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1. Introduction

It is well known that many mathematical models of real world phenomena can be
described more accurately through fractional derivative formulation. For more details
on fractional calculus theory and fractional differential equations, we recommend the
monographs of Kilbas et al. [1] and Podlubny [2]. For distributed order fractional differ-
ential equations see Jiao at all [3] and for an application-oriented exposition Diethelm [4].
Impulsive differential and functional differential equations with fractional derivative and
some applications are studied by Stamova and Stamov [5].

The theme of the integral representation (variation of constants formula) of the solu-
tions of linear fractional differential equations and/or systems (ordinary or with delay)
is an “evergreen” theme for research. This explains why a lot of papers are devoted to
different aspects of this problem. For linear fractional ordinary differential equations and
systems, we refer the works [1,2,6–10] and the references therein. Relatively, as far as
we know, there are not many works devoted to the variation of constants formula for
delayed linear fractional systems [11–15]. The case of neutral fractional systems is studied
in [16–20].

The establishment of a fundamental matrix with appropriate properties (for example
in [21] smoothness is obtained) is the basis for obtaining any integral representation and
is a key tool in the study of different types of stability of linear and nonlinear disturbed
systems (see [20]).

In the present work, we consider linear fractional systems with distributed delays and
incommensurate order derivatives in the Caputo sense. The first goal of the work is to
establish sufficient conditions for existence and uniqueness of a fundamental matrix C(t, s),
which is absolutely continuous in t on every compact subinterval of R. The second one is to
clarify the analytic properties in s, which are very similar to these in the integer case. As an
application of the obtained results, some results concerning the integral representation of
the solutions given in [15,18] are improved.

The paper is organized as follows. In Section 2 we recall the definitions of Riemann–
Liouville and Caputo fractional derivatives with some of their properties. In the same
section is the statement of the problem, as well as some necessary preliminary results used
later. Section 3 is devoted to the existence and the uniqueness of the solutions of the Initial
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Problem (IP) for linear fractional systems with distributed delays and incommensurate
order derivatives in the Caputo sense and special type discontinuous initial function.
In Section 4 the existence and uniqueness of an absolutely continuous fundamental matrix
is proved und its analytical properties are studied. Using the obtained results, in Section 5
we establish new integral representations for the solutions of the studied systems.

2. Preliminaries and Problem Statement

For readers convenience, below we recall the definitions of Riemann–Liouville and
Caputo fractional derivatives as well as some needed properties. For details and other
properties we refer to [1–3].

Let α ∈ (0, 1) be an arbitrary number and denote by Lloc
1 (R,R) the linear space of all

locally Lebesgue integrable functions f : R → R. Then for each a ∈ R, each t > a and
f ∈ Lloc

1 (R,R) the definitions of the left-sided fractional integral operator, the left side
Riemann–Liouville and Caputo fractional derivatives of order α and some properties are
given below (see [1]):

(D−α
a+ f )(t) =

1
Γ(α)

t∫
a

(t− s)α−1 f (s)ds,

RLDα
a+ f (t) =

d
dt

(D−(1−α)
a+ f (t));

CDα
a+ f (t) =RL Dα

a+[ f (s)− f (a)](t);

CDα
a+ f (t) =RL Dα

a+ f (t)− f (a)
Γ(1− α)

(t− a)−α;

(a)CDα
a+D−α

a+ f (t) = (D0
a+ f )(t) = f (t); (b)D−α

a+CDα
a+ f (t) = f (t)− f (a)

If f ∈ AC(R,R) then the next formula gives a direct definition of the Caputo left
side derivative:

CDα
a+ f (t) =

1
Γ(1− α)

t∫
a

(t− s)−α f ′(s)ds,

Everywhere below, the following notations will be used: R+ = (0, ∞), R̄+ = [0, ∞),
Ja = [a, ∞), a ∈ R, Js+M = [s, s+ M], s ∈ Ja, M ∈ R+, 〈n〉 = {1, 2, . . . , n}, 〈m〉0 = 〈m〉 ∪ {0},
n, m ∈ N, I, Θ ∈ Rn×n denote the identity and zero matrix, respectively, Ik, k ∈ 〈n〉 denotes
the k-th column of the identity matrix and 0 ∈ Rn is the zero element.

For Y(t) = (y1(t), . . . , yn(t))T : Ja → Rn, β = (β1, . . . , βn), βk ∈ [−1, 1], k ∈ 〈n〉 we
will use the notations Iβ(Y(t)) = diag((y1(t))β1 , . . . , (yn(t))βn), for W(t) = {wkj(t)}n

k,j=1 :

Ja → Rn×n we denote |W(t)| =
n
∑

k,j=1
|wk,j(t)|, t ∈ Ja and for simplicity we will use the

notation Dα
a+ =C Dα

a+ for the left side Caputo fractional derivative.
Consider the homogeneous linear delayed system of incommensurate type and dis-

tributed delay in the following general form

Dα
a+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ), t > a (1)

or described in more detailed form

Dαk
a+xk(t) =

n

∑
j=1

0∫
−h

xj(t + θ)dθukj(t, θ), k ∈ 〈n〉, t > a
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and the corresponding nonhomogeneous one

Dα
a+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ) + F(t), t > a (2)

where h ∈ R+, X(t) = (x1(t), . . . , xn(t))T , F(t) = ( f1(t), . . . , fn(t))T : Ja → Rn, α =
(α1, . . . , αn), αk ∈ (0, 1), αm = min

k∈〈n〉
αk, Dα

a+ = diag(Dα1
a+, . . . , Dαn

a+)
T , U : Ja ×R→ Rn×n,

U(t, θ) = {ukj(t, θ)}n
k,j=1.

Definition 1. A function Z(t) = (z1(t), . . . , zn(t))T : J → Rn is called piecewise absolutely
continuous on some interval J ⊂ R (denoted Z(t) ∈ PAC(J,Rn)), if it is with bounded variation
(BV) in t on J, there is no singular term in the Lebesgue decomposition of Z(t) and the set of
discontinuity points of the function Z(t) has no limit points in J.

Definition 2. With C∗a , a ∈ R we denote the Banach space of right continuous vector functions

Φ(t) ∈ PAC([a− h, a],Rn) with norm ||Φ|| = sup
t∈[a−h,a]

|Φ(t)| = sup
t∈[a−h,a]

n
∑

k=1
|φk(t)| < ∞ and

the subspace of all absolutely continuous functions by Ca = AC([a− h, a],Rn), i.e., Ca ⊂ C∗a .

The set of jump points of every initial vector function Φ ∈ C∗a we denote by SΦ.
We emphasize that the set SΦ ∩ K is finite for every compact interval K ⊂ R and the case
SΦ = ∅ is not excluded.

