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Abstract: Herein we study the problem of recovering a density operator from a set of compatible
marginals, motivated by limitations of physical observations. Given that the set of compatible density
operators is not singular, we adopt Jaynes’ principle and wish to characterize a compatible density
operator with maximum entropy. We first show that comparing the entropy of compatible density
operators is complete for the quantum computational complexity class QSZK, even for the simplest
case of 3-chains. Then, we focus on the particular case of quantum Markov chains and trees and
establish that for these cases, there exists a procedure polynomial in the number of subsystems that
constructs the maximum entropy compatible density operator. Moreover, we extend the Chow–Liu
algorithm to the same subclass of quantum states.

Keywords: quantum Markov chains; maximum von Neumann entropy; QSZK-completeness

1. Introduction

Quantum tomography [1] allows us to associate a unique quantum state over a
finite-dimensional Hilbert space provided that multiple copies of the quantum system are
available, together with a complete set of measurements. Observe that when the degrees
of freedom increase, the amount of resources for performing the latter grows exponen-
tially. However, physically relevant phenomena are entirely determined by few-body
correlations—their Hamiltonians are in general highly local [2]—and when we restrict
ourselves to k-order dependencies, the data collection results in an exponential speed-up in
the number of subsystems, leading to efficient tomography techniques [3]. Clearly, a partial
dataset admits many possible compatible density operators. The overlap between (quan-
tum) statistical mechanics and quantum information theory provides a well-established
tool, entropy maximization, to dealing with the remaining degrees of freedom. By using
von Neumann entropy within Jaynes’ principle [4], we define a criterion to estimate density
operators, maximally unbiased with regards to the provided partial information.
Problem statement.

A question that naturally arises is the following: is there an efficient and effective
procedure for inferring the aforementioned quantum state? More concretely, is it possible
to find a density operator describing a finite-dimensional multipartite quantum system
that maximizes the von Neumann entropy under the constraints given by its few-body
marginals? In this work, we focus on this problem for the case of direct correlations, that is,
2-body marginals.

The problem we address is strictly related to the (quantum) Hamiltonian learning
problem [5–7]—every density operator is thermal for a determined Hamiltonian. In general,
the Hamiltonian is given, and one tries to find out its properties, so the problem of its
characterization is not well explored. Recent developments in (quantum) machine learning
techniques [8] renewed the interest in the Hamiltonian learning problem. In [9], an effective
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neural-networks approach to the problem has been proposed, and an upper bound, which
is polynomial in the number of qudits, has been established for its sample complexity [10].

One of the main reasons for the little background on the problem at hand relies on
the computational hardness of well-known problems that reduce to it. First, the quantum
marginal problem [11,12], that consists of determining whether a set of marginal quantum
states has a global density operator compatible with them, and for which a solution is
known just in some particular cases [13–15]. Then, the classical inference problem of
a probability distribution via graphical models [16] also leads to a maximum entropy
estimation. Density operators naturally encompass classical probability distributions on
the finite-dimensional setup; therefore, when considering direct correlations between
the subsystems, the hardness results for classical graph-inference should be considered.
In particular, the classical problem is well known for being computationally hard [17,18].
The only cases for which a polynomial procedure is known is when the direct correlations
have the structure of a tree (undirected acyclic graph), and moreover, for this case, there
exists an efficient procedure for determining the most likely tree from a general graph—the
Chow–Liu algorithm [19]. The speed-up is due to the Markov condition, which can be
directly inferred from the graphical structure, resulting in the factorization of the maximum
entropy joint probability distribution. Many attempts have been made for developing
appropriate operatorial graphical models [20,21], but none of them naturally encodes
the desired generalization of Markovianity. For obtaining a compression of the learning
procedure, further conditions [22] need to be verified.

In this article, we study the aforementioned problem restricted to a tree-structured set
of marginals density operators and the abstraction of the Chow–Liu algorithm. Namely,
we focus on two questions. First, is the inference efficiency limited to mutually commuting
(and acyclic connected) density operators, which encode classical probability distributions?
Second, can we determine a broader set of density operators for which an extended efficient
procedure is similarly achieved?
Contributions of the paper.

We start by showing that comparing the entropies of 3-chains—quantum states compat-
ible with two given 2-body marginals—is a complete problem for the class QSZK [23–25]—
Quantum Statistical Zero Knowledge. This result hints that finding the maximum entropy
compatible state given two marginals should be not feasible, even for a quantum com-
puter [26], at least by performing an entropy-monotonic step-by-step optimization into the
compatibility space of the provided marginals. Indeed, the complexity class QSZK, originally
defined by J. Watrous in 2002 [25], collects promise problems whose true instances can be
verified by a zero knowledge quantum proof between two quantum entities, generalizing the
class Statistical Zero Knowledge (SZK) to quantum computers. Natural complete problems
for the class represent its hardness, including distinguishing two quantum states (Problem 4)
and determining their quantum entropy difference [27].

Next, we restrict the class of quantum states to make the problem feasible. We con-
sider quantum Markov trees, states for which each 3-subchains form a quantum Markov
chain [28]. In this case, we show that the maximum entropy compatible problem is in P,
and also that there exists a polynomial-time quantum circuit that constructs the maximal
entropy compatible state. Finally, we use this result to extend the Chow–Liu algorithm [19]
for quantum states whose all 3-subchains are quantum Markov chains. The results obtained
in this paper provide a natural extension of prior work [29] to the many-body scenario.
Organization of the paper.

In Section 2, we give some background and state clearly the problems we are address-
ing. In Section 3, we attain the hardness of comparing the entropy of a compatible chain.
In Section 4, we consider the restriction of the maximum entropy problem to quantum
Markov trees. There, we provide the polynomial-time solution for this case, how to con-
struct the solution with a polynomial-quantum circuit, and the generalization of Chow–Liu
algorithm. Some of the proofs are left to the appendices. Finally, we draw some conclusions
and leave some open problems in Section 5.
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2. Background and Problem Statement

Throughout this work, we assume all quantum states and operators to be defined over
a finite dimensional Hilbert space H that is composed of n parts, such that H = ⊗n

i=1Hi.
We denote by I a collection of subsets of {1, . . . n} and throughout the text we call I the set
of marginals indexes. Elements of I are denoted by J, and its complement is represented by
J. Given I , we are interested in density operators that are compatible with a I-indexed
family of marginal density operators C where C = {ρJ ∈ B

(
HJ
)
}J∈I such that

TrJ∩J′
[
ρJ
]
= TrJ∩J′

[
ρJ′
]

for all J, J′ ∈ I , (1)

whereHJ =
⊗

i∈J Hi. We call each element ρJ a marginal density operator. We also denote
by Q(C) = {QJ}J∈I a family of quantum circuits such that QJ constructs the density
operator ρJ .

The compatibility set Comp(C) associated to a given family of compatible marginals
C is the set of density operators overH that admits as partial traces all the elements of C,
that is:

Comp(C) :=
{

ρ ∈ B(H) : TrJ [ρ] = ρJ for all J ∈ I
}

. (2)

The family C is said to be admissible when Comp(C) 6= 0, that is, if it admits at least
one density operator whose marginals coincide with those in C.

