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Abstract: The Hosoya index of a graph is defined as the total number of its independent edge
sets. This index is an important example of topological indices, a molecular-graph based structure
descriptor that is of significant interest in combinatorial chemistry. The Hosoya index inspires the
introduction of a matrix associated with a molecular acyclic graph called the Hosoya matrix. We
propose a simple linear-time algorithm, which does not require pre-processing, to compute the
Hosoya index of an arbitrary tree. A similar approach allows us to show that the Hosoya matrix can
be computed in constant time per entry of the matrix.

Keywords: Hosoya index; Hosoya matrix; optimal algorithm

1. Introduction

In Haruo Hosoya’s seminal paper, a molecular-graph based structure descriptor is
proposed that nowadays is known under the name Hosoya index [1]. It is well-known
that several physicochemical properties of chemical structures are well correlated with the
Hosoya index of the corresponding molecular graphs. In particular, it is used to predict,
from the structure of molecules, some of their physico-chemical properties such as boiling
points, entropies, heat of vaporization, and 7r-electron energy [1,2].

The mathematical investigations on the Hosoya index are often related to trees, see for
example [3-8]. Note also that there is a strong connection between the energy of a tree and
its Hosoya index [9]. It is established that the general problem of determining the Hosoya
index is #P-complete even for planar graphs [10]. On the other hand, if the graph is known
to be a tree, there are efficient solutions.

In [11], Zhang and co-authors proposed an algorithm that allows computation of
the Hosoya index of a tree in linear time. The algorithm uses a relatively complex pre-
processing which for a given tree computes the Priifer code of the corresponding labeled
tree. As noted already by the authors, another troublesome aspect of the proposed algo-
rithm is its necessity of computation with fractions. Moreover, it was shown in [12] that
the values of the characteristic polynomial of a tree can be computed in linear time, which
implies that a computation of the Hosoya index of a tree can be done within the same
time-bound; however, an explicit algorithm has not been presented.

It has been demonstrated that the Hosoya index can be computed efficiently for some
graphs derived from trees. In particular, for an arbitrary tree T, a closed-form expression is
presented for the Hosoya index of the fractal graphs R(T) and RT(T) [13].

Since a graph is entirely determined by specifying either its adjacency structure or
its incidence structure, it is natural to state the specification of a graph in matrix form. By
associating a matrix with a graph, one can also use selected graph invariants as molecular
descriptors. This approach was initiated in a work by Randi¢, where a matrix based on an-
other well-known molecular-graph structure descriptor, the Wiener index, is proposed [14].
Later, Randi¢ used an analogous approach, based on the Hosoya index, for acyclic systems,
which yields the concept of the Hosoya matrix [15].
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The paper is organized as follows. In the next section, we give some definitions and
concepts needed in this paper. In Section 3, we follow the idea presented in [12] to give
a recursive expression for the Hosoya index of a tree. Using this result, we present a
linear-time algorithm for computing the Hosoya index of a graph of this class. In Section 4,
we apply the previous section’s approach to provide a recursive formula for an entry of the
Hosoya matrix. The results allow the computation of the Hosoya matrix in constant time
per entry of the matrix.

2. Preliminaries

Let G = (V,E) be a graph, possessing n vertices and m edges. The set of edges
X C E(G) is called a matching of G if any two edges of X have no vertex in common. A
matching of G with k edges is called a k-matching of G.

A subset of vertices I C V(G) is independent if no two vertices of I are adjacent. The
number of distinct k-element independent vertex sets is denoted by n(G, k). Note that
n(G,0) =1and n(G,n) = n.

The Hosoya index of a graph G, denoted by Z(G), is defined as the total number of
matchings of G. Let m (G, k) be the number of k-matchings of G and set m(G,0) := 1. The
Hosoya index can be formulated as

Z(G):= Y m(G,k).

k>0

Let G = (V,E) beagraph and V' C V(G). Then G — V' denotes the graph obtained
from G by removing vertices of V'. If V/ = {v}, i.e., V' is composed of a single vertex, we
will write G — v instead of G — {v}. Analogously, if and E’ C E(G), then G — E’ denotes
the graph obtained from G by removing vertices of E'. If E’ = {e}, we will write G — ¢
instead of G — {e}.