For the system (1) or (2) introduce the following initial conditions:

X(t) = Φ(t) (xk(t) = φk(t), k ∈ 〈n〉), t ∈ [a− h, a], Φ ∈ C∗a (3)

We say that for the kernel U : Ja ×R→ Rn×n the conditions (S) hold, if the following
conditions are fulfilled:

(S1) The functions (t, θ) → U(t, θ) are measurable in (t, θ) ∈ Ja ×R and normalized so
that for t ∈ Ja, U(t, θ) = 0 when θ ∈ R̄+ and U(t, θ) = U(t,−h) for all θ ∈ (−∞,−h],
h ∈ R+ and Varθ∈[−h,0]U(t, ·) < ∞ for t ∈ Ja.

(S2) The Lebesgue decomposition of the kernel U(t, θ) for t ∈ Ja and θ ∈ [−h, 0] has
the form:

U(t, θ) = UJ(t, θ) + UAC(t, θ) + US(t, θ)

where UJ(t, θ) =
m
∑

i=0
Ai(t)H(θ + σi(t)), m ∈ N, Ai(t) = {ai

kj(t)}
n
k,j=1 ∈ Lloc

1 (Ja,Rn×n)

are locally bounded on Ja, H(t) is the Heaviside function, the delays σi(t) ∈ C(Ja, R̄+)
are bounded with σi = sup

t∈Ja

σi(t), max
i∈〈m〉0

σi ≤ h and Ai(t)H(θ + σi(t)) are continuous

from left in θ on (−σi, 0), i ∈ 〈m〉, σ0(t) ≡ 0.

UAC(t, θ) =
0∫
−h

B(t, θ)dθ, B(t, θ) = {bj
k(t, θ)}n

k,j=1 ∈ Lloc
1 (Ja × R,Rn×n) are locally

bounded on Ja and US(t, θ) ∈ C(Ja ×R,Rn×n).
(S3) There exists a locally bounded function zu ∈ Lloc

1 (Ja,R+) such that Var[−h,0]U(t, ·) ≤ zu(t)

for t ∈ Ja and for every t∗ ∈ Ja the following relations hold: lim
t→t∗

0∫
−h
|U(t, θ) −

U(t∗, θ)|dθ = 0.
(S4) The sets Si

Φ = {t ∈ Ja | t− σi(t) ∈ SΦ} for every i ∈ 〈m〉 do not have limit points.
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Consider the following auxiliary system in matrix form

X(t) = Φ(a) + I−1(Γ(α))
t∫

a

Iα−1(t− η)F(η)dη

+ I−1(Γ(α))
t∫

a

Iα−1(t− η)

0∫
−h

[dθU(η, θ)]X(η + θ)dη, t > a

(4)

where I−1(Γ(α)) = diag(Γ−1(α1), . . . , Γ−1(αn)), or for k ∈ 〈n〉 in more detailed form

xk(t) =φk(a) +
1

Γ(αk)

t∫
a

(t− η)αk−1 fk(η)dη

+
1

Γ(αk)

t∫
a

(t− η)αk−1(
n

∑
j=1

0∫
−h

xj(η + θ)dθukj(η, θ))dη, t > a

(5)

with the initial condition (3).

Definition 3. The vector function X(t) = (x1(t), . . . , xn(t))T is a solution of the IP (2) and (3)
or IP (3) and (4) in Ja+M(Ja), M ∈ R+ if X ∈ C([a, a + M],Rn)(X ∈ C(Ja,Rn)) satisfies the
system (2), respectively, (4) for all t ∈ (a, a + M](t ∈ (a, ∞)) and the initial condition (3) for each
t ∈ [a− h, a].

In virtue of Lemma 3.3 in [15] every solution X(t) of IP (2) and (3) is a solution of the
IP (3) and (4) and vice versa.

We will need a slightly modified version of the Weissinger generalization of the
Banach’s fixed point theorem for complete metric spaces (see [22], Fixpunktsatz, p. 195).

Theorem 1. Let Ω be a complete metric space with metric dΩ and let the following conditions hold:

1. There exists a sequence γq ≥ 0, q ∈ N, with
∞
∑

q=1
γq < ∞.

2. The operator T : Ω→ Ω satisfies for each q ∈ N and for arbitrary x, y ∈ Ω the inequality

dΩ(Tqx, Tqy) ≤ γqdΩ(x, y)

Then T has a uniquely fixed point x∗ ∈ Ω(x∗ = Tx∗) and for every x ∈ Ω we have that
lim
q→∞

Tqx = x∗.

Remark 1. This modification of the Weissinger generalization of the Banachs fixed point is not
new. It is used in [23] and in the case when Ω is a Banach space in [24]. It is clear that the original
Weissinger proof is correct for the presented variant too, with elementary modifications.

Let B be an arbitrary real Banach space.

Definition 4 ([25]). The function f (t) : R→ B is called a regulated function if it has one-sided
(left and right) limits at every point t ∈ R.

Remark 2. If f (t) : JK → B, where JK ⊂ R is an arbitrary compact interval and f (t) is a
regulated function, then it is assumed that in the left (right) end on the interval JK the function f (t)
has only a right (left) limit.

Theorem 2 ([25]). Let f (t) : R→ B be an arbitrary function.
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Then a necessary and sufficient condition for f (t) to be a regulated function is that f (t) must
in every compact interval JK ⊂ R be a limit of n uniformly convergent sequence of step-functions
(i.e., with respect to the supremum norm ‖ · ‖∞ = sup

t∈JK

‖ · ‖B).

Theorem 3 ([26]). Let t0 ∈ Ja and α > 0 be arbitrary fixed numbers and the following condi-
tions hold:

1. The functions p(t), u(t) ∈ L1
loc([t0, T), R̄+) for some T ≤ ∞.

2. The function g(t) ∈ C([t0, T), [0, M]) for some M ∈ R+ and is nondecreasing.

3. For every t ∈ Ja is fulfilled u(t) ≤ p(t) + g(t)
t∫

t0

(t− η)α−1u(η)dη.

Then for t ∈ Ja the following inequality holds

u(t) ≤ p(t) +
t∫

t0

[
∞

∑
q=1

(g(η)(Γ(α))q

Γ(αq)
(t− η)αq−1]p(η)dη.

Remark 3. Note that the statement of Theorem 3 is proved in the partial case t0 = 0, but with
small modifications the proof will be correct for arbitrary t0 ∈ Ja.

3. Existence and Uniqueness of the Solutions

Let it be that for every Φ ∈ C∗a consider the corresponding linear space

EΦ = {G : Ja → Rn | G|Ja ∈ AC(Ja,Rn), G(t) = Φ(t), t ∈ [a− h, a]}

For each M ∈ R+ define the set

EΦ
M = {GM : Ja+M → Rn | GM = G|[a,a+M], G ∈ EΦ),

where Φ ∈ C∗a is arbitrary and define a metric function dM : EΦ
M × EΦ

M → R̄+ with

dM(GM, G∗M) =
n

∑
k=1

sup
t∈Ja+M

|gk(t)− g∗k (t)|

for each GM, G∗M ∈ EΦ
M.