We start by noticing that, the problem of the admissibility for a compatible set where
all marginal density operators are diagonal for the same basis—that is, density operators
encoding discrete probability distributions—collapses in the classical compatible marginal
problem [30]. This classical problem has been shown to be NP-complete for the three-
dimensional case [31]. There are many cases for which it is solvable [32], and there is
always a solution if we consider only two-body marginals (bipartite marginals) that form
an acyclic graph.

The relevant case where the marginals are not diagonal for the same basis has been the
target of several research works and is called the quantum compatible marginal problem.
Liu showed that this problem is Quantum Merlin Arthur (QMA)-complete, that is, it is
one of the hardest problem in the computational complexity class QMA [12]. The class
Quantum Merlin Arthur (QMA) [33] collects promise problems whose “yes” answer can
be verified by a 1-message quantum interactive proof, generalizing to the quantum realm
the class NP of problems classically verifiable in poly-time.

Problem 1. Quantum Compatible Marginal Problem (QCMP)

• Input: A family of circuits Q(C) that construct the family of marginal density operators C.
• Accept: if C is admissible.
• Reject: if C is not admissible.

In some cases, we know that C is admissible, for instance when we are promised that
the marginals ρJ are indeed partial traces of a global state. In Physics, it is reasonable to
assume that we can prepare many copies of a global system, but in general, we can only
partially observe it. In this case, given that we have many copies of the global system,
we would be able to characterize in full detail the partial traces and know that they form
an admissible set. The question now is to infer the global state with maximum entropy
among those in the compatibility set. This leads to the following problem.

Problem 2. Maximum Entropy Compatible Marginal Problem (MECMP)

• Input: A family of circuits Q(C) promised to construct an admissible C, and a real value k.
• Accept: if there exists a ρ ∈ Comp(C) such that S(ρ) ≥ k
• Reject: otherwise.

Given the general complexity of this problem, we focus on the more straightforward
case where all sets J in I have two indexes. Thus, we consider that we are given a set of
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compatible two-body marginals, and we want to reconstruct the maximum entropy state
compatible with those marginals. For this two-body case, it is possible to construct an
associated graph, where each two-body marginal denotes an edge.

Definition 1. Let C be a I-indexed family of two-body compatible marginal density operators.
The associated graph GC is ({1, . . . , n}, E), where (i, j) ∈ E if {i, j} ∈ I .

In the simplest non-trivial case, we have that n = 3 and I = {{1, 2}, {2, 3}}. We call
this case a 3-chain. In the next section, we show that given two density operators ρ0 and ρ1
in the compatible set of a 3-chain, comparing who has higher entropy is QSZK-complete.
We denote the subspacesH1,H2 andH3 byHA,HB andHC, respectively.

3. Hardness of Comparing Entropy of a Compatible Chain

Ben-Aroya et al. [27] showed that, given two quantum circuits Q0 and Q1 that generate
two mixed states ρ0 and ρ1, respectively, such that |S(ρ0) − S(ρ1)| > 1

2 , determining
whether S(ρ0) > S(ρ1) is QSZK-complete. Thus, they conclude that it is quite improbable
that computing the von Neumann entropy of a mixed state can be done in BQP [34].
We further look into this problem by restricting to the case when ρ0 and ρ1 live in the same
Hilbert space and have the same marginals. We state our problem as follows:

Problem 3. 3-Chain Compatible Quantum Entropy Difference (3cQED)

• Input: Two quantum circuits Q0 and Q1 that generate tripartite density operators ρ0 and
ρ1, respectively, over the same Hilbert space of the formHA ⊗HB ⊗HC, promised that:

I TrA(ρ0) = TrA(ρ1);
I TrC(ρ0) = TrC(ρ1);
I |S(ρ0)− S(ρ1)| ≥ 1/2;

then,
• Accept: if S(ρ0)− S(ρ1) ≥ 1/2;
• Reject: if S(ρ1)− S(ρ0) ≥ 1/2.

Clearly, 3cQED is a particular case of QED, wherein the latter the Hilbert space of ρ0
and ρ1 does not have to be the same, nor do the densities need to be tripartite.

Obviously, 3cQED is reducible to QED, and therefore it lies in QSZK. It remains to
show that it is QSZK hard. To do so, we adapt the proof of Ben-Aroya et al., and reduce
QSDα,β, natural complete problem for the class QSZK [25], to 3cQED, for 0 ≤ α < β2 ≤ 1.

Problem 4. Quantum state distance (QSDα,β) with 0 ≤ α < β2 ≤ 1:

• Input: Two quantum circuits Q0 and Q1, acting on m qubits, that prepare the states ρ0 or
ρ1 promised that

I either ||ρ0 − ρ1||tr ≥ β;
I or ||ρ0 − ρ1||tr ≤ α;

then,
• Accept: ||ρ0 − ρ1||tr ≥ β,
• Reject: ||ρ0 − ρ1||tr ≤ α.

In Problem 4, ||ρ0 − ρ1||tr denotes the trace distance between the operators ρ0 and ρ1.

Theorem 1. For any 0 ≤ α < β2 ≤ 1, QSDα,β is reducible to 3cQED.

Proof of Theorem 1. The idea of the proof is the following. From quantum circuits Q0
and Q1 acting on m bits that generate, respectively, ρ0 and ρ1 fulfilling the promise of
QSDα,β, we are going to construct, in polynomial-time, two quantum circuits Q′0 and
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Q′1 that generate tripartite density operators ρ′0 and ρ′1, fulfilling the promise of 3cQED,
such that QSDα,β(Q0, Q1)NO iff 3cQED(Q′0, Q′1)NO.

Concretely, given circuits Q0, Q1, that construct ρ0 and ρ1, we first apply the polariza-
tion lemma (Lemma A1 in Appendix A) with n = m and obtain circuits R0 and R1 that
output density operators µ0, µ1, respectively. We then construct two circuits Z0 and Z1 as
follows. Z1 is implemented by a circuit which first applies a Hadamard gate on a single
qubit b, measures b and then conditioned on the result it applies either R0 or R1. The output
of Z1 is ξ1 = 1

2 |0〉〈0| ⊗ µ0 +
1
2 |1〉〈1| ⊗ µ1. Since we need to construct a tripartite system,

we introduce a non-orthodox, but useful, notation ξAC
1 to denote a copy of ξ1 where the

qubit part of ξ1 belongs to the system of A and the remaining part belongs to system of
C. Similarly, we denote by ξCA

1 to indicate a copy of ξ1 where the qubit part belongs to C
and remaining part to A. Circuit Z0 is the same as Z1 except that the qubit b is traced out.
The output of Z0 is ξ0 = 1

2 µ0 +
1
2 µ1. We shall denote by ξ A

0 and ξC
0 a copy of ξ0 belonging

to the subsystem of A or C, respectively.
Finally, we denote by |φ±〉AC two maximally entangled states between A and C.

Moreover, take ζ = 1
2 |φ+〉 〈φ+|+ 1

2 |φ−〉 〈φ−| and note that S(ζ) = 1. We denote by Q the
circuit that prepares ζ. Consider:

• ρ′ = ξA
0 ⊗ ζ AC ⊗ ξC

0 ⊗ |0〉 〈0|B;
• ρ′′ = ξAC

1 ⊗ ξCA
1 ⊗ |0〉 〈0|B.

