Ω )  )  *    , which is compact because it is the adjoint operator of the compact inclusion     W 0  1 , p    ( a , Ω )  ⊂  L   p s    p s  − r     ( Ω )     (note that      p s    p s  − r   <  p s *     since    r ∈ ( 0 ,   p s    (  p s *  )  ′   )    in Hypothesis 1), we obtain a completely continuous mapping     N f  :  [  u ̲  ,  u ¯  ]  →   (  W 0  1 , p    ( a , Ω )  )  *     given by


    〈  N f   ( u )  , v 〉  =  ∫ Ω  f  ( x , u  ( x )  , ∇ u  ( x )  )  v  ( x )   d x   








for all    u ∈ [  u ̲  ,  u ¯  ]    and    v ∈  W 0  1 , p    ( a , Ω )    .



We also make use of the truncation operator    T :  W 0  1 , p    ( a , Ω )  →  W  1 , p    ( a , Ω )     given by


    ( T u )   ( x )  =       u ̲   ( x )      if  u  ( x )  <  u ̲   ( x )        u ( x )     if   u ̲   ( x )  ≤ u  ( x )  ≤  u ¯   ( x )         u ¯   ( x )      if  u  ( x )  >  u ¯   ( x )         



(17)




for all    u ∈  W 0  1 , p    ( a , Ω )     and a.e.    x ∈ Ω   . It is a continuous and bounded mapping (in the sense that it maps bounded sets to bounded sets). Notice that its range lies in    [  u ̲  ,  u ¯  ]   , so T can be composed with the operator    N f   .



Now we consider for every    λ > 0    the operator     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     defined by


       A λ  = A + λ Π −  N f  ∘ T .      



(18)







Explicitly, it reads as


      〈  A λ   ( u )  , v 〉    =     ∫ Ω  a  ( x )    | ∇ u |   p − 2   ∇ u · ∇ v  d x + λ  ∫ Ω  π  ( x , u )  v  d x       −     ∫ Ω  f  ( x , T u , ∇  ( T u )  )  v  d x   for  all  u ,  v ∈  W 0  1 , p    ( a , Ω )  .      



(19)







From Proposition 1   ( i )    it is known that the operator    A :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is bounded, while the above comments demonstrate that the operators   Π  ,    N f    and T are all of them bounded. Therefore from (18) we infer that the operator     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is bounded.



We claim that     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is a pseudomonotone operator. In this respect, let a sequence     {  u n  }  ⊂  W 0  1 , p    ( a , Ω )     satisfy     u n  ⇀ u    in     W 0  1 , p    ( a , Ω )     and


    lim sup  n → ∞    〈  A λ   (  u n  )  ,  u n  − u 〉  ≤ 0 .   



(20)







The sequence    { Π  (  u n  )  }    is bounded in     L    p s *   (  p s  − r )   r    ( Ω )    , while     u n  → u    in     L    p s *   (  p s  − r )     p s *   (  p s  − r )  − r     ( Ω )     by the compact embedding     W 0  1 , p    ( a , Ω )  ⊂  L    p s *   (  p s  − r )     p s *   (  p s  − r )  − r     ( Ω )    , thus


    lim  n → ∞    〈 Π  (  u n  )  ,  u n  − u 〉  = 0 .   











The sequence    {  N f  ∘ T  (  u n  )  }    is bounded in     L   p s  r    ( Ω )    , while     u n  → u    in     L   p s    p s  − r     ( Ω )     by the compact embedding     W 0  1 , p    ( a , Ω )  ⊂  L   p s    p s  − r     ( Ω )    , producing


    lim  n → ∞    〈  N f  ∘ T  (  u n  )  ,  u n  − u 〉  = 0 .   











Consequently, complying with (18), we see that (20) reduces to (12). This, in conjunction with the weak convergence     u n  ⇀ u   , enables us to apply Proposition 1   ( i v )    ensuring that the strong convergence     u n  → u    in     W 0  1 , p    ( a , Ω )     holds.



From the strong convergence    a   ( · )   1 p   ∇  u n   ( · )  → a   ( · )   1 p   ∇ u  ( · )     in     (  L p   ( Ω )  )  N    it follows the strong convergence    a   ( · )    p − 1  p    | ∇   u n     ( · )  |   p − 2   ∇  u n   ( · )  → a   ( · )    p − 1  p     | ∇ u  ( · )  |   p − 2   ∇ u  ( · )     in     (  L  p  p − 1     ( Ω )  )  N   . This amounts to saying that    A  u n  ⇀ A u    in     (  W 0  1 , p    ( a , Ω )  )  *    since


     〈 A  u n  , v 〉  =  ∫ Ω  a  ( x )   | ∇   u n    |   p − 2   ∇  u n  · ∇ v d x →  ∫ Ω  a  ( x )    | ∇ u |   p − 2   ∇ u · ∇ v d x =  〈 A u , v 〉  ,  ∀ v ∈  W 0  1 , p    ( a , Ω )  .    