Since GM(a) = Φ(a) = G∗M(a) then for every M ∈ R+, according to a well-known
result we conclude that EΦ

M is a complete metric space concerning the metric

dVar
M (GM, G∗M) = Var[a,a+M](GM(t)− G∗M(t)) =

n

∑
k=1

Var[a,a+M](gk(t)− g∗k (t)).

It was a very strange for us that we could not find a result from which the statement
of the next lemma directly follows.

Lemma 1. For every M ∈ R+ the set EΦ
M is a complete metric space concerning the metric dM too.

Proof. Let M ∈ R+ be an arbitrary fixed number and consider an arbitrary Cauchy
sequence {Gl

M(t) = (gl
1(t), . . . , gl

1(t))
T}∞

l=1 ⊂ EΦ
M, i.e., lim

l,r→∞
dM(Gl

M(t), Gr
M(t)) = 0. It is

clear that there exists a vector valued function G0
M(t) = (g0

1(t), . . . , g0
1(t))

T ∈ C(Ja+M,Rn),
G0

M(t) = Φ(t), t ∈ [a− h, a] such that lim
l→∞

dM(Gl
M(t), G0

M(t)) = 0.

Let ε > 0 and k ∈ N be arbitrary numbers. There exist n0 = n0(ε) ∈ N and
δ = δ(ε, k) > 0 such that for every n ≥ n0 we have that |Gn(t) − G0(t)| < ε

k for each
t ∈ [a, a + M]. Since Gn0 ∈ AC([a, a + M]) then there exists δ∗ = δ∗(ε, n0) ∈ (0, δ),
such that for every finite sequence of pairwise disjoint subintervals {[aj, bj]}j∈〈k〉,

⋃
j∈〈k〉

[aj, bj]
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⊂ [a, a + M] with
k
∑

j=1
(bj − aj) < δ∗ the inequality

k
∑

j=1
|Gn0(aj)− Gn0(bj)| < ε holds. Then

whenever when
k
∑

j=1
(bj − aj) < δ∗ we have that

k

∑
j=1
|G0(aj)− G0(bj)| =

k

∑
j=1
|G0(aj)− G0(bj) + Gn0(aj)− Gn0(aj) + Gn0(bj)− Gn0(bj)|

≤
k

∑
j=1
|G0(aj)− Gn0(aj)|+

k

∑
j=1
|Gn0(bj)− G0(bj)|+

k

∑
j=1
|Gn0(aj)− Gn0(bj)| ≤ 3ε

Thus G0 ∈ AC([a, a + M]) for every M ∈ R+ and the statement is proved.

Remark 4. It must be noted that the statement of the next theorem cannot be obtained directly as a
corollary from analogical results for the considered initial problems in [15,18,23].

Theorem 4. Let the following conditions hold:

1. Conditions (S) hold.
2. The function Φ ∈ C∗a is arbitrary.

Then the IP (1) and (3) has a unique absolutely continuous solution in the interval [a, a + M]
for every M ≥ max{h, 1}.

Proof. In the proof of this theorem we will use the approach introduced in [23].
Let Φ ∈ C∗a and M ≥ max{h, 1} be arbitrary. From (5) in the case fk(t) ≡ 0 for k ∈ 〈n〉

we obtain the system

xk(t) = φk(a) +
1

Γ(αk)

t∫
a

(t− η)αk−1(
n

∑
j=1

0∫
−h

xj(η + θ)dθukj(η, θ))dη (6)

For every G(t) = (g1(t), . . . , gn(t))T ∈ EΦ
M define the operator (<G)(t) = (<1g1(t),

. . . ,<ngn(t))T via the operators <kgk(t) for t ∈ (a, a + M], k ∈ 〈n〉 by

<kgk(t) = φk(a) +
1

Γ(αk)

t∫
a

(t− s)αk−1(
n

∑
j=1

0∫
−h

gj(s + θ)dθuk j(s, θ))ds, (7)

and the following additional condition:

<kgk(t) = φk(t), t ∈ [a− h, a] (8)

Since Φ is PAC, the conditions (S) imply that for each k, j ∈ 〈n〉, the functions

t →
0∫
−h

gj(t + θ)dθuk,j(t, θ) are at least piecewise continuous on the interval [a, a + M]

(see [27], Lemma 1). Then the right side of (7) is absolutely continuous on the interval
[a, a + M], which implies that the function <kgk(t) is absolutely continuous on the same
interval and since lim

t→a+
<kgk(t) = φk(a) for k ∈ 〈n〉, then (<G) ∈ EΦ

M. Thus the operator <

maps EΦ
M into EΦ

M.
Since according to Lemma 1 the space EΦ

M is a full metric space concerning the metric
dM, it is enough to check that for the operator < the conditions of Theorem 1 hold and then
in virtue of Theorem 1 we will obtain that the operator < has a unique fixed point in EΦ

M.
We recall that the Γ(z), z ∈ R+, has a local minimum at zmin ≈ 1.46163, where it

attains the value Γ(zmin) ≈ 0.885603. There exists q0 ∈ N such that q0 + 1 > α−1
m ≥ q0
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and for every q ∈ 〈q0 + 1〉 we denote with αq, αq ∈ {α1, . . . , αn} that number for which
Γ(1 + αqq) = min

k∈〈n〉
Γ(1 + αkq).

Let denote P = max
k∈〈n〉

(
n
∑

j=1
sup

s∈[a,a+M]

Varθ∈[−h,0]ukj(s, θ)) and let G, Ḡ ∈ EΦ
M be arbitrary.

Then from (7) for k ∈ 〈n〉 and every t ∈ [a, a + M] we obtain

|<kgk(t)−<k ḡk(t)| ≤
1

Γ(αk)

t∫
a

(t− s)αk−1(
n

∑
j=1
|

0∫
−h

(gj(s + θ)− ḡj(s + θ))dukj(s, θ)|)ds

≤ (t− a)αk

Γ(1 + αk)

n

∑
j=1

sup
s∈[a,a+M]

Varθ∈[−h,0]ukj(s, θ) sup
t∈[a,a+M]

|gj(t)− ḡj(t)|

≤ (t− a)αk P
Γ(1 + αk)

n

∑
j=1

sup
t∈[a,a+M]

|gj(t)− ḡj(t)| ≤
(t− a)αk P
Γ(1 + αk)

dM(G, Ḡ)

(9)

Let assume that for some q ∈ N, k ∈ 〈n〉 and for every t ∈ [a, a + M] the inequality

|<q
kgk(t)−<

q
k ḡk(t)| ≤

(t− a)qαk Pq

Γ(1 + qαk)
dM(G, Ḡ) (10)

holds. Obviously from (9) it follows that the inequality (10) holds for each k ∈ 〈n〉
and every t ∈ [a, a + M] at least for q = 1. Denoting for simplicity <qG(t) = Y(t) =
(y(t), . . . , yn(t))T ,<qḠ(t) = Ȳ(t) = (ȳ(t), . . . , ȳn(t))T , we obtain

|<q+1
k gk(t)−<

q+1
k ḡk(t)| = |<<

q
kgk(t)−<<

q
k ḡk(t)| = |<yk(t)−<ȳk(t)|. (11)