Note that in ρ′ the subsystem of A contains ξA
0 and a qubit of ζ AC; the subsystem of C

contains ξC
0 and the other qubit of ζAC. Moreover, in ρ′′, the subsystem of A has a qubit

entangled with µ0 and µ1 in the subsystem C (ξ AC
1 ); and has another µ0 and µ1 entangled

with a qubit of C (ξCA
1 ).

The reduction outputs the following pair of density operators (ρ′, ρ′′) together with
the circuits that construct them, namely Q′0 = Z0 ⊗ Z0 ⊗Q and Q′1 = Z1 ⊗ Z1. We ignore
the construction of the state |0〉 〈0|B, which is trivial.

Start by observing that by tracing C from both ρ′ and ρ′′ we obtain ( 1
2 |0〉 〈0| +

1
2 |1〉 〈1|)⊗ ( 1

2 µ0 +
1
2 µ1)⊗ |0〉 〈0|. The same state will be obtained by tracing subsystem A

from both ρ′ and ρ′′. So, ρ′ and ρ′′ have compatible marginals.
Part 1

If (Q0, Q1) ∈ (QSDα,β)NO then (Z0 ⊗ Z0 ⊗Q, Z1 ⊗ Z1) ∈ 3cQEDNO.

We know that ‖ ρ0 − ρ1 ‖tr ≤ α. By the Polarization lemma (Lemma A1 in Appendix A)
we get ‖ µ0 − µ1 ‖tr ≤ 2−m. By the joint-entropy theorem (Lemma A2),

S(ξ1) =
1
2
(S(µ0) + S(µ1)) + 1. (3)

On the other hand, ξ0 is very close both to µ0 and to µ1. Specifically, ‖ ξ0 − µ1 ‖tr =∥∥∥ 1
2 µ0 − 1

2 µ1

∥∥∥
tr
≤ 2−m. Thus, by Fannes’ inequality (Lemma A3 in Appendix A) |S(ξ0)−

S(µ1)| ≤ 2−m · poly(m) ≤ 0.1 , for large enough m0. Similarly, |S(ξ0) − S(µ0)| ≤ 0.1.
It follows that

|S(ξ0)−
1
2
(S(µ0) + S(µ1))| ≤ 0.1. (4)

Combining the two equations we get S(ξ1) − S(ξ0) ≥ 0.9. Thus, S(ρ′′) − S(ρ′) ≥
2× 0.9− 1 = 0.8. Therefore, (Z0 ⊗ Z0 ⊗Q, Z1 ⊗ Z1) ∈ 3cQEDNO.
Part 2

If (Q0, Q1) ∈ (QSDα,β)YES then (Z0 ⊗ Z0 ⊗Q, Z1 ⊗ Z1) ∈ 3cQEDYES.

By the Polarization lemma (Lemma A1 in Appendix A) ‖ µ0 − µ1 ‖tr ≥ 1 − 2−m.
Using Lemma A5 (in Appendix A), we get that S(ξ0) ≥ 1

2 [S(µ0) + S(µ1)] + 1− H( 1
2 +

‖ µ0−µ1 ‖tr
2 ) ≥ 1

2 [S(µ0) + S(µ1)] + 1− H(2−m0). By Lemma A2 (in Appendix A) we know
that S(ξ1) = 1

2 (S(µ0) + S(µ1)) + 1. Therefore, S(ξ1)− S(ξ0) = H(2−m) < 0.1 for suffi-
ciently large m.
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In particular, S(ρ′′) − S(ρ′) ≤ 2 ∗ 0.1 − 1 = −0.8 and (Z0 ⊗ Z0 ⊗ Q, Z1 ⊗ Z1) ∈
3cQEDYES.

It follows that comparing the entropy of a set of compatible marginals is QSZK-
complete, as this problem is also an instance of QED. As a consequence, we expect that
finding the maximum entropy state is also generally hard, at least by performing a step by
step entropy-increasing procedure. We now focus our attention on a particular sub-case in
which this problem can be addressed.

4. Quantum Markov Chains and Trees

Given that the general problem of finding the maximum entropy state is hard, we
focus on a well-behaved subset of density operators, namely quantum Markov trees (QMT)—
Definition 4—which extends the notion of quantum Markov chains (QMC) [35] to the
multi-partite scenario. By defining QMTs, we were able to extend the learning techniques
provided by classical graphical models—Bayes composition [16] and Chow–Liu algorithm—
to an enlarged set of density operators with respect to the mutually-commuting ones.

We refer to a set of two-body density operators as tree-structured when its associated
graph—Definition 1—is a tree. In particular, we showed that given a tree-structured set of
two-body marginal density operators:

• it admits a QMT in the compatibility space iff every sub-3-chain is compatible with a
QMC—Theorem 3;

• the QMT coincides with the density operator that maximizes the von Neumann
entropy, constrained by the provided set of two-body marginals—Corollary 1;

• defining a proper order in the graph—constructive ordering—we can construct the
unique compatible QMT directly from the marginals. The Lagrange multipliers in the
optimization problem are then obtained through Theorem 2.

We were then able to show that for QMTs, the MECMP is in P—Theorem 3. Moreover,
given a general set of two-body marginals, we found that if all the sub-3-chains are
compatible with a QMC, the optimal-sub-tree, which is a QMT, can be efficiently determined
by generalizing the Chow–Liu learning algorithm—Theorem 5.

The main achievement consists in the exponential speed-up of the general Markov
condition. For the case at hand, QMC-compatibility of every tree chain—polynomial
in the number of 1-body subsystem n—implies the QMC-compatibility of every further
sub-chains formed by sub-groups of nodes—exponential in n.

In order of proving the mentioned results, first we give the essential background on
QMC—Section 4.1, then we formally define QMT—Section 4.2. In Section 4.3 we provide
the entropic characterization of QMTs, then in Section 4.4 we derive the compatibility con-
dition for a given set of tree-structured marginals with a QMT, and in Section 4.5 we study
the MECM problem restricted to QMTs. Finally, in Section 4.6, we extend the Chow–Liu
algorithm for determining the optimal tree when the provided set is not tree-structured.

4.1. Background on Quantum Markov Chains

We consider QMCs that rely on the Hilbert space H = HA ⊗ HB ⊗ HC and take
C = {ρ{A,B} ∈ B

(
H{AB}

)
}, ρ{B,C} ∈ B

(
H{BC}

)
}. To simplify notation, we drop the

brackets and commas in the indexes and so, for instance, the partial trace ρ{A,B} is just
denoted by ρAB (the same simplification is applied for the Hilbert subspaces H{A,B},
which are denoted just byHAB).

Recall the definition of quantum Markov chain:

Definition 2 ([36]). A quantum Markov chain (QMC) is a 3-chain A− B− C for which there
exists a recovery mapRB→BC : B(HB)→ B(HBC), i.e., an arbitrary trace-preserving completely
positive (CPTP) map (see, for instance, [37,38]), s.t. ρABC = (IA ⊗RB→BC)(ρAB), where IA
denotes the identity map on B(HA).
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By definition, the recovery map must fulfill thatRB→BC(ρB) = ρBC.

