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Abstract: The Hosoya index of a graph is defined as the total number of its independent edge
sets. This index is an important example of topological indices, a molecular-graph based structure
descriptor that is of significant interest in combinatorial chemistry. The Hosoya index inspires the
introduction of a matrix associated with a molecular acyclic graph called the Hosoya matrix. We
propose a simple linear-time algorithm, which does not require pre-processing, to compute the
Hosoya index of an arbitrary tree. A similar approach allows us to show that the Hosoya matrix can
be computed in constant time per entry of the matrix.
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1. Introduction

In Haruo Hosoya’s seminal paper, a molecular-graph based structure descriptor is
proposed that nowadays is known under the name Hosoya index [1]. It is well-known
that several physicochemical properties of chemical structures are well correlated with the
Hosoya index of the corresponding molecular graphs. In particular, it is used to predict,
from the structure of molecules, some of their physico-chemical properties such as boiling
points, entropies, heat of vaporization, and π-electron energy [1,2].

The mathematical investigations on the Hosoya index are often related to trees, see for
example [3–8]. Note also that there is a strong connection between the energy of a tree and
its Hosoya index [9]. It is established that the general problem of determining the Hosoya
index is #P-complete even for planar graphs [10]. On the other hand, if the graph is known
to be a tree, there are efficient solutions.

In [11], Zhang and co-authors proposed an algorithm that allows computation of
the Hosoya index of a tree in linear time. The algorithm uses a relatively complex pre-
processing which for a given tree computes the Prüfer code of the corresponding labeled
tree. As noted already by the authors, another troublesome aspect of the proposed algo-
rithm is its necessity of computation with fractions. Moreover, it was shown in [12] that
the values of the characteristic polynomial of a tree can be computed in linear time, which
implies that a computation of the Hosoya index of a tree can be done within the same
time-bound; however, an explicit algorithm has not been presented.

It has been demonstrated that the Hosoya index can be computed efficiently for some
graphs derived from trees. In particular, for an arbitrary tree T, a closed-form expression is
presented for the Hosoya index of the fractal graphs R(T) and RT(T) [13].

Since a graph is entirely determined by specifying either its adjacency structure or
its incidence structure, it is natural to state the specification of a graph in matrix form. By
associating a matrix with a graph, one can also use selected graph invariants as molecular
descriptors. This approach was initiated in a work by Randić, where a matrix based on an-
other well-known molecular-graph structure descriptor, the Wiener index, is proposed [14].
Later, Randić used an analogous approach, based on the Hosoya index, for acyclic systems,
which yields the concept of the Hosoya matrix [15].
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The paper is organized as follows. In the next section, we give some definitions and
concepts needed in this paper. In Section 3, we follow the idea presented in [12] to give
a recursive expression for the Hosoya index of a tree. Using this result, we present a
linear-time algorithm for computing the Hosoya index of a graph of this class. In Section 4,
we apply the previous section’s approach to provide a recursive formula for an entry of the
Hosoya matrix. The results allow the computation of the Hosoya matrix in constant time
per entry of the matrix.

2. Preliminaries

Let G = (V, E) be a graph, possessing n vertices and m edges. The set of edges
X ⊆ E(G) is called a matching of G if any two edges of X have no vertex in common. A
matching of G with k edges is called a k-matching of G.

A subset of vertices I ⊆ V(G) is independent if no two vertices of I are adjacent. The
number of distinct k-element independent vertex sets is denoted by n(G, k). Note that
n(G, 0) = 1 and n(G, n) = n.

The Hosoya index of a graph G, denoted by Z(G), is defined as the total number of
matchings of G. Let m(G, k) be the number of k-matchings of G and set m(G, 0) := 1. The
Hosoya index can be formulated as

Z(G) := ∑
k≥0

m(G, k).

Let G = (V, E) be a graph and V′ ⊂ V(G). Then G−V′ denotes the graph obtained
from G by removing vertices of V′. If V′ = {v}, i.e., V′ is composed of a single vertex, we
will write G− v instead of G− {v}. Analogously, if and E′ ⊂ E(G), then G− E′ denotes
the graph obtained from G by removing vertices of E′. If E′ = {e}, we will write G − e
instead of G− {e}.

A tree is a connected graph without cycles. If u, v are vertices of a tree T, then T admits
exactly one path between u and v. We shall denote this path by Puv.