A tree is a connected graph without cycles. If u, v are vertices of a tree T, then T admits
exactly one path between 1 and v. We shall denote this path by Py,.

Let T be a tree with the vertex set V(T) = {1,2,...,n}. The Hosoya matrix of a
tree T is the n x n matrix H(T), where (i, j)-entry of H(T) is the Hosoya index of the
graph obtained from T by removing the edges of the path P;; [15]. More formally, if
i,j €{1,2,...,n}, then

Hij(T) — { Z(T - E(Pij))/ l 75 ] )
’ 0, i=j

Let v be a vertex of a graph G. Then Ng(v) or simply N(v) denote the set of vertices
adjacent to v in G.

A rooted tree is a tree in which one vertex is distinguished from the others and called
the root. If r is a root of a tree T, then T, denotes the corresponding rooted tree. Let v # r
be a vertex of T,. As already stated, P, denotes the path betweenrand vin T,. If uis a
vertex of Py, adjacent to v, then u is a parent of v and v is a child of u. If u is a parent of
v and w parent of u, then w is a grandparent of v. Note that every vertex of a rooted tree
admits at most one parent and grandparent. A vertex z is a descendant of v if v is in the
path from z to . A vertex v of a tree T, and all its descendants induce a subgraph of T;
denoted by T;. It is clear that T} is a tree. Note that T}, can be seen as a rooted subtree of T,
with the root v.

If v is a vertex of T}, then C,(v) denotes the set of children of v. If v # r, let p,(v)
denote the parent of v. If C,(v) = @, then v is a leaf of T;.

3. Hosoya Index
3.1. Recursive Formula for Computing the Hosoya Index
The results of this subsection are obtained by using an approach similar to the work

of Mohar where the characteristic polynomial of a tree is studied [12].
The following three results are well-known [1,16].
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Proposition 1. Let uv be an edge of a graph G. Then
Z(G) = Z(G —uv) + Z(G — {u,v}).
Proposition 2. Let G be a graph composed of two disjoint components Gy and Gy. Then
Z(G) = Z(G1)Z(Gy).
Proposition 3. Let v be a vertex of a graph G. Then

Z(G)=Z(G—v)+ Y. Z(G—{u,v}).
ueN(v)

We also need the following

Proposition 4. Let v and u be vertices of a tree T. Then
(i)
Z(T-v)= ][] 2Z(Ty).

weCy(v)

(ii) If v is the parent of u in T,, then

Z(Ty —u) I1 Z(Ty)

Z(T—Z))Z(Tf{ — u) weCy(v)
Z(T —{u,v}) = = ,
(= tweh Z(13) Z(13)
where
1, u is a leaf
Z(T,, —u) = I1 Z(T?), otherwise -
xeCy(u)

Proof. (i) If T is a single vertex, the claim immediately follows. Otherwise, note that
Nr(v) = Cy(v). It follows that T — v is composed of connected components T3, for all
w € Cy(v). Proposition 2 now yields the assertion.

(ii) We can see that T — {v, u} is composed of two sets of connected components: one
corresponds to components of T — v with the exception of T7, while the other corresponds
to TY — u. Let us denote the first set of connected components by (T — v) \ TY. By (i), we

hav
¢ eIC—[( )Z(TZZ) Z(T —v)
Z(T-o)\T)) =[] 2Z(TH)*= vz?n) T Z(TY)

weCy(v)\{u}

From Proposition 2 now it follows that

Z(T —{u,0}) = Z(T = o) \ T)) Z(T;, —u) =

If u is a leaf, then T — {v, u} is the graph composed of connected components T3,
forallw € Cy(v) \ {u}. Since Z(TY — u) = 1, the case is settled.

If u is not a leaf, then T — {v, u} is the graph composed of connected components T,
and T?, for allw € Cy(v) \ {u} and x € Cy(u). From Proposition 2 and (i) then it follows

[T Z(T7) 1T 2(Ty)

x€Cy(u) weCy(v)

Z(T—A{u,v}) = Z(T?)