Definition 3. A family of QMC’s {ρ(n)ABC}n∈N is said to be constructed in polynomial time if all

elements ρ
(n)
ABC rely in the same (finite) Hilbert spaceHA ⊗HB ⊗HC (that does not depend on n)

and there is polynomial-time family of quantum circuits that generate both ρ
(n)
AB andR(n)

B→BC.

Given that the dimension of (a polynomial-time) quantum Markov chain does not
grow with n, it can be represented in matrix form in polynomial-time by multiplying all
the gates involved in the circuits that generate ρ

(n)
AB andR(n)

B→BC. We stress that to design
circuits for density operators and CPTP maps we require only an ancilla space of the same
dimension of the support of these operators/maps [39]. Therefore, the number of gates
is polynomial in n, but the full dimension of the space (including ancillae) does not grow
with n.

From this point on, we assume that ρABC is invertible (on its support), as invertible
density operators are dense. To derive the main result of the paper, we need to establish
a central lemma listing some known characterizations of QMCs. We give the proof in
Appendix B.

Lemma 1. Let ρABC be an invertible density operator. The following four assertions are equivalent:

1. ρABC is a QMC over the chain A− B− C.
2. Iρ(A : C|B) = 0, where Iρ(A : C|B) := S(ρAB) + S(ρBC)− S(ρB)− S(ρABC).

3. PB→BC(X) := ρ
1
2
BC((ρ

− 1
2

B Xρ
− 1

2
B )⊗ idC)ρ

1
2
BC, is a CPTP map for any X ∈ B(HB) and pre-

serves the partial trace ρAB.
4. log ρABC − (log ρAB)⊗ idC = idA ⊗ (log ρBC)− idA ⊗ (log ρB)⊗ idC.

The map PB→BC(X) is known as Petz recovery map or transpose map. Again, to ease
notation, we drop the identities whenever they are obvious, for instance, we drop them

in the expressions ρ
1
2
BC((ρ

− 1
2

B Xρ
− 1

2
B )⊗ idC)ρ

1
2
BC to just ρ

1
2
BCρ

− 1
2

B Xρ
− 1

2
B ρ

1
2
BC, and the same for

log ρABC − (log ρAB)⊗ idC, which we write just log ρABC − log ρAB.
Observe that we can also recover a tripartite density operator from ρBC

through PB→AB(·):
ρ

1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB, (5)

and by uniqueness, since the von Neumann entropy is operator-concave [40,41], we have
PB→BC(ρAB) = PB→AB(ρBC). However, it is not known whether, given a family of QMC
that can be constructed in polynomial time via P (n)

B→BC(X), it is possible to build P (n)
B→AB(X)

in polynomial-time. The next result states that solution to MECMP (Problem 2) and also
QCMP (Problem 1), for 3-chains can be fully determined when a QMC belongs to the
compatibility set, the proofs can be found in [29].

Lemma 2. Given a 3-chain {ρAB, ρBC} compatible with a QMC, say ρABC, then the solution of the
maximum entropy estimator ρ̃ABC is precisely ρABC. Moreover, the 3-chain {ρAB, ρBC} is compati-

ble with a QMC in B(HABC) iff TrA(ρAB) = TrC(ρBC) and the operator ΘABC = ρ
1
2
BCρ

− 1
2

B ρ
1
2
AB

is normal. Moreover, if two marginals {ρAB, ρBC} are compatible with a QMC on B(HABC),
say ρABC, then the operator ΘABC is its square root.

4.2. Definition of Quantum Markov Trees

We are now able to extend the above result from 3-chains to a more general setting,
namely to trees. From this point on, we make the following assumption.

Assumption 1. Assume the graph GC associated to a Maximum Entropy Compatible Marginal
Problem C over X = {X1, . . . Xn} is a tree, that is, GC is an acyclic connected graph over X.
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By taking any node as a root of GC , we construct an arborescence (or a directed tree).
For the sake of readability, we introduce the following notation. We call a constructive
ordering of C any total order compatible with the topological order of an arborescence of
GC . Without loss of generality, we consider a constructive order of the form X1 < · · · < Xn
and denote by Gk the induced subgraph of GC containing all the nodes Vk = {X1, . . . Xk}
for k ∈ {1 . . . n}. We also denote by Ck the marginals in C containing nodes in {X1, . . . Xk}
and by Yk, for k ≥ 2, the node in Vk−1 connected to Xk in Gk (the adjacent node of Xk in Gk).
Finally, we denote by Yk the set Vk−1 \ {Yk}, which is non-empty for k ≥ 3.

The next result follows easily:

Proposition 1. If GC is a tree, than all the subgraphs Gk are trees, and moreover, Xk is a leaf of Gk.

We now define a quantum Markov tree, which, as we shall see later on, generalizes
the notion of Markov random field, when the underlying graph is a tree.

Definition 4. Let ρ ∈ B(HX) with X := {X1, . . . Xn} be an invertible density operator (over its
support) and C is a (non-trivial) set of two-body marginals of ρ. We say that ρ is quantum Markov
tree (QMT) or is factorizable via Petz according to C if its square root is such that ρ = ΘΘ† = Θ†Θ
where Θ admits a decomposition, for some constructive order X1 < · · · < Xn, of the form

Θ = ∆n . . . ∆3(ρ
1
2
X1X2
⊗ id{X1X2}

) (6)

with ∆k =

(
ρ

1
2
XkYk

(
idXk ⊗ ρ

− 1
2

Yk

))
⊗ id{XkYk}

, for all k = 3 . . . n.

We note that for Equation (6) to be well defined, it must be the case that GC is a tree,
that is, that we are working under Assumption 1. It is relatively simple to extend the notion
to acyclic graphs (which may not be connected).

4.3. QMT as Max-Entropy Density Operator

The following result will shed some light on the relationship between Markov random
fields and QMTs.

Theorem 2. Let ρ ∈ B(HX) be an invertible density operator over (its support) and C is a (non-
trivial) set of two-body marginals s.t. GC is a spanning tree over X, then there exists ρ ∈ Comp(C)
factorizable via Petz according to C iff there exists ρ ∈ B(HX) such that, equivalently, one of the
following two hold:

(i) log ρ = ∑C log ρXiXj −∑n
i=1(deg(Xi)− 1) log ρXi ;

(ii) we have
∀k = 2, . . . , n : ρk = TrVk

[ρ] is s.t. Iρk

(
Xk : Yk|Yk

)
= 0 (7)

for some constructive ordering X1 < · · · < Xn.

Proof of Theorem 2. The proof follows by induction on k, that is, by adding one edge per
node following a constructive ordering in C. Therefore, we have that

C =
{

ρXkYk ∈ B
(
HXkYk

)
: Yk ∈ {X1, . . . , Xk−1}; k = 2, . . . , n

}
, (8)

The proof follows by complete induction on k.