Let T be a tree with the vertex set V(T) = {1, 2, . . . , n}. The Hosoya matrix of a
tree T is the n × n matrix H(T), where (i, j)-entry of H(T) is the Hosoya index of the
graph obtained from T by removing the edges of the path Pij [15]. More formally, if
i, j ∈ {1, 2, . . . , n}, then

Hi,j(T) =
{

Z(T − E(Pij)), i 6= j
0, i = j

.

Let v be a vertex of a graph G. Then NG(v) or simply N(v) denote the set of vertices
adjacent to v in G.

A rooted tree is a tree in which one vertex is distinguished from the others and called
the root. If r is a root of a tree T, then Tr denotes the corresponding rooted tree. Let v 6= r
be a vertex of Tr. As already stated, Prv denotes the path between r and v in Tr. If u is a
vertex of Prv adjacent to v, then u is a parent of v and v is a child of u. If u is a parent of
v and w parent of u, then w is a grandparent of v. Note that every vertex of a rooted tree
admits at most one parent and grandparent. A vertex z is a descendant of v if v is in the
path from z to r. A vertex v of a tree T, and all its descendants induce a subgraph of Tr
denoted by Tr

v . It is clear that Tr
v is a tree. Note that Tr

v can be seen as a rooted subtree of Tr
with the root v.

If v is a vertex of Tr, then Cr(v) denotes the set of children of v. If v 6= r, let pr(v)
denote the parent of v. If Cr(v) = ∅, then v is a leaf of Tr.

3. Hosoya Index
3.1. Recursive Formula for Computing the Hosoya Index

The results of this subsection are obtained by using an approach similar to the work
of Mohar where the characteristic polynomial of a tree is studied [12].

The following three results are well-known [1,16].
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Proposition 1. Let uv be an edge of a graph G. Then

Z(G) = Z(G− uv) + Z(G− {u, v}).

Proposition 2. Let G be a graph composed of two disjoint components G1 and G2. Then

Z(G) = Z(G1)Z(G2).

Proposition 3. Let v be a vertex of a graph G. Then

Z(G) = Z(G− v) + ∑
u∈N(v)

Z(G− {u, v}).

We also need the following

Proposition 4. Let v and u be vertices of a tree T. Then
(i)

Z(T − v) = ∏
w∈Cv(v)

Z(Tv
w).

(ii) If v is the parent of u in Tv, then

Z(T − {u, v}) = Z(T − v)Z(Tv
u − u)

Z(Tv
u )

=

Z(Tv
u − u) ∏

w∈Cv(v)
Z(Tv

w)

Z(Tv
u )

,

where

Z(Tv
u − u) =

 1, u is a leaf
∏

x∈Cv(u)
Z(Tv

x ), otherwise .

Proof. (i) If T is a single vertex, the claim immediately follows. Otherwise, note that
NT(v) = Cv(v). It follows that T − v is composed of connected components Tv

w, for all
w ∈ Cv(v). Proposition 2 now yields the assertion.

(ii) We can see that T − {v, u} is composed of two sets of connected components: one
corresponds to components of T− v with the exception of Tv

u , while the other corresponds
to Tv

u − u. Let us denote the first set of connected components by (T − v) \ Tv
u . By (i), we

have

Z((T − v) \ Tv
u ) = ∏

w∈Cv(v)\{u}
Z(Tv

w)

∏
w∈Cv(v)

Z(Tv
w)

Z(Tu)
=

Z(T − v)
Z(Tv

u )
.

From Proposition 2 now it follows that

Z(T − {u, v}) = Z((T − v) \ Tv
u )Z(Tv

u − u) =
Z(T − v)Z(Tv

u − u)
Z(Tv

u )
.

If u is a leaf, then T − {v, u} is the graph composed of connected components Tv
w,

for all w ∈ Cv(v) \ {u}. Since Z(Tv
u − u) = 1, the case is settled.

If u is not a leaf, then T− {v, u} is the graph composed of connected components Tv
w

and Tv
x , for all w ∈ Cv(v) \ {u} and x ∈ Cv(u). From Proposition 2 and (i) then it follows

Z(T − {u, v}) =
∏

x∈Cv(u)
Z(Tv

x ) ∏
w∈Cv(v)

Z(Tv
w)

Z(Tv
u )

.