This assertion concludes the proof. [
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Theorem 1. Let v and r be (not necessarily distinct) vertices of a tree T. Then

1, v is a leaf
Z(Tj—u) 11 Z(Ty)
Z Tr = w v
(7 [T Z(T,)+ X Z(ETCJ; ) , otherwise
weCy(v) ueC,(v) u
where
1, u is a leaf of T,
Z(T), —u) = [T Z(T%), otherwise

xeCr(u)

Proof. If v is a leaf, then T} is a single vertex and the case is settled.
If v is not a leaf, then note that Ny (v) = C,(v). By Proposition 3, we have Z(T}) =
Z(Th) —v)+ Y Z(T) — {u,v}). Proposition 4 now completes the proof. []
ueCr(v)
3.2. Algorithm for Computing the Hosoya Index

Let v be a vertex of a nonempty tree T. The data structure of the rooted tree T is given
by Algorithm 1, where C, and p, represent the list of children of v and the parent of v in
Ty, respectively.

Algorithm 1. Rooted(T, v, C, p)

1. Cy := the list comprised of all vertices of N(v);
2. Forall w € N(v) do

begin
2.1 Remove v from N(w);
2.2 Rooted(T, w, C);
23 pw i=1;

end;

end.

Let v be a vertex of T and w € N(v). If N(w) is represented by a (doubly connected)
adjacency list, then we may remove v from N(w) in constant time. It is easy to see now
that the time complexity of Rooted is linear.

Algorithm 2 computes the Hosoya index Z; of a tree T with respect to a root v. Before
the algorithm is applied, the algorithm Rooted is called for the vertex v. Thus, for every
vertex u in Ty, the rooted tree is represented by the list of children C,.

Theorem 2. Let T be tree of order n. Then algorithm Hosoya computes the Hosoya index of T in
O(n) time and space.
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Algorithm 2. Hosoya(v, C, Z, Z)

1.7Z,:=1;
2. if |Cy| = 0 then begin Z, := 1; EXIT; end;
3.forallw € C, do
Hosoya(w, C, Z, Z);
4. forallw € C, do
Zy = Zy - Zw;
5.7, :=Zy;
6. forall u € C, do
begin
6.1zu:=1;
6.2 if |Cy| > 0 then
6.2.1 forall x € C, do
ZUu 1= zu - Ly;
63Zy:=Zy+zu-Zy/Zy;
end;
end.

Proof. The validity of the algorithm follows from Theorem 1. The algorithm computes

vectors Z and Z, such that the entry Z, (resp. Z,) represents Z(T) (resp. Z(T — v)). The

algorithm also maintains the variable zu, which for u € C,(u) represents the value of
[T 2(TY).

x€Cy(u)

If v is a leaf in T, then |C,| = 0 and Z, is set to one. Otherwise, the algorithm is
recursively called for each child of v in Step 3. Note that the call of the algorithm for a
vertex w computes the Hosoya index of the corresponding subtree T%. Thus, after Step 3 is
executed, the Hosoya index is already computed for all subtrees of v. Next, [] Z(TY)

weCy(v)
is computed in Step 4. This gives the initial value of Z, assigned in Step 5, while the sum
IT 2(T5)
Y. Z(T!—u) % is computed in Step 6. Steps 6.1 and 6.2 compute the value of

ueCy(v)
Z(TY — u). If u is a leaf, then |C,| = 0 and the value of zu remains equal to one. Otherwise,

the value of zu isequal to [] Z(TY) after Step 6.2 is executed. In Step 6.3, the value of
x€Cy(u)
zu is multiplied by Z, and divided by Z,; thus, the value added to Z; in this step is equal
to Z(TY —u)/Z, TI Z(Tg). This assertion completes the proof of the correctness of
weCy(v

the algorithm. v

For the time complexity first note that the time complexity of a single recursive call
neglecting recursive calls (in Step 3) and neglecting the Steps 4 and 6 is clearly constant.
Since the number of recursive calls of the algorithm equals the number of vertices of the
tree, we have to show that the total number of operations executed in Steps 4 and 6 is linear
in the number of vertices. This number can bounded above by the number of entries of
the vector Z used by the algorithm. In Step 4, the values of Z,,, w € C, are used, while in
Step 6.2.1, for u € C,, the entries Zy, x € C,, are used. Since every vertex v of a rooted tree
admits at most one parent and grandparent, the corresponding entry Z, is used at most
three times: twice when Hosoya is called for the parent of v (Steps 4 and 6.3) and once
when Hosoya is called for the grandparent of v (Step 6.2.1).