Let us assume that (10) holds for each k ∈ 〈n〉, every t ∈ [a, a + M] and for some q ∈ N.
Then a similar way as in (9) from (10) and (11) we obtain

|<kyk(t)−<ȳk(t)| ≤
1

Γ(αk)

t∫
a

(t− s)αk−1
n

∑
j=1
|

0∫
−h

(yj(s + θ)− ȳj(s + θ))dθukj(s, θ)|ds

≤ P
Γ(αk)

t∫
a

(t− s)αk−1
n

∑
j=1

sup
η∈[a,a+M]

|yj(η)− ȳj(η)|ds

≤ PPq

Γ(αk)Γ(1 + qαk)
dM(G, Ḡ)

t∫
a

(t− s)αk−1(s− a)qαk ds

(12)

Substituting s − a = z(t − a) in the integral in the right side of (12) and using the
well-known relation between the gamma and beta functions we obtain

|<kyk(t)−<ȳk(t)| ≤
Pq+1(t− a)αk(q+1)

Γ(αk)Γ(1 + qαk)
dM(G, Ḡ)

1∫
0

(1− z)αk−1zqαk dz

≤ Γ(αk)Γ(1 + qαk)(P(t− a)αk )q+1

Γ(αk)Γ(1 + qαk)Γ(1 + (q + 1)αk)
dM(G, Ḡ)

≤ (P(t− a)αk )q+1

Γ(1 + (q + 1)αk)
dM(G, Ḡ)

≤ (PMαk )(q+1)

Γ(1 + (q + 1)αk)
dM(G, Ḡ)

≤ (PM)(q+1)

Γ(1 + (q + 1)αk)
dM(G, Ḡ)

(13)
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and hence (10) holds for every q ∈ N , for each k ∈ 〈n〉 and every t ∈ [a, a + M].
For q ∈ 〈q0 + 1〉 from (10) and (13) it follows that

dM(<q+1G,<q+1Ḡ) ≤ n(MP)(q+1)

Γ(1 + αq(q + 1))
dM(G, Ḡ). (14)

and denote γq = n(MP)q

Γ(1+αqq) for q ∈ 〈q0 + 1〉.
For all q > q0 + 1 from (10) and (13) we obtain that

dM(<q+1G,<q+1Ḡ) ≤ n(MP)(q+1)

Γ(1 + αm(q + 1))
dM(G, Ḡ). (15)

and denote γq = n(MP)q

Γ(1+αmq) for q > q0 + 1.

Consider the one parameter Mittag–Leffler function Eαm ,1(z) =
∞
∑

q=1

zq

Γ(1+αmq) , z ∈ R̄+.

It is simply to see that the series
∞
∑

q=1

(MP)q

Γ(1+αmq) is convergent because it is the considered

Mittag–Leffler function evaluated at z = MP. Then we have that

∞

∑
q=1

γq = n(
q0

∑
q=1

(MP)q

Γ(1 + αqq)
+

∞

∑
q=q0+1

(MP)q

Γ(1 + αmq)
) < ∞

and then from Theorem 1 it follows that the IP (1) and (3) has a unique solution in
t ∈ [a, a + M].

Corollary 1. Let the conditions of Theorem 4 hold.
Then the IP (1) and (3) has a unique absolutely continuous solution in the interval Ja.

Proof. Let Φ ∈ C∗a be arbitrary and assume the contrary, that there exists Mmax < ∞ such
that the solution Xmax(t) in the interval t ∈ [a, a + Mmax] does not possess a prolongation.
Let M∗ > Mmax be an arbitrary number. In virtue of Theorem 4 the IP (1) and (3) has
a unique absolutely continuous solution X∗(t) in the interval t ∈ [a, a + M∗]. The solu-
tion X∗(t) obviously is a prolongation of the solution Xmax(t), which contradicts of our
assumption that Mmax < ∞.

For arbitrary fixed s > a consider the following auxiliary system

Dα
a+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ) (16)

with the following condition

X(t) = Φ̃js(t), t ∈ (−∞, s]. (17)

Corollary 2. Let the following conditions hold:

1. Conditions (S) hold.
2. The function Φ̃js has the form

Φ̃js(t) =

{
I j, t = s, j ∈ 〈n〉
0, t < s

Then for each s > a and arbitrary j ∈ 〈n〉 the problem (16) and (17) has a unique solution,
which satisfies Equation (16) for t > s, the condition (17) for t ≤ s and is absolutely continuous in
(−∞, s) ∪ (s, ∞) with a first kind jump at t = s.
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Proof. Let s > a be an arbitrary fixed number, introduce the system

Dα
s+X(t) =

0∫
−h

[dθU(t, θ)]X(t + θ), t > s (18)

and consider the IP (17) and (18). Since Theorem 4 is proved for arbitrary a ∈ R and Φ̃js(t)
for arbitrary j ∈ 〈n〉 is PAC on the interval [s− h, s], then from Theorem 4 it follows that
the IP (17) and (18) possess a unique solution Xj(·) ∈ AC(Js,Rn) and moreover, from (17)
it follows also that Xj(·) ∈ AC([a, s) ∪ Js,Rn). Then for every k ∈ 〈n〉 we have

Dαk
a+xjk(t) =

1
Γ(1− αk)

t∫
a

(t− η)−αk x′jk(η)dη

=
1

Γ(1− αk)

s∫
a

(t− η)−αk x′jk(η)dη +
1

Γ(1− αk)

t∫
s

(t− η)−αk x′jk(η)dη

=
1

Γ(1− αk)

t∫
s

(t− η)−αk x′jk(η)dη = Dαk
s+xjk(t)

and hence Xj(t) = (xj1, . . . , xjn)
T satisfies the Equation (16) for t ∈ (s, ∞) and the condi-

tion (17) for t ∈ (−∞, s].
Let consider an IP with Equation (16) for t > a and initial condition X(t) = Xj(t) = 0

for t ∈ [a− h, a]. Then obviously Xj(t) = 0 is its unique solution in t ∈ [a, s). This completes
the proof.

4. Fundamental Matrix

Let s ∈ Ja be an arbitrary fixed number and define the following matrix valued
function Φ̄(t, s) = (ϕ̄kj(t, s))n

k,j=1 : R× Ja → Rn×n with

Φ̄(t, s) =

{
I, t = s
Θ, t < s

and denote Φ̄j(t, s) = (ϕ̄1j(t, s), . . . , ϕ̄nj(t, s))T , j ∈ 〈n〉.
For arbitrary fixed number s ∈ Ja consider the following matrix IP

Dα
a+C(t, s) =

0∫
−h

[dθU(t, θ)]C(t + θ, s), t ∈ (s, ∞) (19)

C(t, s) = Φ̄(t, s), t ∈ (−∞, s]. (20)

Definition 5. The matrix valued function t→ C(t, s) = (C1(t, s), . . . , Cn(t, s)) = {cj
k(t, s)}n

k,j=1,
s ∈ Ja , is called a solution of the IP (19) and (20) in Js if C(·, s) : [s, ∞) → Rn×n is contin-
uous for t ∈ [s, ∞) and satisfies the matrix Equation (19) on t ∈ [s, ∞) as well as the initial
condition (20) too.