This assertion concludes the proof.
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Theorem 1. Let v and r be (not necessarily distinct) vertices of a tree T. Then

Z(Tr
v) =


1, v is a leaf

∏
w∈Cr(v)

Z(Tr
w) + ∑

u∈Cr(v)

Z(Tr
u−u) ∏

w∈Cr(v)
Z(Tr

w)

Z(Tr
u)

, otherwise

where

Z(Tr
u − u) =

 1, u is a leaf of Tr

∏
x∈Cr(u)

Z(Tr
x), otherwise .

Proof. If v is a leaf, then Tr
v is a single vertex and the case is settled.

If v is not a leaf, then note that NTr
v (v) = Cr(v). By Proposition 3, we have Z(Tr

v) =
Z(Tr

v − v) + ∑
u∈Cr(v)

Z(Tr
v − {u, v}). Proposition 4 now completes the proof.

3.2. Algorithm for Computing the Hosoya Index

Let v be a vertex of a nonempty tree T. The data structure of the rooted tree Tv is given
by Algorithm 1, where Cv and pv represent the list of children of v and the parent of v in
Tv, respectively.

Algorithm 1. Rooted(T, v, C, p)

1. Cv := the list comprised of all vertices of N(v);
2. For all w ∈ N(v) do
begin

2.1 Remove v from N(w);
2.2 Rooted(T, w, C);
2.3 pw := v;

end;
end.

Let v be a vertex of T and w ∈ N(v). If N(w) is represented by a (doubly connected)
adjacency list, then we may remove v from N(w) in constant time. It is easy to see now
that the time complexity of Rooted is linear.

Algorithm 2 computes the Hosoya index Zv of a tree T with respect to a root v. Before
the algorithm is applied, the algorithm Rooted is called for the vertex v. Thus, for every
vertex u in Tv, the rooted tree is represented by the list of children Cu.

Theorem 2. Let T be tree of order n. Then algorithm Hosoya computes the Hosoya index of T in
O(n) time and space.
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Algorithm 2. Hosoya(v, C, Z, Z̄)

1. Z̄v := 1;
2. if |Cv| = 0 then begin Zv := 1; EXIT; end;
3. for all w ∈ Cv do

Hosoya(w, C, Z, Z̄);
4. for all w ∈ Cv do

Z̄v := Z̄v · Zw;
5. Zv := Z̄v;
6. for all u ∈ Cv do

begin
6.1 zu := 1;
6.2 if |Cu| > 0 then

6.2.1 for all x ∈ Cu do
zu := zu · Zx;

6.3 Zv := Zv + zu · Z̄v/Zu;
end;

end.

Proof. The validity of the algorithm follows from Theorem 1. The algorithm computes
vectors Z and Z̄, such that the entry Zv (resp. Z̄v) represents Z(T) (resp. Z(T − v)). The
algorithm also maintains the variable zu, which for u ∈ Cv(u) represents the value of

∏
x∈Cv(u)

Z(Tv
x ).

If v is a leaf in T, then |Cv| = 0 and Zv is set to one. Otherwise, the algorithm is
recursively called for each child of v in Step 3. Note that the call of the algorithm for a
vertex w computes the Hosoya index of the corresponding subtree Tv

w. Thus, after Step 3 is
executed, the Hosoya index is already computed for all subtrees of v. Next, ∏

w∈Cv(v)
Z(Tv

w)

is computed in Step 4. This gives the initial value of Zv assigned in Step 5, while the sum

∑
u∈Cv(v)

Z(Tv
u − u)

∏
w∈Cv(v)

Z(Tv
w)

Z(Tv
u )

is computed in Step 6. Steps 6.1 and 6.2 compute the value of

Z(Tv
u − u). If u is a leaf, then |Cu| = 0 and the value of zu remains equal to one. Otherwise,

the value of zu is equal to ∏
x∈Cv(u)

Z(Tv
x ) after Step 6.2 is executed. In Step 6.3, the value of

zu is multiplied by Z̄v and divided by Zu; thus, the value added to Zv in this step is equal
to Z(Tv

u − u)/Zu ∏
w∈Cv(v)