Again, from the strong convergence    a   ( · )   1 p   ∇  u n   ( · )  → a   ( · )   1 p   ∇ u  ( · )     in     (  L p   ( Ω )  )  N    we infer that


    〈 A  u n  ,  u n  〉  =  ∫ Ω  a  ( x )   | ∇   u n    |  p  d x →  ∫ Ω  a  ( x )    | ∇ u |  p  d x =  〈 A u , u 〉    








as    n → ∞   . Taking into account the continuity of the mappings   Π   and     N f  ∘ T   , we have


    〈  A λ   u n  , v 〉  →  〈  A λ  u , v 〉  ,  ∀ v ∈  W 0  1 , p    ( a , Ω )  ,   








and


    〈  A λ   u n  ,  u n  〉  →  〈  A λ  u , u 〉    








as    n → ∞   , for every    λ > 0   . We can conclude that     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is a pseudomonotone operator (see, e.g., ([2], Definition 2.97)).



The next step in the proof is to show that the operator     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is coercive provided    λ > 0    is large enough. Taking advantage of the fact that    T u ∈ [  u ̲  ,  u ¯  ]    whenever    u ∈  W 0  1 , p    ( a , Ω )    , let us note by (16), (19) and Hypothesis 1 that


           〈  A λ   ( u )  , u 〉  =  〈 A  ( u )  , u 〉  + λ  ∫ Ω  π  ( x , u )  u  d x −  ∫ Ω  f  ( x , T u , ∇  ( T u )  )  u  d x      ≥       ∥ u ∥  p   + λ (   b 1    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r    −  b 2    ) − ∥ σ ∥    L   p s  r    ( Ω )      ∥ u ∥    L   p s    p s  − r     ( Ω )    − b  ∫ Ω    | ∇  ( T u )  |  r   | u |  d x      



(21)




for all    u ∈  W 0  1 , p    ( a , Ω )    . Now we estimate the last term in (21) based on the fact that by (5) we know that    ∇ u ∈   (  L  p s    ( Ω )  )  N    , and so    ∇  ( T u )  ∈   (  L  p s    ( Ω )  )  N    . Using the definition of    T u    in (17), Hölder’s inequality and the continuous embedding in (9) it turns out that


         ∫ Ω    | ∇  ( T u )  |  r   | u | d x  =  ∫  {  u ̲  ≤ u ≤  u ¯  }     | ∇ u |  r   | u | d x  +  ∫  { u <  u ̲  }    | ∇   u ̲    |  r   | u | d x  +  ∫  { u >  u ¯  }    | ∇   u ¯    |  r   | u |  d x      ≤      ∫ Ω    | ∇ u |  r   | u | d x  +  c 1   ∥ u ∥  ,  ∀ u ∈  W 0  1 , p    ( a , Ω )  ,      








with a constant     c 1  > 0   . We can insert the preceding inequality in (21) to derive


       〈  A λ   ( u )  , u 〉  ≥   ∥ u ∥  p   + λ (   b 1    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r    −  b 2   ) −   c 2   ∥ u ∥  − b  ∫ Ω    | ∇ u |  r   | u |  d x ,      



(22)




with a constant     c 2  > 0   . The Hölder’s and Young’s inequalities in conjunction with embedding (5) imply


         ∫ Ω    | ∇ u |  r   | u | d x  ≤   ∥ ∇ u ∥    L  p s    ( Ω )   r    ∥ u ∥    L   p s    p s  − r     ( Ω )    ≤  c 3    ∥ u ∥   p s   +  c 4    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r    ,      








with constants     c 3  > 0    and     c 4  > 0   . Then (22) entails


         〈  A λ   ( u )  , u 〉  ≥   ∥ u ∥  p   + λ (   b 1    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r    −  b 2   ) −   c 2   ∥ u ∥ − b (   c 3    ∥ u ∥   p s   +  c 4    ∥ u ∥    L   p s    p s  − r     ( Ω )     p s    p s  − r     )       



(23)




for all    u ∈  W 0  1 , p    ( a , Ω )    . Recalling from (16) that     b 1  > 0   , we can choose    λ > 0    so large to have    λ  b 1  > b  c 4    . Hence due to    p >  p s  ≥ 1    (see (1)), (23) yields the coercivity of    A λ   , i.e.,


    lim  ∥ u ∥ → + ∞     〈  A λ   ( u )  , u 〉   ∥ u ∥   = + ∞ .   