Remark 5. Practically in condition (20) we need only the values of Φ̄(·, s) for t ∈ [s − h, s],
but for convenience we define C(t, s) = Θ also for t ∈ (−∞, s− h). Then C(t, s) is prolonged as
continuous in t function on (−∞, s).

Theorem 5. Let the conditions (S) hold.
Then for every initial point s ∈ Ja, the matrix IP (19) and (20) has a unique absolutely

continuous solution t→ C(t, s) in the interval Js.
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Proof. The statement of the Theorem follows immediately from Corollary 2.

Definition 6. The matrix C(t, s), which is a solution of the IP (19) and (20), will be called
fundamental (or Cauchy) matrix for the homogeneous system (1).

Lemma 2. Let the conditions (S) hold and the matrix valued function t → C(t, s) is the funda-
mental matrix of the system (1).

Then for every t̄ ∈ Ja the matrix function C(t, ·) : [a, t̄]→ Rn×n is locally bounded in s for
s ∈ [a, t̄] and t ∈ (−∞, t̄] .

Proof. Let t̄ ∈ Ja be an arbitrary fixed number, s ∈ [a, t̄] be arbitrary and consider the
fundamental matrix C(t, ·) : [a, t̄] → Rn×n. According to Remark 5 for s ∈ [a, t̄] we have
that C(t, s) = Θ for t ∈ (−∞, a) and C(a, a) = I.

Taking into account Theorem 5 and Corollary 2 it is easy to be seen, that the unique
solution C(t, s) of IP (19) and (20) is a solution of the equation

C(t, s) = Φ̄(s, s) + I−1(Γ(α))
t∫

s

Iα−1(t− η)(

0∫
−h

[dθU(η, θ)]C(η + θ, s))dη. (21)

Introduce for every k, j ∈ 〈n〉 the notations: wj
k(t, s) = sup

ξ∈[s,t]
|cj

k(ξ, s)| = sup
ξ∈[a,t]

|cj
k(ξ, s)|

(since cj
k(ξ, s) = 0 for ξ < s), V∗U = sup

t∈[a,t̄]
Varθ∈[−h,0]U(t, θ), b = |I−1(Γ(α))|V∗U and then

from (21) it follows

|C(t, s)| ≤ |Φ̄(s, s)|+ |I−1(Γ(α))| |
t∫

s

Iα−1(t− η)(

0∫
−σ

[dθU(η, θ)]C(η + θ, s))dη|

and hence for each k, j ∈ 〈n〉

wj
k(t, s) ≤ |ϕ̄kj(s, s)|+

V∗U
Γ(αk)

t∫
s

(t− η)αk−1wj
k(η, s)dη

≤ |ϕ̄kj(s, s)|+ b
t∫

a

(t− η)αk−1wj
k(η, s)dη

(22)

From Theorem 3 and (22) for a ≤ t ≤ s ≤ t̄ we obtain the estimation

wj
k(t, s) ≤ 1 +

t∫
a

(
∞

∑
q=1

(bΓ(αk))
q

Γ(αkq)
(t− η)αkq−1)dη ≤ 1 +

t̄∫
a

(
∞

∑
q=1

(bΓ(αk))
q

Γ(αkq)
(t− η)αkq−1)dη

and thus C(t, s) is locally bounded in s for s ∈ [a, t̄] and t ∈ (−∞, t̄].

Theorem 6. Let the conditions (S) hold and the matrix valued function t → C(t, s) be the
fundamental matrix of system (1).

Then for every fixed t̄ ∈ Ja the matrix function C(t, ·) : [a, t̄] → Rn×n is continuous for
s ∈ [a, t̄] when s 6= t, for s = t possess first kind jumps and hence is Lebesgue integrable in s on
[a, t̄] for each t ∈ (−∞, t̄].

Proof. Let t̄ ∈ Ja be an arbitrary fixed number, s ∈ [a, t̄] be arbitrary and consider the
fundamental matrix C(t, ·) : [a, t̄] → Rn×n. According to Remark 5 for s ∈ (a, t̄] we have
that C(t, s) = Θ for t ∈ (−∞, a] and C(a, a) = I. In virtue of Theorem 2 and Lemma 2 it is
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enough to prove that C(t, s) has left and right limits for each s ∈ (a, t̄) and there exist the
limits C(t̄, t̄− 0) and C(a, a + 0).

(i) Let s∗ ∈ [a, t̄] be arbitrary and let t < s∗. Then it is simply to see that for ev-
ery s∗ ∈ [a, t̄) lim

s→s∗+0
C(t, s) = Θ = lim

s→s∗−0
C(t, s). Note that for s∗ = t̄ we have that

lim
s→t̄−0

C(t, s) = Θ holds.

(ii) Let s∗ ∈ [a, t̄] be arbitrary and let t = s∗. Then lim
s→s∗+0

C(s∗, s) = Θ and since

C(s∗, s∗) = I, then we can conclude that C(s∗, s∗ + 0) exists and hence C(t, s) has
jumps of first kind on the line t = s∗ for each s∗ ∈ [a, t̄).

(iii) Let s∗ ∈ [a, t̄], t > s∗. Then we have to consider two cases: either s∗ ∈ (a, t̄], s ∈ (a, s∗)
(left limit in s∗) or s∗ ∈ [a, t̄) with s ∈ (s∗, t) (right limit in s∗).

(iii.a) For purposes of clarity we assume that s∗ ∈ (a, t̄], s ∈ (a, s∗). According to Corollary 2
for each j ∈ 〈n〉, the IP (16) and (17) has unique solutions Cj(t, s) and Cj(t, s∗) for the
initial functions Φ̄j(t, s) = (ϕ̄1j(t, s), . . . , ϕ̄nj(t, s)(t, s))T and Φ̄j(t, s∗) = (ϕ̄1j(t, s∗), . . . ,
ϕ̄nj(t, s∗))T , respectively.
Then we obtain

Cj(t, s∗) = Φ̄j(s∗, s∗) + I−1(Γ(α))
t∫

s∗

Iα−1(t− η)(

0∫
−h

[dθU(η, θ)]Cj(η + θ, s∗))dη (23)

Cj(t, s) = Φ̄j(s, s) + I−1(Γ(α))
t∫

s

Iα−1(t− η)(

0∫
−h

[dθU(η, θ)]Cj(η + θ, s))dη. (24)

Taking into account that Φ̄(s, s) = Φ̄(s∗, s∗) = I and subtracting both sides of (24)
from the corresponding sides of (23) we obtain

Cj(t, s∗)− Cj(t, s) = I−1(Γ(α))
s∗∫

s

Iα−1(t− η)(

0∫
−h

[dθU(η, θ)]Cj(η + θ, s))dη

+ I−1(Γ(α))
t∫

s∗
Iα−1(t− η)(

0∫
−h

[dθU(η, θ)](Cj(η + θ, s∗)− Cj(η + θ, s)))dη.