Z(Tv
w). This assertion completes the proof of the correctness of

the algorithm.
For the time complexity first note that the time complexity of a single recursive call

neglecting recursive calls (in Step 3) and neglecting the Steps 4 and 6 is clearly constant.
Since the number of recursive calls of the algorithm equals the number of vertices of the
tree, we have to show that the total number of operations executed in Steps 4 and 6 is linear
in the number of vertices. This number can bounded above by the number of entries of
the vector Z used by the algorithm. In Step 4, the values of Zw, w ∈ Cv are used, while in
Step 6.2.1, for u ∈ Cv, the entries Zx, x ∈ Cu are used. Since every vertex v of a rooted tree
admits at most one parent and grandparent, the corresponding entry Zv is used at most
three times: twice when Hosoya is called for the parent of v (Steps 4 and 6.3) and once
when Hosoya is called for the grandparent of v (Step 6.2.1).

It follows that the total number of operations executed in Steps 4 and 6 is bounded
above with some constant multiplied by the number of vertices of T.

Since the space complexity of the algorithm is clearly linear, the proof is complete.
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Note that the parameter p of the algorithm Rooted as well as the parameter Z̄ of the
algorithm Hosoya are not used for the computation of the Hosoya index. These parameters
will be needed in the next section.

3.3. Example

As an example of the execution of the algorithm Hosoya observe the three T with the
vertex set {1, 2, . . . , 11} depicted in Figure 1. We demonstrate the algorithm for the root 4.
Note that before the algorithm is applied, the algorithm Rooted is called for the vertex 4.

Since 4 is not a leaf, the algorithm is recursively called for the vertices 3, 8, and 11 (the
neighbors of 4) in Step 3. The recursion stops when a leaf is reached and the corresponding
entry of the vector Z is set to one. We therefore obtain Z1 = Z5 = Z6 = Z7 = Z9 = Z10 = 1.
For the vertex 2 we then obtain Z̄2 = Z1 · Z5 = 1 · 1 = 1 in Step 4. Since C1 and C5 are both
empty, Step 6.2.1 is never executed and zu remains equal to one. The final value Z2 = 3
is therefore obtained in Step 6.3, where for the vertices 1 and 5 the value one is added to
the current value of Z2. Analogously, for the vertex 3 we obtain Z̄3 = Z2 · Z6 = 3 · 1 = 3
in Step 4. Since C2 = {1, 5}, we have zu = Z1 · Z5 = 1 · 1 = 1 for u = 2 and zu = 1 for
u = 6 in Step 6.2. Finally, for u = 2 and u = 6 we add zu · Z̄3/Z2 = 1 · 3/3 = 1 and
zu · Z̄3/Z6 = 1 · 3/3 = 3 to Z3 in Step 6.3. These operations give Z3 = 7. The other values
are obtained in an analogous manner. Thus, we obtain Z8 = 2, Z11 = 3, and Z4 = 95.
The Hosoya index of a (sub)tree T4

v (resp. the value of Z(T4
v − v)) is shown at the upper

left-hand side (resp. the right hand side) of the vertex v in Figure 1.
An intuitive explanation of the algorithm Hosoya for a tree T rooted at r is as follows.

1. All the entries of the vector Z that correspond to leaves of Tr are set to one.
2. If v is a vertex of Tr such that the Hosoya indices are already computed for all

descendants of v, the computation of Zv goes as follows:

(a) we multiply the Hosoya indices of all children of v and get the value of
Z(Tr

v − v) which is also the initial value of Zv;
(b) for every child u of v we multiply the Hosoya indices of all children of u and

the Hosoya indices of all children of v with the exception of u. The obtained
product is added to the current value of Zv.

Consider again the rooted tree T4 in Figure 1 and suppose that the Hosoya indices are
already computed for all descendants of 4. For Step a., we obtain the initial value of Z4,
which equals Z3 · Z8 · Z11 = 7 · 2 · 3 = 42. For Step b., we have

Z4 = 42 + Z2 · Z6 · Z8 · Z11 + Z3 · Z7 · Z11 + Z3 · Z8 · Z9 · Z10 = 95.

1

1 1 1

1

3

42

1 1

1

1 1

1

3

327

95

1

1 1 1 1

5

6 7

8

92

3

4

10

11

Figure 1. Hosoya indices in T4.