It follows that the total number of operations executed in Steps 4 and 6 is bounded
above with some constant multiplied by the number of vertices of T.

Since the space complexity of the algorithm is clearly linear, the proof is complete. [



Mathematics 2021, 9, 142

60f 11

Note that the parameter p of the algorithm Rooted as well as the parameter Z of the
algorithm Hosoya are not used for the computation of the Hosoya index. These parameters
will be needed in the next section.

3.3. Example

As an example of the execution of the algorithm Hosoya observe the three T with the
vertex set {1,2,...,11} depicted in Figure 1. We demonstrate the algorithm for the root 4.
Note that before the algorithm is applied, the algorithm Rooted is called for the vertex 4.

Since 4 is not a leaf, the algorithm is recursively called for the vertices 3, 8, and 11 (the
neighbors of 4) in Step 3. The recursion stops when a leaf is reached and the corresponding
entry of the vector Z is set to one. We therefore obtain Z; = Zs = Z¢ = Zy = Zg = Z19g = 1.
For the vertex 2 we then obtain Z, = Z; - Zs = 1-1 = 1 in Step 4. Since C; and Cs are both
empty, Step 6.2.1 is never executed and zu remains equal to one. The final value Z; = 3
is therefore obtained in Step 6.3, where for the vertices 1 and 5 the value one is added to
the current value of Z,. Analogously, for the vertex 3 we obtain Z3 = Z, - Zg =3-1=3
in Step 4. Since C; = {1,5}, wehavezu = Z;-Zs =1-1 =1foru = 2 and zu = 1 for
u = 6in Step 6.2. Finally, foru = 2 and u = 6 we add zu - Z3/Z, = 1-3/3 = 1 and
zu-Z3/Z¢ =1-3/3 = 3 to Z3 in Step 6.3. These operations give Z3 = 7. The other values
are obtained in an analogous manner. Thus, we obtain Zg = 2, Zy; = 3, and Z; = 95.
The Hosoya index of a (sub)tree T: (resp. the value of Z(T# — v)) is shown at the upper
left-hand side (resp. the right hand side) of the vertex v in Figure 1.

An intuitive explanation of the algorithm Hosoya for a tree T rooted at r is as follows.

1. All the entries of the vector Z that correspond to leaves of T, are set to one.
2. If v is a vertex of T, such that the Hosoya indices are already computed for all
descendants of v, the computation of Z; goes as follows:

(a) we multiply the Hosoya indices of all children of v and get the value of
Z (T} — v) which is also the initial value of Z;

(b)  for every child u of v we multiply the Hosoya indices of all children of u and
the Hosoya indices of all children of v with the exception of u. The obtained
product is added to the current value of Z,.

Consider again the rooted tree Ty in Figure 1 and suppose that the Hosoya indices are
already computed for all descendants of 4. For Step a., we obtain the initial value of Z4,
which equals Z3 - Zg - Z1; =7 -2 -3 = 42. For Step b., we have

Zy=42+27y - Z¢-28-Z11+2Z3-Z7-Z11+ Z3-2Zg-Zg-Z1g = 95.

Figure 1. Hosoya indices in Tj.

4. Hosoya Matrix

We will show that the Hosoya matrix of a tree of order n can be computed in
O(n?) time.



Mathematics 2021, 9, 142

7of 11

4.1. Recursive Formula for Computing the Hosoya Matrix
Proposition 5. If uv is an edge of a tree T, then

Z(T —uv) = Z(T — V(T])))Z(TY)

Z(T —v)Z(TY — u)

= 2(T) - -

Proof. Note first that T — uv is composed of two connected components: T — V(T;,) and
T} . Proposition 2 yields

Z(T —uv) = Z(T - V(T}))Z(T}).
By Proposition 1, we have
Z(T —uv) = Z(T) — Z(T — {u,v}).
The assertion now follows immediately from Proposition 4. [
Theorem 3. If P = vy,vy,...,v; isapathin a tree T, then

Z(T — E(P)) = (Z(T3! Z(Tay —01) 2T 00 | 77 Z(To) —0i0i41)

Sk )
- 2(Ty) i1 Z(To,)

Proof. If k = 2, then this is Proposition 5.