(Basis k = 3): The first chain occurs when the third node is added, that is, when k = 3.
Assume there exists ρ3 ∈ Comp(C3) that is factorizable via Petz, i.e.,

Θ3 = ρ
1
2
3 = ρ

1
2
X3Y3

ρ
− 1

2
Y3

ρ
1
2
Y3Y3

= ρ
1
2
X3Y3

ρ
− 1

2
Y3

ρ
1
2
X1X2

. (9)
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Observe that we can use Lemma 2 and so, Θ3 is exactly the operator described in the
lemma, and since it is a square root, it is normal. Then, by Lemma 1, we have the following
equivalences: ρ3 is a QMC iff Iρ3

(
X3 : Y3|Y3

)
= 0 iff log ρ3 = log ρX3Y3 + log ρX1X2 − log ρY3 .

The other direction follows immediately.
(Induction step k −→ k + 1):
Complete induction hypothesis: ∀j = 3, . . . , k ∃ ρj ∈ Comp

(
Cj
)

factorizable via Petz

according with Cj iff there exists ρj ∈ B
(
HVj

)
such that, equivalently, one of the following

two hold:

• log ρj = ∑Cj
log ρXiXt −∑

j
i=1(degGj

(Xi)− 1) log ρXi ;

• Iρj

(
Xj : Yj|Yj

)
= 0.

Induction step: Assume there ∃ ρk+1 ∈ Comp(Ck+1) factorizable via Petz according
with Ck+1, then, our goal is to show that the following holds for ρk+1:

• log ρk+1 = ∑Ck+1
log ρXiXt −∑k+1

i=1 (degGk
(Xi)− 1) log ρXi and ,

• Iρk+1

(
Xk+1 : Yk+1|Yk+1

)
= 0.

Therefore, assume ∃ρk+1 ∈ Comp(Ck+1) factorizable via Petz, i.e.,

Θk+1 = ρ
1
2
k+1 = ∆k+1∆k . . . ∆3ρ

1
2
X1X2

where ∆i := ρ
1
2
XiYi

ρ
− 1

2
Yi

. (10)

Then:

ρk+1 = Θk+1Θ†
k+1

= ∆k+1∆k . . . ∆2ρX1Y1 ∆†
2 . . . ∆†

k ∆k+1

= ρ
1
2
Xk+1Yk+1

ρ
− 1

2
Yk+1

ρk ρ
− 1

2
Yk+1

ρ
1
2
Xk+1Yk+1

= Θ†
k+1Θk+1

= ρ
1
2
X1X2

∆†
3 . . . ∆†

k ∆k+1∆k+1∆k . . . ∆3ρ
1
2
X1X2

= ρ
1
2
k ρ
− 1

2
Yk+1

ρXk+1Yk+1 ρ
− 1

2
Yk+1

ρ
1
2
k .

(11)

We can use Lemma 2 on the set { ρXk+1Yk+1 , ρk } and conclude that ρk+1 is a QMC
in the order Xk+1 − Yk+1 − Yk+1. Therefore, using Lemma 1, we have ρk+1 is a QMC iff
Iρk+1

(
Xk+1 : Yk+1|Yk+1

)
= 0 iff

log ρk+1 = log ρXk+1Yk+1 + log ρYk+1Yk+1
− log(ρYk+1)

I.H.
= ∑
Ck+1

log ρXiXt −
k+1

∑
i=1

(degCi
(Xi)− 1) log ρXi .

(12)

The other direction is straightforward. Just notice that TrXk+1(ρk+1) = ρk, and by
induction hypothesis ρk is compatible with Ck, and so is ρk+1. Moreover, by construction of
ρk+1 it is also compatible with Ck+1.

Note that the proof of the previous theorem does not depend on which construc-
tive ordering one chooses. This follows from the fact that condition (i) is equivalent to
condition (ii), and condition (i) does not assume any ordering.

The reader conversant in Markov random fields will identify condition (ii) as the
quantum analogue of the Local Markov Property of a Markov random field—any variable Xi
is conditionally independent of the remaining nodes given its adjacent nodes:

Xi ⊥⊥ {Xi} ∪AdXi |AdXi, (13)
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where AdXi is the set of adjacent nodes to Xi. The notion of conditional independence is
equivalently replaced by the conditional mutual information being null, that is

I(Xi : {Xi} ∪AdXi |AdXi) = 0, (14)

which, for the case of the tree Gk and for the node Xk, we have

I(Xk : Yk |Yk) = 0. (15)

The following results state how to compute the solution Maximum Entropy Compati-
ble Marginal Problem when GC is a tree and there exists ρ ∈ Comp(C) that factorizes via
Petz according to C.

Corollary 1. Let ρ ∈ B(H) factorize via Petz according to C and GC a spanning tree. Then,

ρ = arg max
ρ′∈Comp(C)

S(ρ′). (16)

Proof of Corollary 1. It follows that in the case ρ ∈ B(H) factorizes via Petz according to
C, we have log ρ = ∑C log ρXiXj − ∑n

i=1(deg(Xi)− 1) log ρXi , which saturates the subad-
ditivity of the von Neumann entropy for every 3-chain Yk − Yk − Xk, k = 3, . . . , n in the
spanning tree.

4.4. Compatibility with a QMT

We are now ready to state our main theorem, which gives a stronger characterization
for the existence of a compatible density operator that is a QMT. Previously, we needed
multivariate measurements to establish whether there exists a QMT in the given com-
patibility set. Herein, we show that it is enough to consider two-body measurements,
which makes the procedure feasible in practice. The proof requires some technical lemmas
that we placed in Appendix C.

Theorem 3. Let C := {ρXiXj ∈ B
(
HXiXj

)
, i 6= j ∈ {1, . . . , n}} be a set of admissible two-body

marginals and such that the associate graph GC = (V, E) is a spanning tree. Then, there exists
ρ̃ ∈ B(H) such that ρ̃ ∈ Comp(C) factorizable via Petz according to C iff

Iρ

(
Xi : ad Xj|Xj

)
= 0, ∀ρXiXj ∈ C and ∀ad Xj, ad Xj 6= Xi, (17)

where ad Xj indicates an adjacent node of Xj in GC , that is adXi ∈ AdXi. Moreover,

ρ̃ := arg max
ρ′∈Comp(C)

S(ρ). (18)

Proof of Theorem 3. As in the previous theorem, we assume a constructive ordering
X1 < · · · < Xn for C which will be used in the induction proof. Moreover, we can rewrite
C using such order as in Equation (8). Thus, the set of conditions in Equation (17) are:

Iρ(Xk : ad Yk|Yk) = 0, ∀ ad Yk ∈ Vk−1, k = 3, . . . , n. (19)

(⇒) Using the previous theorem we have that

Iρk (Xk : Yk|Yk) = Iρ(Xk : Yk|Yk) = 0. (20)

Moreover, by Proposition 1, Xk is leaf in Gk and it is only connected to Yk. Finally, by ap-
plying the chain rule of the quantum conditional mutual information (c.f. in Appendix C
Equation (A13)) and choosing the chain to start in a node adjacent to Xk, say adXk, it follows
that Iρ(Xk : ad Yk|Yk) = 0.
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(⇐) The proof follows again by complete induction in the number of nodes k, follow-
ing the assumed constructive ordering of C. Again, the simplest tree where the equation
has any meaning requires three nodes.

(Basis k = 3): for this case the statement of this theorem coincides with (ii) of
Theorem 2, since ad Y3 = Y3.