4. Hosoya Matrix

We will show that the Hosoya matrix of a tree of order n can be computed in
O(n2) time.
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4.1. Recursive Formula for Computing the Hosoya Matrix

Proposition 5. If uv is an edge of a tree T, then

Z(T − uv) = Z(T −V(Tv
u ))Z(Tv

u )

= Z(T)− Z(T − v)Z(Tv
u − u)

Tv
u

.

Proof. Note first that T − uv is composed of two connected components: T −V(Tu) and
Tv

u . Proposition 2 yields

Z(T − uv) = Z(T −V(Tv
u ))Z(Tv

u ).

By Proposition 1, we have

Z(T − uv) = Z(T)− Z(T − {u, v}).

The assertion now follows immediately from Proposition 4.

Theorem 3. If P = v1, v2, . . . , vk is a path in a tree T, then

Z(T − E(P)) = (Z(Tv1
vk−1)−

Z(Tv1
vk−1−vk−1)Z(Tv1

vk −vk)

Z(Tv1
vk )

)
k−2

∏
i=1

Z(Tv1
vi −vivi+1)

Z(Tv1
vi+1)

.

Proof. If k = 2, then this is Proposition 5.
If k > 2, we first show that T − E(P) is composed of connected components: T −

V(Tv2), Tv1
v2 −V(Tv1

v3 ), . . . , Tv1
vk−2 −V(Tv1

vk−1), and the graph Tv1
vk−1 − vk−1vk. We use induction

on k. If k = 3, then Tv1
v1 − E(P) = Tv1 − {v1v2, v2v3} is a graph composed of components:

T − V(Tv1
v2 ) and Tv1

v2 − v1v2. Let us assume that the proposition holds for all paths of
length less than k, and let P′ = v1, v2, . . . , vk−1 and P = v1, v2, . . . , vk. By the induction
hypothesis, T− E(P′) is composed of components T−V(Tv1

v2 ), Tv1
v2 −V(Tv1

v3 ), . . . , Tv1
vk−3 −

V(Tv1
vk−2), and Tv1

vk−2 − vk−2vk−1. Since Tv1
vk−2 − vk−2vk−1 is composed of two connected

components, Tv1
vk−2 −V(Tv1

vk−1) and Tv1
vk−1 , and since the edge vk−1vk belongs to the tree Tv1

vk−1 ,
the assertion easily follows.

By Proposition 5, we have

Z(Tv1
vi −V(Tv1

vi+1)) =
Z(Tv1

vi − vivi+1)

Z(Tv1
vi+1)

and

Z(Tv1
vk−1 − vk−1vk) = Z(Tv1

vk−1)−
Z(Tv1

vk−1 − vk−1)Z(Tv1
vk − vk)

Z(Tv1
vk )

.

Since T− E(P) is composed of connected components: T−V(Tv2), Tv1
v2 −V(Tv1

v3 ), . . . ,
Tv1

vk−2 −V(Tv1
vk−1), and the graph Tv1

vk−1 − vk−1vk, Proposition 2 completes the proof.

Corollary 1. Let P = v1, v2, . . . , vk be a path in a tree T. If

Zk := Z(Tv1
vk−1)−

Z(Tv1
vk−1 − vk−1)Z(Tv1

vk − vk)

Z(Tv1
vk )

and

Pk :=

 1, k = 2
Zk−1

Z(T
v1
vk−1

)
Pk−1, k ≥ 3 ,
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then

Z(T − E(P)) = ZkPk.

Proof. By Theorem 3, we have to show that Pk =
k−2
∏
i=1

Z(T
v1
vi −vivi+1)

Z(T
v1
vi+1

)
. We use induction on k.

If k = 2, then Pk = 1 and the assertion is trivial. Let k ≥ 3 and assume that the claim holds
for k− 1. By Proposition 5,

Z(Tv1
vk−2 − vk−2vk−1) = Z(Tv1

vk−2)−
Z(Tv1

vk−2 − vk−2)Z(Tv1
vk−1 − vk−1)

Z(Tv1
vk−1)

= Zk−1.

It follows

Pk =
Zk−1

Z(Tv1
vk−1)

Pk−1 =
Z(Tv1

vk−2 − vk−2vk−1)

Z(Tv1
vk−1)

Pk−1.

Since by the induction hypothesis we have

Pk−1 =
k−3

∏
i=1

Z(Tv1
vi − vivi+1)

Z(Tv1
vi+1)

,

the assertion follows.