If k > 2, we first show that T — E(P) is composed of connected components: T —
V(Ty,), Tot = V(Tg}),..., Tyt , — V(T ), and the graph Tp! | — vx_1vx. We use induction
onk. If k = 3, then Ty,! — E(P) = Ty, — {v1v2, 0203} is a graph composed of components:
T — V(Ty)) and T, — v1v;. Let us assume that the proposition holds for all paths of
length less than k, and let P’ = vq,v,...,0_1 and P = v1,0y,...,0k. By the induction

hypothesis, T — E(P’) is composed of components T — V(Ty}), Tol — V(Ty}), ..., Ty!

k-3

V(Ty ), and Ty} , — vk_pvk_1. Since Ty , — vk_pv_1 is composed of two connected
components, T;’,jfz — V(Tgqu) and Té’,jﬁl, and since the edge v, 17 belongs to the tree Tfj]}fl,

the assertion easily follows.
By Proposition 5, we have

Z(Ty! —vvi11)
Z(T0!

Ui+1)

Z(Ty! — V(Ty,)) =

and
Z( ™

L~ 0 Z(T — )
Z(Tyy = verw) = Z(T5L) = = oy
Yk

Uk—1

Since T — E(P) is composed of connected components: T — V (T, ), Tps — V(Ty1), ...,

Ty, — V(T ), and the graph Ty | — vy_1 0y, Proposition 2 completes the proof. [

Corollary 1. Let P = v1,vy,..., v beapathina tree T. If

= Z(T% ) Z(Ty = k1) Z(To} —vk)
k= )
o 2(15)
and
1, k=2
Py = #?Pk—lf k>3-

Z(T1 )
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then
Z(T — E(P)) = Z;Py.

k=2 7(T,! —vi0;11)
Proof. By Theorem 3, we have to show that P, = [] W
i=1 Vit1

If k = 2, then P, = 1 and the assertion is trivial. Let k > 3 and assume that the claim holds

for k — 1. By Proposition 5,

. We use induction on k.

= Z(Tyy , — 0k—2)Z(To , — Ve1)

Z(Ty! , — vk—avk—1) = Z(Ty Z(T0 ) =Zk_1-
Uk—1
It follows ( o )
Zi_1 Z(Tye_, — Vk—2Vk—1
Z(Ty,. ) Z(Ty, )

Since by the induction hypothesis we have

k=3 Z(To! — vivi1)
P =11 ozt )

i=1 Vi1 )
the assertion follows. [

4.2. Algorithm for Computing the Hosoya Matrix

Algorithm 3 computes the entries of the r-th row of the Hosoya matrix for the tree
T. In other words, the algorithm for the rooted tree T, computes the value H, ;, for every
v € V(T). If vis avertex of Ty, the list C, represents the children of v, while p, represent
the parent of v. Vectors Z and Z for entries Z, and Z represent Z(T,) and Z(T, — v) in T,,
respectively.

Algorithm 3. Row(v, , C, p, Z, Z, H)

1. if v = r then

begin
1.1 Pk :=1;
12 Zk := Z,;
1.3H,,:=0;

end

2. else

begin

2.1 Pk := Pk - &,
pPo_

227k = Zy, — Z”Z”UZU;
23H,, = Zk- Pk;

end;

3.forallw € C, do
Row(w, r,C, p, Z, Z, H);
end.

Proposition 6. Let r € {1,2,...,n} be a vertex of a tree T. Then algorithm Row computes the
r-th row of the Hosoya matrix of T in linear time.

Proof. The correctness of the algorithm is based on Corollary 1. Note that p, and C,
represent the parent of v and the children of v, respectively. The algorithm maintains
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variables Zk and Pk representing the values Z; and Py of Corollary 1, respectively. We first
consider the following two cases.