We have shown that the nonlinear operator     A λ  :  W 0  1 , p    ( a , Ω )  →   (  W 0  1 , p    ( a , Ω )  )  *     is bounded, pseudomonotone and coercive provided    λ > 0    is sufficiently large. Therefore, for such an    A λ    we can apply the main theorem of pseudomonotone operators (see, e.g., ([2], Theorem 2.99)) ensuring that there exists a solution    u ∈  W 0  1 , p    ( a , Ω )     to the equation


       A λ   ( u )  = 0 .      



(24)







Fix an admissible    λ > 0    as pointed out above. We are going to prove that    u ∈  W 0  1 , p    ( a , Ω )     resolving (24) is a weak solution of the original problem (P), which means that (2) is satisfied. To this end, notice that (19) and (24) yield


          ∫ Ω  a  ( x )    | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  · ∇ v  ( x )  d x + λ  ∫ Ω  π  ( x , u )  v d x      =     ∫ Ω  f  ( x , T u , ∇  ( T u )  )  v d x  for  all   v ∈  W 0  1 , p    ( a , Ω )   .      



(25)







We proceed by comparing u with the subsolution    u ̲    and supersolution    u ¯    postulated in Hypothesis 1. We claim that    u ≤  u ¯     a.e. in   Ω  . Towards this, it can be readily checked that      ( u −  u ¯  )  +  = max  { u −  u ¯  , 0 }  ∈  W 0  1 , p    ( a , Ω )    , where the condition     u ¯  ≥ 0    on    ∂ Ω    in the sense of traces is essentially used. Thus, we can insert    v =   ( u −  u ¯  )  +     in (25) and (4) which gives


          ∫ Ω  a  ( x )    | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  · ∇   ( u −  u ¯  )  +   ( x )  d x + λ  ∫ Ω  π  ( x , u  ( x )  )    ( u −  u ¯  )  +   ( x )  d x          =  ∫ Ω  f  ( x , T u  ( x )  , ∇  ( T u )   ( x )  )    ( u −  u ¯  )  +   ( x )  d x      



(26)




and


          ∫ Ω  a  ( x )    | ∇  u ¯   ( x )  |   p − 2   ∇  u ¯   ( x )  · ∇   ( u −  u ¯  )  +   ( x )  d x ≥  ∫ Ω  f  ( x ,  u ¯   ( x )  , ∇  u ¯   ( x )  )    ( u −  u ¯  )  +   ( x )  d x .      



(27)







From (26) and (27), by subtraction we are led to


         ∫ Ω  a  ( x )     | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  −   | ∇  u ¯   ( x )  |   p − 2   ∇  u ¯   ( x )   · ∇   ( u −  u ¯  )  +   ( x )  d x + λ  ∫ Ω  π  ( x , u  ( x )  )    ( u −  u ¯  )  +   ( x )  d x          ≤  ∫ Ω   f  ( x , T u  ( x )  , ∇  ( T u )   ( x )  )  − f  ( x ,  u ¯   ( x )  , ∇  u ¯   ( x )  )     ( u −  u ¯  )  +   ( x )  d x .       











By (14), (17), and the preceding inequality we get


        ∫  { u >  u ¯  }   a  ( x )     | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  −   | ∇  u ¯   ( x )  |   p − 2   ∇  u ¯   ( x )   · ∇  ( u −  u ¯  )  d x + λ  ∫  { u >  u ¯  }     ( u  ( x )  −  u ¯   ( x )  )    p s    p s  − r    d x        ≤  ∫  { u >  u ¯  }    f  ( x , T u , ∇  ( T u )  )  − f  ( x ,  u ¯  , ∇  u ¯  )    ( u −  u ¯  )  d x = 0 .      











Since the function    a ( x )    is positive almost everywhere in   Ω   and the mapping    ξ ↦   | ξ |   p − 2   ξ    on    R N    is monotone, we arrive at


    ∫  { u >  u ¯  }     ( u  ( x )  −  u ¯   ( x )  )    p s    p s  − r    d x ≤ 0 .   











Therefore, the Lebesgue measure of the set    { u >  u ¯  }    is zero, i.e.,    u ≤  u ¯     a.e. in   Ω  .