4.2. Algorithm for Computing the Hosoya Matrix

Algorithm 3 computes the entries of the r-th row of the Hosoya matrix for the tree
T. In other words, the algorithm for the rooted tree Tr computes the value Hr,v for every
v ∈ V(T). If v is a vertex of Tr, the list Cv represents the children of v, while pv represent
the parent of v. Vectors Z and Z̄ for entries Zv and Z̄ represent Z(Tv) and Z(Tv − v) in Tr,
respectively.

Algorithm 3. Row(v, r, C, p, Z, Z̄, H)

1. if v = r then
begin

1.1 Pk := 1;
1.2 Zk := Zv;
1.3 Hr,v := 0;

end
2. else

begin
2.1 Pk := Pk · Zk

Zpv
;

2.2 Zk := Zpv −
Z̄pv Z̄v

Zv
;

2.3 Hr,v := Zk · Pk;
end;

3. for all w ∈ Cv do
Row(w, r, C, p, Z, Z̄, H);

end.

Proposition 6. Let r ∈ {1, 2, . . . , n} be a vertex of a tree T. Then algorithm Row computes the
r-th row of the Hosoya matrix of T in linear time.

Proof. The correctness of the algorithm is based on Corollary 1. Note that pv and Cv
represent the parent of v and the children of v, respectively. The algorithm maintains
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variables Zk and Pk representing the values Zk and Pk of Corollary 1, respectively. We first
consider the following two cases.

A. If v = r, the correctness easily follows. The algorithm sets the values of Pk and Zk
to one and Zv, respectively.

B. If r is the parent of v, the value of Pk remains equal to one after Step 2.1 is executed,
since Zk is set to Z(Tr) in case A. The new value of Zk is established in Step 2.2., while Step
2.3 provides the correct value of Hr,v.

Since in the above cases the correct value of Pk is computed, the correctness for other
cases follows from Corollary 1.

For the time complexity, note that the number of recursive calls of the algorithm equals
the number of vertices of Tr. Since the time complexity of a single call of the algorithm
(neglecting the recursive calls) is constant, the assertion follows.

Algorithm 4 computes the Hosoya matrix H for the tree T with the vertex set V(T) =
{1, 2, . . . , n}.

Algorithm 4. Hosoya matrix(T, H)

1. for i := 1 to n do
begin

1.1 Rooted(T, i, C, p);
1.2 Hosoya(i, Z, C, Z̄);
1.3 Row(i, i, C, p, Z, Z̄, H);

end;
end.

Theorem 4. Let T be tree of order n. Then algorithm Hosoya matrix computes the Hosoya matrix
of T in O(n2) time and space.

Proof. For every vertex i ∈ V(T) = {1, 2, . . . , n}, the algorithm creates the rooted tree Ti
in Step 1.1. The needed values Z(Tv) and Z(Tv − v) are then computed for every vertex v
of Ti in Step 1.2. Finally, all entries of the i-th row of the Hosoya matrix are computed in
Step 1.3.

Since the time complexity of the algorithms Rooted, Hosoya, and Row is linear,
the time and space bound of the algorithm Hosoya matrix easily follow.

4.3. Example

Observe again the three T with the vertex set {1, 2, . . . , 11} depicted in Figure 1. We
demonstrate the execution of the algorithm Row for the vertex 4 in the sequel. Note that
before the algorithm is applied, the algorithm Hosoya, which computes the vectors Z and
Z̄, is called for the vertex 4.

1. v = 4: Pk = 1, Zk = Z4 = 96, H4,4 = 0.
2. v = 3: Pk = 1·95

95 = 1, Zk = 95− 42·3
7 = 77, H4,3 = 77.

3. v = 2: Pk = 1·77
7 = 11, Zk = 7− 3·1

3 = 6, H4,2 = 66.
4. v = 1: Pk = 11·6

3 = 22, Zk = 3− 1·1
1 = 2, H4,1 = 44.

5. v = 5: Pk = 11·6
3 = 22, Zk = 3− 1·1

1 = 2, Z4,5 = 44.
6. v = 6: Pk = 1·77

7 = 11, Zk = 7− 3·1
1 = 4, H4,6 = 44.