(Induction step k −→ k + 1):
Induction hypothesis: We assume

Iρ(Xk : ad Yk|Yk) = 0, ∀ ad Yk ∈ Vk−1, k = 3, . . . , n, (21)

and so, by hypothesis, ρ` is factorizable via Petz according to C`, and so, by Theorem 2,
we have

Iρ`

(
X` : Y`|Y`

)
= 0 ∀` = 3, . . . k. (22)

Induction step: We assume Iρ(Xk+1 : adYk+1|Yk+1) = 0 ∀ ad Yk+1 ∈ Vk and our goal is
to show that there exists ρk+1 factorizable via Petz according to Ck+1 such that its partial
traces hold

Iρk+1

(
Xk+1 : Yk+1|Yk+1

)
= 0. (23)

Observe that, by definition, Yk+1 ∈ Vk, let mk+1 be some step in which Yk+1 was
connected to some node (note that it might connect to some node in many steps). Clearly,
we have 3 ≤ mk+1 ≤ k. We consider two cases, depending on the degree of Yk+1 in Gk.

Case (1) degYk+1 = 1, then by construction, it must be that Yk+1 = Xmk and by
Equation (22) we have that for ρmk its partial traces hold

Iρmk

(
Xmk : Ymk |Ymk

)
= 0. (24)

By Lemma A7 (in Appendix C) since

Vk \ {Xmk , Ymk} ⊇ Ymk = Vmk \ {Xmk , Ymk}, (25)

we also have for ρk that

Iρ

(
Xmk : Vk \ {Xmk , Ymk}|Ymk

)
= Iρ(Yk+1 : Vk\{Yk+1, adYk+1}|adYk+1) = 0, (26)

where the last equality is obtained by noticing that Xmk = Yk+1 and Ymk = adYk+1.
Recall that we have,

Iρ(Xk+1 : ad Yk+1|Yk+1) = 0. (27)

Moreover, the set {Vk\{Yk+1, adYk+1}, ad Yk+1, Yk+1, Xk+1}, forms the chain

Vk\{Yk+1, adYk+1} − ad Yk+1 −Yk+1 − Xk+1. (28)

Then, by using Lemma A6 (a) (in Appendix C), there exists a density operator ρk+1 ∈
B
(
HVk+1

)
such that its partial traces fulfill

Iρ(Xk+1 : Vk\{Yk+1}|Yk+1) = Iρk+1(Xk+1 : Yk+1|Yk+1) = 0. (29)

Furthermore, by construction of this ρk+1 in Lemma A6 (a) (in Appendix C) we have
TrXk+1 [ρk+1] = ρk, and so ρk+1 is s.t.:

Iρ(Xi : Vi\{Xi, Yi}|Yi) = 0 ∀i : 2 ≤ i ≤ k + 1. (30)

(Case 2) degYk+1 > 1, then Gk+1 can be seen as a star centered in Yk+1, with as many
branches, as many as adjacent nodes (adYk+1)i in Gk+1, whose number is precisely the
degree rk of Yk+1 in Gk, plus the new added node Xk+1 (c.f. Figure 1).
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Figure 1. The associate graph Gk+1: can be seen as a star centered in Yk+1, where every branch is
an adjacent of Yk+1 in Vk, plus the link to Xk+1. Gi indicates the rest of the graph (a tree) that is
connected to the i-th adjacent (adYk+1)i. The number of adjacent nodes to Yk+1 in Gk+1 is rk + 1 by
adding Xk+1 to other rk nodes in Gk.

To prove the thesis we must find ρk+1 such that, if

Iρ(Xk+1 : (adYk+1)i|Yk+1) = 0 ∀i = 1 . . . rk (31)

then, accordingly to Theorem 2, it is enough to show:

Iρk+1

(
Xk+1 : Yk+1|Yk+1

)
= 0. (32)

Moreover, by induction hypothesis, we know that

Iρ(X` : adY`|Y`) = 0 ∀adY` ∈ Vk, ` = 3, . . . k. (33)

and again, by Theorem 2, we must have:

Iρ`

(
X` : Y`|Y`

)
= 0 ∀` = 3, . . . k. (34)

We proceed to show Equation (32) by using Corollary A2 (in Appendix C). Indeed,
this results guarantees that the star

{Xk+1, Yk+1, (adYk+1)1 ∪ G1, . . . , (adYk+1)rk ∪ Grk} (35)

factorizes via Petz according to

{Xk+1Yk+1, Yk+1(adYk+1)1 ∪ G1, . . . , Yk+1(adYk+1)rk ∪ Grk} (36)

iff

Iρ(Xk+1 : (adYk+1)i ∪ Gi | Yk+1) = 0, ∀i ∈ 1, . . . , rk; (37)

Iρ

(
(adYk+1)i ∪ Gi : (adYk+1)j ∪ Gj | Yk+1

)
= 0, ∀i 6= j ∈ 1 . . . rk. (38)

Using Theorem 2 in Equation (37), we get the goal, stated in Equation (32). The condi-
tions in Equation (38) come from the complete induction hypothesis Equation (34). On the
other hand, the conditions stated in Equation (37), come from observing that, for every
(adYk+1)i, there is a chain

Xk+1 −Yk+1 − (adYk+1)i − Gi, (39)

for which we already have the conditions:

Iρ(Xk+1 : (adYk+1)i|Yk+1) = 0, (40)

Iρ(Yk+1 : Gi|(adYk+1)i) = 0. (41)
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Equation (40) follows from induction hypothesis Equation (33). Moreover, Equation (41)
follows from the fact that, by hypothesis, ρk is a QMT, and so

Yk+1 − (adYk+1)i − Gi (42)

is a quantum Markov chain. Therefore, by using Lemma A6 (a) (in Appendix C), we get
the desired condition

Iρ(Xk+1 : (adYk+1)i ∪ Gi | Yk+1) = 0. (43)

Since the argument holds for all the adjacent nodes (adYk+1)i, we derive the whole
set of conditions (37), which ends the proof for case (2).

Finally, the fact that the obtained state maximizes the von Neumann entropy with the
provided marginals comes for free from Corollary 1.

4.5. QMT and the MECM Problem

We are now able to show that for QMTs, the MECM problem is in P and that there is
a polynomial quantum circuit that constructs the Maximum entropy compatible density
operator. Moreover, we also show that it is possible to extend the Chow–Liu algorithm
efficiently for quantum Markov networks. To derive these results, we need first to compute
the number of 3-chains in a graph with n nodes—proof in Appendix D.

Lemma 3. The number of 3-chains #c in a tree with n ≥ 2 vertices satisfies n− 2 ≤ #c ≤ 1
2 (n−

1)(n− 2). Moreover, the number of 3-chains for any graph is upper-bounded by 1
2 n(n− 1)(n− 2),

and it reaches the bound for a complete graph of n nodes.

We are now able to establish a sufficient condition for the MECMP problem to be in P.

Theorem 4. The Maximum Entropy Compatible Marginal Problem for C is in P when

1. GC is a spanning tree
2. ρijk is a QMC constructed in polynomial-time (with respect with the number of nodes n)

where ρi,j, ρj,k ∈ C and i < j < k for some given constructive order of GC.

Moreover, there exists a quantum polynomial circuit that constructs the maximum entropy
compatible tree.