Similarly, we can prove that     u ̲  ≤ u    a.e. in   Ω  . Specifically, relying on the condition     u ̲  ≤ 0    on    ∂ Ω    (in the sense of traces), it holds      (  u ̲  − u )  +  = max  {  u ̲  − u , 0 }  ∈  W 0  1 , p    ( a , Ω )    , which allows us to test (25) and (3) with    v =   (  u ̲  − u )  +  ∈  W 0  1 , p    ( a , Ω )    . This results in


          ∫ Ω  a  ( x )    | ∇ u  ( x )  |   p − 2   ∇ u  ( x )  · ∇   (  u ̲  − u )  +   ( x )  d x + λ  ∫ Ω  π  ( x , u  ( x )  )    (  u ̲  − u )  +   ( x )  d x          =  ∫ Ω  f  ( x , T u  ( x )  , ∇  ( T u )   ( x )  )    (  u ̲  − u )  +   ( x )  d x      



(28)




and


          ∫ Ω  a  ( x )    | ∇  u ̲   ( x )  |   p − 2   ∇  u ̲   ( x )  · ∇   (  u ̲  − u )  +   ( x )  d x ≤  ∫ Ω  f  ( x ,  u ̲   ( x )  , ∇  u ̲   ( x )  )    (  u ̲  − u )  +   ( x )  d x .      



(29)







Arguing as before, we deduce from (28), (29), (14), and (17) the following estimate


         ∫  {  u ̲  > u }   a  ( x )    | ∇   u ̲     ( x )  |   p − 2   ∇  u ̲   ( x )  −   | ∇ u  ( x )  |   p − 2   ∇ u  ( x )   · ∇  (  u ̲  − u )  d x + λ  ∫  {  u ̲  > u }     (  u ̲   ( x )  − u  ( x )  )    p s    p s  − r    d x          ≤  ∫ Ω   ( f   ( x ,  u ̲  , ∇  u ̲  )  − f  ( x , T u , ∇  ( T u )  )    (  u ̲  − u )  +  d x          =  ∫  {  u ̲  > u }    ( f  ( x ,  u ̲  , ∇  u ̲  )  − f  ( x , T u , ∇  ( T u )  )  )    (  u ̲  − u )  +  d x = 0 .       











At this point, the positivity of the function    a ( x )    on   Ω   and the monotonicity of the mapping    ξ ↦   | ξ |   p − 2   ξ    on    R N    confirm that


    ∫  {  u ̲  > u }     (  u ̲   ( x )  − u  ( x )  )    p s    p s  − r    d x ≤ 0 ,   








from which we can readily derive that     u ̲  ≤ u    a.e in   Ω  .



Based on the enclosure property     u ̲  ≤ u ≤  u ¯     a.e. in   Ω  , it follows through (17) that    T ( u ) = u    and through (14) that    Π ( u ) = 0   . As a result, (25) takes the form of (2), thus the proof is complete. □





Now we present an application of Theorem 1 describing how the existence of a nontrivial nonnegative solution can be established by effectively determining a sub-supersolution. In the sequel, by    λ 1    we denote the first eigenvalue of problem (13) (see Section 2).



Theorem 2.

Let the weight    a ∈  L loc 1   ( Ω )     fulfill the requirement (1). Assume that the Carathéodory function    f : Ω × R ×  R N  → R    satisfies the conditions:




	(j) 

	
there is a constant    μ > 0    such that


    λ 1   t  p − 1   ≤ f  ( x , t , ξ )   for   a . e .    x ∈ Ω  ,  all   t ∈ [ 0 , μ ]  ,   ξ ∈  R N   ;   












	(jj) 

	
there is a constant    C > 0    such that


   f ( x , C , 0 ) ≤ 0  for   a . e .    x ∈ Ω  ;   












	(jjj) 

	
there are a function    σ ∈  L   p s  r    ( Ω )     and constants    b > 0    and    r ∈ ( 0 ,   p s    (  p s *  )  ′   )    such that


    | f  ( x , t , ξ )  |  ≤ σ  ( x )  +   b | ξ |  r   for   a . e .    x ∈ Ω  ,    all   t ∈ [ 0 , C ]  ,     ξ ∈  R N   .   

















Then problem (P) has a nondegenerate, nonnegative and bounded weak solution    u ∈  W 0  1 , p    ( a , Ω )     satisfying the estimate    u ≤ C   .





Proof. 