7. v = 8: Pk = 1·95
95 = 1, Zk = 95− 42·1

2 = 74, H4,8 = 74.
8. v = 7: Pk = 1·74

2 = 37, Zk = 2− 1·1
1 = 1, H4,7 = 37.

9. v = 11: Pk = 1·95
95 = 1, Zk = 95− 42·1

3 = 81, H4,11 = 81.
10. v = 9: Pk = 1·81

3 = 27, Zk = 3− 1·1
1 = 2, H4,9 = 54.

11. v = 10: Pk = 1·81
3 = 27, Zk = 3− 1·1

1 = 2, H4,10 = 54.
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5. Conclusions

Quantitative structure–property and structure–activity relationships of molecular
compounds are frequently modeled using the molecular topological features of these
compounds. In that regard, topological indices are crucial for investigating chemical
compounds to grasp chemical structures’ fundamental topology.

In this paper, we have obtained efficient algorithms for computing the Hosoya index
and the Hosoya matrix on an arbitrary acyclic graph. Both algorithms are optimal in the
sense that the running time of an algorithm is constant per a fundamental essential item of
the input: a vertex (for the computation of the Hosoya index) and an entry of the matrix
(for the computation of the Hosoya matrix). The complexity of the presented algorithm for
computing the Hosoya index of a tree is within the same time bound as some previously
presented procedures. That said, the algorithm presented in this paper is much simpler
than its predecessor given in [11] and does not require pre-processing.

It is worth noticing that both presented algorithms exploit the recursive nature of a
tree. Thus, a similar approach could be applied for computing the Hosoya index and the
Hosoya matrix of tree-like graphs, e.g., cactus graphs, and of graphs derived from trees.
Moreover, the presented concepts could initiate studies of efficient methods of computation
for other topological indices, especially the ones that are closely connected to the Hosoya
index, particularly the Merrifield–Simons index [17,18], the energy of a graph [3], and the
matching energy of a graph [19].

Funding: This work was supported by the Slovenian Research Agency under the grants P1-0297,
J1-9109, J1-2452, and J1-1693.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hosoya, H. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons.

Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [CrossRef]
2. Hosoya, H. The topological index Z before and after 1971. Internet Electron. J. Mol. Des. 2002, 1, 428–442. [CrossRef]
3. Andriantiana, E.O.D. Energy, Hosoya index and Merrifield-Simmons index of trees with prescribed degree sequence. Discret.

Appl. Math. 2013, 161, 724–741. [CrossRef]
4. Hua, H. On maximal energy and hosoya index of trees without perfect matching. Bull. Aust. Math. Soc. 2010, 81, 47–57. [CrossRef]
5. Kazemi, R.; Behtoei, A. Hosoya index of tree structures. Trans. Comb. 2020, 9, 161–169.
6. Tian, W.; Zhao, F.; Sun, Z.; Mei, X.; Chen, G. Orderings of a class of trees with respect to the Merrifield–Simmons index and the

Hosoya index. J. Comb. Optim. 2019, 38, 1286–1295. [CrossRef]
7. Chen, X.; Zhang, J.; Sun, W. On the Hosoya index of a family of deterministic recursive trees. J. Phys. A Stat. Mech. Appl. 2017,

465, 449–453. [CrossRef]
8. Xiao, C.; Chen, H. Kekulé structures of square–hexagonal chains and the Hosoya index of caterpillar trees. Discret. Math. 2016,

339, 506–510. [CrossRef]
9. Heuberger, C.; Wagner, S.G. Chemical Trees Minimizing Energy and Hosoya Index. J. Math. Chem. 2009, 46, 214–230. [CrossRef]
10. Jerrum, M. Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 1987, 48, 121–134. [CrossRef]
11. Zhang, J.; Chen, X.; Sun, W. A Linear-Time Algorithm for the Hosoya Index of an Arbitrary Tree. MATCH Commun. Math. Comput.

Chem. 2016, 75, 703–714.
12. Mohar, B. Computing the characteristic polynomial of a tree. J. Math. Chem. 1989, 3, 403–406. [CrossRef]
13. Liu, J.-B.; Zhao, J.; Min, J.; Cao, J. The Hosoya index of graphs formed by a fractal graph. Fractals 2019, 27, 1950135. [CrossRef]
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15. Randić, M. Hosoya matrix—A source of new molecular descriptors. Croat. Chem. Acta 1994, 67, 415–429.
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