Proof of Theorem 4. From Theorem 3, the density operator that maximizes the Entropy
is a QMT. Moreover, we can compute its entropy in polynomial time, by considering the
constructive ordering of point 2. Indeed, from Theorem 2 (i), when ρ is a QMT we have that

S(ρ) = ∑
C

S(ρXiXj)−
n

∑
i=1

(deg(Xi)− 1)S(ρXi ). (44)

Moreover, since each ρXiXj belongs to a QMC constructed in polynomial time, we can
compute a matrix representation of the density operator of the QMC in polynomial-time
as well. Recall in Definition 3, that the Hilbert space of a polynomial-time QMC is fixed,
and does not depend on the complexity parameter, that is, as usual, the dimension of the
Hilbert space associated with each node is fixed (regarding) the complexity parameter n
(the number of nodes).

Moreover, given the constructive order, we are also able to make a quantum circuit
(c.f. Figure 2) to construct the maximum entropy compatible tree by constructing the first
Markov chain ρX1,X2,X3 and then applying the circuits for the recovery maps R of the
remaining nodes.



Mathematics 2021, 9, 193 14 of 24

Figure 2. Quantum circuit that outputs the optimal quantum Markov trees (QMT). Note that the k-th
block IYk

⊗RYk Xk operates only over two components Xk and Yk, for all k = 3 . . . n.

4.6. QMT and Chow–Liu Algorithm

Two-body marginals for which all 3-chains form a QMC have another interesting
property. It is possible to find the QMT closest, with regards to the quantum relative
entropy (the generalization of the Kullback–Leibler divergence [42]), to the unknown
density operator. Note that the number of spanning trees over a complete graph is given
by Cayley’s formula [43], nn−2 which is exponential on n. To extract the closest QMT,
we need to construct a weighted graph (where the nodes are each component of the
density operator), and the edges are weighted with the von Neumann mutual information
between every two components. The optimal spanning tree, which can be found using
the polynomial-time algorithm by Chow–Liu Algorithm 1, gives the support to a QMT.
Moreover, this QMT will be the one closest to the unknown state. When the density
operators are diagonal, that is, describe a probability distribution, this algorithm coincides
with the well-established Chow–Liu algorithm.

Algorithm 1 Chow–Liu Algorithm

Input: { C ′, IC ′ } from a set of RVs X = {X1, . . . Xn}, where
• C ′ = { p(Xi, Xj); Xi 6≡ Xj ∈ X } is a set of two-body marginal probability distri-

butions;
• IC ′ = { I(Xi : Xj) : p(Xi, Xj) ∈ C ′ } is the associated set of conditional mutual

information.
Output: { C ′T ⊆ C ′ s.t. H(p(X) | |pT(X)) is minimal }, where
• C ′T subset of 2-body marginals which associate graph is a tree;
• pT(X) ∈ Comp C ′T .

1. Sort C ′ = {p(Xi, Xj) = pα}
M≤ 1

2 n(n−1)
α=1 s.t. I1 ≥ I2 ≥ .... ≥ IN ;

2. Initialize: C ′T = ∅ α = 0.
3. Iterate: while a ≤ M do

if C ′T ∪ pα s.t. GT is a tree

then C ′T = C ′T ∪ { pα };
α = α + 1 ;

return C ′T

Theorem 5. If the set of two body marginals C is s.t. every 3-chain is compatible with a QMC
then every subtree is a QMT. A QMT that minimizes the quantum relative entropy with respect to
the (unknown) given quantum state, is the maximum weighted tree GTC where the weight of each
edge is given by the quantum mutual information. Such tree can be obtained efficiently using the
(generalized) Chow–Liu learning algorithm [19].



Mathematics 2021, 9, 193 15 of 24

Proof of Theorem 5. The proof consists in applying Theorem 3 to the main result of
Section 6 in the paper [29], that we are going to briefly recall.

Let ρX be the unknown quantum state that describes best the quantum system for
which the bipartite marginals are known (for instance, they have been measured and
collected in C). Moreover, let ρ̃CT be the maximum von Neumann entropy d.o. compatible
with a subset CT ⊆ C s.t. GCT is a tree. We refer to ρ̃CT as quantum tree. Their relative
entropy can be written as

S
(
ρX||ρ̃CT

)
= −S(ρX)− Tr

(
ρX log ρ̃CT

)
= S

(
ρ̃CT

)
− S(ρX), (45)

where we have used condition (i) in Theorem 2 on log ρ̃CT .
Therefore, the optimal maximum entropy estimator ρ̃ is computed over the subtree

with minimal von Neumann entropy:

ρ̃ = argmin
CT ⊆C

max
ρ∈Comp(CT)

S(ρ). (46)

Since the number of possible spanning trees is nn−2 [43], we can not choose the
best fitting tree efficiently, in general. However, in the case at hand, we can manipulate
Equation (45) and derive subcases for which the computation can be performed efficiently.

Observe that

∑
CT

S
(

ρXiXj

)
−

n

∑
i=1

(degXi − 1)S
(
ρXi

)
= −∑

CT

Iρ(Xi, Xj) +
n

∑
i=1

S
(
ρXi

)
, (47)

and set

∆S(ρ̃CT ) := ∑
CT

S
(

ρXiXj

)
−

n

∑
i=1

(degXi − 1)S
(
ρXi

)
− S(ρ̃CT ), (48)

which is always non-negative. By adding and subtracting the term

∑
CT

S
(

ρXiXj

)
+

n

∑
i=1

(degXi − 1)S
(
ρXi

)
(49)

to Equation (45), it assumes the form

S
(
ρX||ρ̃CT

)
= −∑

CT

Iρ(Xi, Xj)− ∆S(ρ̃CT ) +
n

∑
i=1

S
(
ρXi

)
− S(ρX). (50)

By using condition (i) of Theorem 2, we can replace the log term of S
(
ρ̃CT

)
of

Equation (48) and thus, for a QMT, ∆S(ρ̃C) = 0. Moreover, we also have the converse,
that is, ∆S(ρ̃C) = 0 holds only for QMTs. The latter result can be derived by observing that

∆S(ρ̃CT ) =
n−2

∑
i=1

Iρ(Xli : Vi\{Xli , adXli}|adXli ), (51)

which, by positivity of quantum conditional mutual information, is 0 iff all the terms in the
sum are 0. Then, by Theorem 3, we have ∆S(ρ̃C) = 0 iff all the 3-chains in CT are QMC.

Therefore, when the provided set of marginals C is s.t. every 3-chain is compatible
with a QMC, ∆S(ρ̃C) = 0 in Equation (50). Therefore, the best tree is the one that maximizes
the term

∑
CT

Iρ(Xi, Xj), (52)

i.e., the maximum weighted spanning sub-tree, where the weights are given by the mutual
information between every couple of linked nodes.
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This problem is efficiently solved for classical graphs by the Chow–Liu algorithm,
which we have here generalized to quantum states, be replacing the Shannon entropy with
the von Neumann entropy.

The general case of efficiently finding the optimal spanning tree which gives the
support to a quantum tree remains open. Minimizing the general form of Equation (50)
would require the maximization of the quantity ∑CT

Iρ(Xi, Xj) + ∆S(ρ̃CT ) with S(ρ̃CT )>0.
Already in the tripartite scenario, it is evident that the maximum weighted tree is not a
necessarily solution to the problem.