(25)

Let us denote yj
k(t, s, s∗) = sup

ξ∈[a,t]
|cj

k(ξ, s∗) − cj
k(ξ, s)| and C̄j = sup

ξ,s∈[a,t̄]
Cj(ξ, s)| (C̄j

exists according to Lemma 2) and b = |I−1(Γ(α))|V∗U . Then for each k, j ∈ 〈n〉 and
s ∈ (a, s∗) from (25) we obtain that

yj
k(t, s, s∗) ≤ bC̄j

s∗∫
s

(t− η)αk−1dη + bV∗U

t∫
s∗

(t− η)αk−1yj
k(η, s, s∗)dη

= bC̄j (t− s)αk − (t− s∗)αk

αk
+ bV∗U

t∫
s∗

(t− η)αk−1yj
k(η, s, s∗)dη

(26)

Define for η ∈ [s∗, t] the function p(η, s, s∗) = bC̄j (η−s)αk−(η−s∗)αk

αk
.

It is simple to see that the function p is monotonically decreasing in η for η ∈ [s∗, t]
when s ∈ (a, s∗). Furthermore, for arbitrary fixed η ∈ [s∗, t] we have that

lim
s→s∗

p(η, s, s∗) = 0. (27)
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Then from (26) and Theorem 3 it follows that for each j ∈ 〈n〉, k ∈ 〈n〉 and s ∈ (a, s∗)
we obtain the following estimation:

yj
k(t, s, s∗) ≤ p(t, s, s∗) +

t∫
s∗

[
∞

∑
q=1

(bV∗U(Γ(αk))
q

Γ(αkq)
(t− η)αkq−1]p(η, s, s∗)dη

≤ p(t, s, s∗) + p(s∗, s, s∗)
t∫

s∗

[
∞

∑
q=1

(bV∗U(Γ(αk))
q

Γ(αkq)
(t− η)αkq−1]dη

(28)

From (27) and (28) it follows that lim
s→s∗

yj
k(η, s, s∗) = lim

s→s∗
sup

ξ∈[a,t]
|cj

k(ξ, s∗)− cj
k(ξ, s)| = 0

and hence cj
k(t, s∗ − 0) exists and cj

k(t, s∗ − 0) = cj
k(t, s∗) for t > s∗.

(iii.b) The case when t > s∗ and s ∈ (s∗, t) can be treated fully analogically to obtain that

cj
k(t, s∗ + 0) exists and cj

k(t, s∗ + 0) = cj
k(t, s∗).

Let s∗ ∈ [a− h, a] be an arbitrary fixed number and define the following matrix valued
function Φ∗s∗(t, s) = (ϕ∗kj(t, s))n

k,j=1 : R× [a− h, a]→ Rn×n with

Φ∗s∗(t, s) =

{
I, s∗ ≤ s ≤ t ≤ a
Θ, t < s or s < s∗

and consider following IP:

Dα
a+Ts∗(t, s) =

0∫
−h

[dθU(t, θ)]Ts∗(t + θ, s), t > a (29)

Ts∗(t, s) = Φ∗s∗(t, s), t ∈ (−∞, a]. (30)

Theorem 7. Let the conditions (S) hold and t̄ ∈ Ja be arbitrary.
Then the following statements hold:

1. The matrix IP (29) and (30) has a unique absolutely continuous solution Ts∗(t, s) in t for
t ∈ Ja for every s∗ ∈ [a− h, a].

2. The matrix function Ta−h(t, ·) : [a, t̄] → Rn×n is continuous in s for each s ∈ [a, t̄]
with s 6= t.

3. When s = t with t ≥ a, Ta−h possess first kind jumps and hence is Lebesgue integrable in s
on [a, t̄].

Proof. 1. Let s∗ ∈ [a− h, a] be an arbitrary fixed number. Then since Φ∗s∗ is PAC for each
s∗ ∈ [a− h, a], then the statement of point 1 follows from Theorem 4.

2. Let s ∈ [a, t̄] with s 6= t. Then if t < s we have that Ta−h(t, s) = 0. Consider the case
t > s. Then the same way as in the proof of point (iii) of Theorem 6 we obtain that
Ta−h(t, s) is continuous in s when s 6= t.

3. Let s = t with t ≥ a. Then obviously lim
t→s+0

Ta−h(t, s) = I and lim
t→s−0

Ta−h(t, s) = 0 and

this completes the proof.

5. Applications

We will demonstrate that the obtained results concerning the fundamental matrix
allow to improve the integral representation of the solution of the IP (2) and (3) and simplify
the proofs.



Mathematics 2021, 9, 150 13 of 18

As usual according the superposition principle we will seek a solution of IP (2) and (3)
with initial condition Φ(t) ≡ 0, t ∈ [a− h, a] for the case when the function F ∈ Lloc

1 (Ja,Rn)
is locally bounded.

Let

XF(t) =
t∫

a

K(t, s)ds, (31)

where K(t, s) = C(t, s)T(s), T(s) =RL D1−α
a+ F(s).

Theorem 8. Let the following conditions hold.

1. The conditions (S) hold.
2. The function F ∈ Lloc

1 (Ja,Rn) is locally bounded and Dα
a+F(t) ∈ Lloc

1 (Ja,Rn).

Then the vector function XF(t) defined by equality (31) is a solution of IP (2) and (3) with
initial condition XF(t) = Φ(t) ≡ 0, t ∈ [a− h, a].

Proof. From (31) and Theorem 5 it follows that XF(t) is an absolutely continuous function
in Ja. Then we have that

d
ds

XF(s) =
d
ds

s∫
a

K(s, η)dη =

s∫
a

Cs(s, η)T(η)dη + C(t, t)T(t) =
s∫

a

Cs(s, η)T(η)dη + T(t). (32)

Taking into account (31) and (32), Lemma 2.5 in [1], Condition 2 of the Theorem and
applying Fubini’s theorem we obtain

Dα
a+XF(t) =

1
Γ(1− α)

t∫
a

(t− s)−α(

s∫
a

T(η)Cs(s, η))dη)ds +
1

Γ(1− α)

t∫
a

(t− s)−αT(s)ds

=

t∫
a

T(η)(
1

Γ(1− α)
(

t∫
η

(t− s)−αCs(s, η))ds)dη + Dα−1
a+ T(t)

=

t∫
a

T(η)(
1

Γ(1− α)
(

t∫
a

(t− s)−αCs(s, η))ds)dη + Dα−1
a+ RLD1−α

a+ F(t)

=

t∫
a

T(η)CDα
a+C(t, η)dη + F(t)

(33)

For the right side of (33) we have

t∫
a

CDα
a+C(t, η)T(η)dη =

t∫
a

T(η)[
m

∑
i=0

0∫
−h

[dθUi(t, θ)]C(t + θ, η)]dη

=
m

∑
i=0

0∫
−h

[dθUi(t, θ)](

t∫
a

C(t + θ, η)T(η)dη) =
m

∑
i=1

0∫
−h

[dθUi(t, θ)]XF(t + θ)

(34)

and then the statement of the corollary follows from (33) and (34).