Our goal is to apply Theorem 1 by constructing an appropriate sub-supersolution. In order to determine a subsolution, we use an eigenfunction     u 1  ∈  W 0  1 , p    ( a , Ω )     corresponding to the first eigenvalue    λ 1    of problem (13) with the properties     u 1   ( x )  ≥ 0    for a.e.    x ∈ Ω   ,     u 1  ¬ ≡ 0   , and     u 1  ∈  L ∞   ( Ω )     as mentioned in Section 2. Then we choose an    ε > 0    sufficiently small to verify


      ε  u 1   ( x )  ≤ μ  for   a . e .    x ∈ Ω  ,      



(30)




where   μ   is the positive constant postulated in assumption    ( j )   . Then assumption    ( j )    implies


       λ 1    ( ε  u 1  )   p − 1   ≤ f  ( x , ε  u 1  , ∇  ( ε  u 1  )  )   for   a . e .    x ∈ Ω .      



(31)







For a possibly smaller    ε > 0    we can suppose


      ε  u 1   ( x )  ≤ C  for   a . e .    x ∈ Ω  ,      



(32)




with    C > 0    in assumption    ( j j )   .



Let us fix an    ε > 0    for which (30) and (32) are fulfilled. We claim that     u ̲  = ε  u 1     is a subsolution to problem (P). Indeed, by (13) with    u 1    in place of u and (31) we note that


          ∫ Ω  a  ( x )    | ∇  u ̲   ( x )  |   p − 2   ∇  u ̲   ( x )  · ∇ v  ( x )  d x =  ε  p − 1    λ 1   ∫ Ω   u 1    ( x )   p − 1   v  ( x )  d x          ≤  ∫ Ω  f  ( x , ε  u 1   ( x )  , ∇  ( ε  u 1  )   ( x )  )  v  ( x )  d x =  ∫ Ω  f  ( x ,  u ̲   ( x )  , ∇  u ̲   ( x )  )  v  ( x )  d x      








for all    v ∈  W 0  1 , p    ( a , Ω )    ,    v ≥ 0    a.e. in   Ω  , thereby proving the claim.



Next we claim that the constant function     u ¯  = C   , with    C > 0    in assumption    ( j j )   , is a supersolution to problem (P). Accordingly, from assumption    ( j j )    we find that


         ∫ Ω  a  ( x )    | ∇  u ¯   ( x )  |   p − 2   ∇  u ¯   ( x )  · ∇ v  ( x )  d x = 0 ≥  ∫ Ω  f  ( x , C , 0 )  v  ( x )  d x =  ∫ Ω  f  ( x ,  u ¯   ( x )  , ∇  u ¯   ( x )  )  v  ( x )  d x       








for all    v ∈  W 0  1 , p    ( a , Ω )    ,    v ≥ 0    a.e. in   Ω  , which proves the claim.



It is clear from (32) that     u ̲   ( x )  ≤  u ¯   ( x )     for a.e. in   Ω  . Assumption    ( j j j )    ensures that the growth condition required in Hypothesis 1 of Theorem 1 holds true. Therefore, all the hypotheses of Theorem 1 are verified, which permits the conclusion that there exists a solution    u ∈  W 0  1 , p    ( a , Ω )     of problem (P) within the ordered interval    [  u ̲  ,  u ¯  ]   . Since the function     u ̲  = ε  u 1     is nontrivial and nonnegative, and    u ≥  u ̲    , we have that u is nontrivial and nonnegative, whereas    u ∈ [  u ̲  ,  u ¯  ]    renders the boundedness of u and the a priori estimate    u ≤ C   . The proof is complete. □





We end the paper with a simple example for which Theorem 2 applies.



Example 1.

Fix a positive weight    a ∈  L loc 1   ( Ω )     with the property (1). Let the function    f : Ω × R ×  R N  → R    be defined by


   f  ( x , t , ξ )  =     0     if   t < 0         t  p − 1     ( ρ  ( x )  + | ξ |  r   )       if   0 ≤ t ≤ 1         ( 2 − t )  ( ρ  ( x )  + | ξ  | r  )      if   t > 1  ,        








with some    r ∈ [ 1 ,   p s    (  p s *  )  ′   )    and    ρ ∈  L ∞   ( Ω )     satisfying    ρ  ( x )  ≥  λ 1     for a.e.    x ∈ Ω   . It follows that f is a Carathéodory function for which conditions    ( j ) − ( j j j )    in Theorem 2 are verified. Precisely, condition    ( j )    holds with    μ = 1    because    ρ  ( x )  ≥  λ 1    , condition    ( j j )    holds with    C = 2   , and condition    ( j j j )    is fulfilled with the given r. Hence Theorem 2 applies to problem (P) whose equation has the right-hand side expressed with the function    f ( x , t , ξ )    given above.
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