A.If v = r, the correctness easily follows. The algorithm sets the values of Pk and Zk
to one and Zy, respectively.

B. If 7 is the parent of v, the value of Pk remains equal to one after Step 2.1 is executed,
since Zk is set to Z(T,) in case A. The new value of Zj is established in Step 2.2., while Step
2.3 provides the correct value of H;, .

Since in the above cases the correct value of Pk is computed, the correctness for other
cases follows from Corollary 1.

For the time complexity, note that the number of recursive calls of the algorithm equals
the number of vertices of T;. Since the time complexity of a single call of the algorithm
(neglecting the recursive calls) is constant, the assertion follows. [

Algorithm 4 computes the Hosoya matrix H for the tree T with the vertex set V(T) =

{1,2,...,n}.

Algorithm 4. Hosoya matrix(T, H)

1. fori:=1tondo
begin
1.1 Rooted(T, i, C, p);
1.2 Hosoya(i, Z, C, Z);
1.3Row(i, i, C, p, Z, Z, H);
end;
end.

Theorem 4. Let T be tree of order n. Then algorithm Hosoya matrix computes the Hosoya matrix
of T in O(n?) time and space.

Proof. For every vertexi € V(T) = {1,2,...,n}, the algorithm creates the rooted tree T;
in Step 1.1. The needed values Z(T,) and Z(T, — v) are then computed for every vertex v
of T; in Step 1.2. Finally, all entries of the i-th row of the Hosoya matrix are computed in
Step 1.3.

Since the time complexity of the algorithms Rooted, Hosoya, and Row is linear,
the time and space bound of the algorithm Hosoya matrix easily follow. O

4.3. Example

Observe again the three T with the vertex set {1,2,...,11} depicted in Figure 1. We
demonstrate the execution of the algorithm Row for the vertex 4 in the sequel. Note that
before the algorithm is applied, the algorithm Hosoya, which computes the vectors Z and
Z,is called for the vertex 4.

1. v=4:Pk=1,2Zk= 274 =96Hyy = 0.

2. v=3Pk=%P =127Zk=95—-%3 =77, Hy3 =77.
3. v=2Pk=17=117Zk=7-3! =6, Hy, = 66.
4 v=1:Pk=4%=227Zk=3-11 =2 Hy, =44
5 v=5Pk=16=0207k=3-11=27,; =44
6. v=6Pk=127=117Zk=7—-31 =4 Hyo =44
7. v=8Pk=1LP=12Zk=9- £_74H48_74
8. v=7Pk=1P=377Zk=2-14 =1Hy; =37.
9. v=11:Pk=12 =1 7Zk=95- 41 =81, Hyy; =81
10. v=9Pk=18 =27 7k=3-11 =2 Hyo =54
11. 0=10:Pk=18 =27, 7k =3 - L1 =2 Hy,p = 54.
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5. Conclusions

Quantitative structure—property and structure—activity relationships of molecular
compounds are frequently modeled using the molecular topological features of these
compounds. In that regard, topological indices are crucial for investigating chemical
compounds to grasp chemical structures” fundamental topology.

In this paper, we have obtained efficient algorithms for computing the Hosoya index
and the Hosoya matrix on an arbitrary acyclic graph. Both algorithms are optimal in the
sense that the running time of an algorithm is constant per a fundamental essential item of
the input: a vertex (for the computation of the Hosoya index) and an entry of the matrix
(for the computation of the Hosoya matrix). The complexity of the presented algorithm for
computing the Hosoya index of a tree is within the same time bound as some previously
presented procedures. That said, the algorithm presented in this paper is much simpler
than its predecessor given in [11] and does not require pre-processing.

It is worth noticing that both presented algorithms exploit the recursive nature of a
tree. Thus, a similar approach could be applied for computing the Hosoya index and the
Hosoya matrix of tree-like graphs, e.g., cactus graphs, and of graphs derived from trees.
Moreover, the presented concepts could initiate studies of efficient methods of computation
for other topological indices, especially the ones that are closely connected to the Hosoya
index, particularly the Merrifield-Simons index [17,18], the energy of a graph [3], and the
matching energy of a graph [19].
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