Corollary 3. Let the following conditions hold.

1. The conditions (S) hold.
2. The function F ∈ Lloc

1 (Ja,Rn) is locally bounded and F(a) = 0.

Then the vector function XF(t) defined by equality (31) is a solution of IP (2) and (3) with
initial condition XF(t) = Φ(t) ≡ 0, t ∈ [a− h, a].
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Proof. For F ∈ Lloc
1 (Ja,Rn) with F(a) = 0 is fulfilled

Dα−1
a+ T(t) = Dα−1

a+ RLD1−α
a+ F(t) = Dα−1

a+ CD1−α
a+ F(t) = F(t)− F(a) = F(t).

Then the proof is the same as in Theorem 8.

Let Ta−h(t, s) be a solution of the IP (29) and (30) for s ∈ [a − h, a]. For arbitrary
function Φ(t) ∈ BV([a− h, a],Rn) define the following function:

XΦ(t) =
a∫

a−h

Ta−h(t, s)dsΦ(s) + Ta−h(t, a− h)Φ(a− h), t ∈ Ja (35)

Theorem 9. Let the following conditions hold.

1. The conditions (S) hold.
2. The initial function Φ(t) ∈ BV([a− h, a],Rn) is not a constant and has finitely many jumps.

Then the function XΦ(t) defined with (35) is the unique solution of IP (1) and (3).

Proof. Let t ∈ [a− h, a] be an arbitrary fixed number and s ∈ [a− h, a]. Then in virtue
of Theorem 6 for every t ∈ [a− h, a] the matrix function Ta−h(t, ·) : [a− h, a] → Rn×n is
continuous in s on [a− h, a] for s 6= t and when t = s possess first kind jumps. Thus we
have that for s ∈ [t, a] from (30) it follows that Ta−h(t, s) = Θ and for s ∈ [a− h, t] we have
Ta−h(t, s) = I. Then XΦ(t) = Φ(t) and hence XΦ(t) satisfies the initial condition (3).

Theorem 7 implies that the matrix valued function Ta−h(t, s) is an absolutely contin-
uous function for t ∈ Ja and then the vector valued XΦ(t) is defined by equality (35) too.
Then we have

d
dt

XΦ(t) =
d
dt

a∫
a−h

Ta−h(t, s)dsΦ(s) =
a∫

a−h

∂Ta−h(t, s)
∂t

dsΦ(s)

and hence applying the Fubini’s theorem we have that

CDα
a+XΦ(t) = CDα

a+

a∫
a−h

Ta−h(t, s)dsΦ(s) =
t∫

a

(t− η)−α(

a∫
a−h

∂Ta−h(η, s)
∂η

dsΦ(s))dη

=

a∫
a−h

(

t∫
a

(t− η)−α ∂Ta−h(η, s)
∂η

dsΦ(s)) =
a∫

a−h

CDα
a+Ta−h(t, s)dsΦ(s)

(36)

In the right side of (1) for each i ∈ 〈m〉 applying the unsymmetric Fubini theorem [28]
we obtain that

0∫
−h

[dθU(t, θ)]XΦ(t + θ) =

0∫
−h

[dθU(t, θ)](

a∫
a−h

Ta−h(t + θ, s)dsΦ(s))

=

a∫
a−h

(

0∫
h

[dθU(t, θ)](Ta−h(t + θ, s)dsΦ(s))

(37)

From (36) and (37) it follows that

a∫
a−h

[CDα
a+Ta−h(t, s)−

0∫
−h

[dθUi(t, θ)]Ta−h(t + θ, s)]dsΦ(s) = 0

and hence XΦ(t) satisfies (1) for t > a.



Mathematics 2021, 9, 150 15 of 18

Theorem 10. Let the following conditions hold.

1. The conditions of Theorem 9 hold.
2. The function F ∈ Lloc

1 (Ja,Rn) is locally bounded.
3. Either F(0) = 0 or Dα

a+F(t) ∈ Lloc
1 (Ja,Rn) holds.

Then the function

XΦ
f (t) = XΦ(t) + X f (t) =

t∫
a

C(t, s)RLD1−α
a+ F(s)ds +

a∫
a−h

Ta−h(t, s)dsΦ(s) + Ta−h(t, a− h)Φ(a− h) (38)

where XF(t) and XΦ(t) are defined by (31) and (35), respectively, is the unique solution of
IP (2) and (3).

Proof. The statement of the theorem follows immediately from the superposition principle,
Corollary 3 and Theorems 8 and 9.

Corollary 4. Let the following conditions hold.

1. The conditions of Theorem 10 hold.
2. The Lebesgue decomposition of the function Φ(t) ∈ BV([a− h, a],Rn) does not include a

singular term.

Then the function XΦ
F (t) defined by (38) possesses the following integral representation:

XΦ
f (t) = Ta−h(t, a)(ΦJ(a+)−ΦJ(a−)) + ∑

i
Ta−h(t, si)((ΦJ(si+)−ΦJ(si−))

+

a∫
a−h

Ta−h(t, s)Φ
′
A(s)ds +

t∫
a

C(t, s)RLD1−α
a+ F(s)ds + Ta−h(t, a− h)Φ(a− h)

(39)

where Φ(t) = ΦJ(t) + ΦA(t) and ΦJ(t), ΦA(t) are the jump term and the absolutely continuous
term, respectively, in its Lebesgue decomposition and the summation is taken over all jump points
si ∈ SΦ.

Proof. The statement of the corollary follows immediately from Theorem 10.

One of the important questions that arise when we use a fundamental matrix is what
kind are its analytical properties concerning the variable s. It is well known that for the
integer-order linear differential systems without delay, this problem is fully solved, i.e.,
both variables are symmetric. Generally speaking, this is not true even in the integer case
for the delayed differential systems (the symmetry disappears for the non-autonomous
systems and in some cases for the autonomous systems too). As far as we know there are
no results in this direction for delayed non-autonomous fractional differential systems.
The next result is a first attempt to establish some analytical properties of the fundamental
matrix in the mentioned case concerning the variable s.

Theorem 11. Let the conditions of Theorem 9 hold and the matrix valued function t→ C(t, s) is
the fundamental matrix of the system (1).

Then for every fixed ā ∈ Ja the matrix function C(t, ·) : [a, ā] → Rn×n for every fixed
t ∈ (−∞, s) ∪ (s, ∞) is absolutely continuous in s for every compact subinterval s ∈ [a1, a2] ⊂
(a, ā) with t /∈ [a1, a2].

Proof. Let ā ∈ Ja be an arbitrary fixed number, s ∈ [a, ā] be arbitrary and t ∈ (−∞, s)∪ (s, ∞).

(i) When t ∈ (−∞, s) then for the fundamental matrix C(t, ·) : [a, ā]→ Rn×n according to
Remark 5 for arbitrary s ∈ (a, ā) we have that C(t, s) = Θ and C(s, s) = I. Thus C(t, s)
has jumps of first kind for t = s and C(t, s) is absolutely continuous in s for s ∈ (a, ā).
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(ii) Let s ∈ (a, ā) and t̄ ∈ (ā, ∞) be an arbitrary fixed number. For purposes of clarity we
assume that s, s∗ ∈ (a, ā) with s < s∗. Then as in the proof of Theorem 6 we obtain
that (25) holds for t ∈ [a, ā] and introduce the same notations used there.

Since the function p(η, s, s∗) = bC̄j (η−s)αk−(η−s∗)αk

αk
is monotonically decreasing in η

for η ∈ [s∗, ā] then in a similar way as in the proof of Theorem 6 for each k, j ∈ 〈n〉 from
(25) we obtain that

yj
k(t, s, s∗) ≤ bC̄j

s∗∫
s

(t− η)αk−1dη + bV∗U

t∫
s∗

(t− η)αk−1yj
k(η, s, s∗)dη

= bC̄j (t− s)αk − (t− s∗)αk

αk
+ bV∗U

t∫
s∗

(t− η)αk−1yj
k(η, s, s∗)dη

≤ [(t− s∗)αk − (t− s)αk ]
bC̄j + C̄jbV∗U

αk

≤ (s− s∗)αk
bC̄j + C̄jbV∗U

αk
≤ (s− s∗)αm

bC̄j + C̄jbV∗U
αm

(40)

when s∗ − s ≤ 1. Then we can conclude that cj
k(t, s) for each k, j ∈ 〈n〉 is αm-Hoelder

continuous in s in every closed subinterval [a1, a2] ⊂ (a, ā) with a2 − a1 ≤ 1. Thus cj
k(t, s)

is absolutely continuous in s for s ∈ (a, ā).

(iii) Let s ∈ (a, ā), t̄ ∈ (s, ā] and s < s∗ < t̄. Then as in the former case we conclude

that (40) holds and then cj
k(t, s) for each k, j ∈ 〈n〉 is αm-Hoelder continuous in s

for every closed subinterval [a1, a2] ⊂ (a, ā) for which a2 − a1 ≤ 1. Thus cj
k(t, s) is

absolutely continuous in s for every compact subinterval [a1, a2] ⊂ (a, ā).

Remark 6. It is not difficult to see that under the conditions of Theorem 11 the statement of the
theorem holds for Ta−h(t, s) too.

Corollary 5. Let the following conditions hold.

1. The conditions of Theorem 9 hold.
2. The Lebesgue decomposition of the function Φ(t) ∈ BV([a− h, a],Rn) does not include a

singular term.
3. The delays σi(t) ∈ C1(Ja, R̄+), σ′i (t) < 1 for t ∈ Ja and i ∈ 〈m〉.

Then the unique solution XΦ(t) of IP (1) and (3) defined with (35) has the following representation:

XΦ(t) = Ta−h(t, a)ΦJ(a+)−
a∫

a−h

∂Ta−h(t,s)
∂s ΦA(s)ds + Ta−h(t, a− h)Φ(a− h) (41)

Proof. From conditions 1 and 2 of the theorem it follows that in virtue of Corollary 4 the
unique solution XΦ(t) of IP (1) and (3) defined with (35) has the representation:

XΦ(t) = Ta−h(t, a)(ΦJ(a+)−ΦJ(a−))

+ ∑
i

Ta−h(t, si)(ΦJ(si+)−ΦJ(si−)) +
a∫

a−h

Ta−h(t, s)Φ
′
A(s)ds + Ta−h(t, a− h)Φ(a− h)

(42)

Let ā ∈ Ja be an arbitrary fixed number and [a1, a2] ⊂ (a, ā) be an arbitrary compact
subinterval. Condition 3 of the theorem implies that for arbitrary fixed number t ∈ R the
set Sσ

t = {s ∈ [a1, a2]|s = t − σi(t), i ∈ 〈m〉0} is finite. Then according Theorem 11 for
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arbitrary fixed number t ∈ R, Ta−h(t, s) is absolutely continuous in s for every compact
subinterval [a1, a2] ⊂ (a, ā). Then integrating by parts the integral in (42) we obtain:

a∫
a−h

Ta−h(t, s)Φ
′
A(s)ds =

a∫
a−h

Ta−h(t, s)dΦA(s)

= Ta−h(t, a)ΦJ(a−) + ∑
i

Ta−h(t, si)(ΦJ(si−)−ΦJ(si+))−
a∫

a−h

∂Ta−h(t, s)
∂s

ΦA(s)ds

(43)

Then the statement of the corollary follows from (42) and (43).

6. Conclusions

In this article, first the existence and uniqueness of the solutions of an initial problem
for linear differential systems with incommensurate order Caputo fractional derivatives
and with piecewise absolutely continuous (PAC) initial function is proved.

Then we prove the existence and uniqueness of an absolutely continuous fundamental
matrix C(t, s), which has the following properties:

1. C(t, s) is absolutely continuous in t for PAC initial functions;
2. C(t, s) is absolutely continuous in s (with appropriate additional assumptions).

It must be noted that when the fundamental matrix is absolutely continuous in t and
in s, the fundamental matrix has integrable derivatives in t and in s and this allows simpler
and more applicable formulas to be obtained in the integral representations, as well as
simpler and shorter proofs.

As far we know there are no other articles where such properties of the fundamental
matrix C(t, s) concerning the variable s for delayed non-autonomous fractional differential
systems are obtained. A brief comparison with similar fundamental matrix studies shows
that the same system was studied in [15], but there is proof of existence of a continuous
fundamental matrix, which is only continuous in t for initial functions with bounded
variation. Our result is more general than that obtained in [21] where the smoothness of
the fundamental matrix is proven.

Finally, using the properties of the fundamental matrix thus obtained, integral rep-
resentations are obtained in the paper for the particular solution of the inhomogeneous
system with zero initial conditions and for the general solution of the homogeneous system.

A comparison, for example, with the integral representations obtained in [15] shows,
that all the proofs are shorter and the obtained formula for the general solution of the
homogeneous system is simpler and more applicable.

A general comparison with the analogous results for integer order derivatives shows
that those obtained in the article results coincide with them at α = 1, which means that
they are a generalization of the classical ones.

We hope that the results obtained will be useful both for future research and generaliza-
tions from a mathematical point of view, as well as for modeling of real-world phenomena.
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Abbreviations
In the paper are used the following abbreviations:

AC Absolutely Continuous
PAC Piecewise Absolutely Continuous
BV Bounded Variation
IP Initial Problem
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