For the sake of completeness, we present the Chow–Liu algorithm in pseudo-code.
In its quantum version, the Shannon entropy is replaced by the von Neumann entropy,
so as the relative entropy with the quantum relative entropy.

5. Conclusions

In this paper, we addressed the problem of learning the maximum entropy density
operator, describing an unknown quantum system on a finite-dimensional Hilbert space,
from a set of two-body marginals.

First, we have shown that comparing the entropies of 3-chains—the simplest non-
trivial scenario, where two marginals are known in a tripartite quantum system—is QSZK-
complete. The result hints that finding the maximum entropy compatible state should be
in general not feasible, with a step by step entropy-monotonic procedure.

Then, we determined a subclass of density operators where the addressed problem is
in P. Concretely, by observing that the problem at hand naturally abstracts the inference
problem for classical probability distribution within graphical models, we ask whether an
exact efficient max-entropy learning procedure is limited to classical Markovian systems—
the set of constraints is a tree-structured set of mutually commuting density operators.
We generalize and extend the classical procedure to a larger subset of density operators,
namely two-body marginals compatible with a quantum Markov tree (QMT), whose 3-
chains are polynomial-time quantum Markov chains. In addition, for a general set of
quantum states whose 3-subchains are quantum Markov chains, we were able to generalize
the Chow–Liu algorithm for extracting the optimal QMT. Moreover, we showed that, in the
case at hand, the maximum entropy quantum state could be constructed by a polynomial-
time quantum circuit.

We stress that the obtained procedures overcome the quantum marginal problem,
for which a solution is known in the case of compatibility of the provided set of marginals
with a QMT.

Understanding other classes of quantum states for which this problem is tractable
(at least in quantum polynomial time) would be a relevant problem. In particular, a further
study on the robustness of the procedure can shed some light on the power of quantum ma-
chine learning techniques on solving the same problem beyond the Markovian assumption.
Indeed, differently from the classical scenario, quantum Markov chains have been proven
to be in general distant in trace distance from approximately-Markovian chains—that is,
tripartite density operators ρABC s.t. Iρ(A : B|C) � ε, ε > 0—and the result naturally
extends to QMT and many body density operators.
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Appendix A. Lemmas for Theorem 1

To perform the proof of Theorem 1, we need the following lemmas.

Lemma A1 (Polarization lemma, Theorem 5 in [25]). Let α and β satisfy 0 ≤ α < β2 ≤ 1.
Then, there is a deterministic polynomial-time procedure that, on input (Q0, Q1, 1n) where Q0
and Q1 are quantum circuits, outputs descriptions of quantum circuits (R0, R1) (each having size
polynomial in n and in the size of Q0 and Q1) such that

‖ ρ0 − ρ1 ‖tr ≤ α ⇒ ‖ µ0 − µ1 ‖tr ≤ 2−n,

‖ ρ0 − ρ1 ‖tr ≥ β ⇒ ‖ µ0 − µ1 ‖tr ≥ 1− 2−n.

The proof of the following lemmas can be found in [38].

Lemma A2 (Joint entropy theorem [38]). Suppose pi are probabilities, |i〉 are orthogonal states
for a system A and ρi is any set of density operators for another system B. Then,

S

(
∑

i
pi |i〉〈i| ⊗ ρi

)
= H(pi) + ∑

i
piS(ρi). (A1)

Lemma A3 (Fannes’ inequality [38]). Suppose ρ and σ are density matrices over a Hilbert space
of dimension d. Suppose further that the trace distance between them satisfies t = ‖ ρ− σ ‖tr ≤
1/e. Then,

|S(ρ)− S(σ)| ≤ t(ln d− ln t). (A2)
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Lemma A4 (Lemma 3.2 in [44]). Let ρ0 and ρ1 be two density matrices, and let ρ = 1
2 (ρ0 + ρ1).

If there exists a measurement with outcome 0 or 1 such that making the measurement on ρb yields
the bit b with probability at least p, then

S(ρ) ≥ 1
2
[S(ρ0) + S(ρ1)] + (1− H(p)). (A3)

In particular, by choosing the right observable we have

Lemma A5 (Theorem 1 in [25]). Let ρ0 and ρ1 be two density matrices, and let ρ = 1
2 (ρ0 + ρ1).

Then,

S(ρ) ≥ 1
2
[S(ρ0) + S(ρ1)] + (1− H(

1
2
+
‖ ρ0 − ρ1 ‖tr

2
)). (A4)

Appendix B. Proof of the Central Lemma 1

The proof of the lemma comes straightforwardly from the following definitions and
previously established theorems.

Definition A1. Let H be a finite dimensional Hilbert space and ρi ∈ B(H), i = 1,2, density
operators. Their relative entropy is defined as:

S(ρ1‖ρ2) :=

{
Trρ1(log ρ1 − log ρ2) if supp(ρ1) ⊆ supp(ρ2)

+∞ otherwise.
(A5)

Originally defined by Umegaki [45]. A relevant property of the quantum relative
entropy is its monotonicity under CPTP maps, also known as Uhlmann’s theorem [46].

Theorem A1. Let H and K be finite dimensional Hilbert spaces, ρi ∈ B(H), i = 1,2, density
operators with supp(ρ1) ⊆ supp(ρ2). For a CPTP map Φ : B(H) → B(K) the following
inequality holds:

S(ρ1‖ρ2) ≥ S(Φ(ρ1)‖Φ(ρ2)). (A6)

Corollary A1. The von Neumann entropy is strong sub-additivite:

S
(

ρABC‖ρAB ⊗
idc

dC

)
≥ S

(
ρBC‖ρB ⊗

idc

dC

)
. (A7)

Proof of Corollary A1. Observe that setting in (A6) ρ1 → ρABC, ρ2 → ρAB ⊗ idC/dC
and φ(·) → TrA[·], we obtain which is equivalent to the non-negativity of the quantum
conditional mutual information Iρ(A : C|B) ≥ 0.

The following two theorems characterize the case of the equality and they will be the
core of the proof of Lemma 1.

Theorem A2 (Theorem 2 in [47]). Let Φ : B(H)→ B(K) be a CPTP map and let ρi ∈ B(H),
i = 1,2, and φ(ρi) ∈ B(K) be all invertible density operators. Then, the equality holds in the
Uhlmann theorem iff the following equivalent conditions hold:

(i) φ†
(

φ(ρ2)
itφ(ρ1)

−it
)
= ρit

2 ρ−it
1 t ∈ R;

(ii) φ†(log φ(ρ1)− log φ(ρ2)) = log ρ1 − log ρ2;

where (ii) is obtained differentiating (i) in t = 0.

The adjoint map φ†(·) is understood with respect to the Hilbert–Schmidt inner product.
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Theorem A3 (Theorem 5.2 in [35]). A tripartite state ρABC ∈ B(HABC) is a QMC in the order
A-B-C iff Iρ(A : C|B) = 0. Furthermore, one can always choose as recovery map the rotated
Petz map:

P t
B→BC(X) := ρ

1+it
2

BC

(
ρ
− 1+it

2
B Xρ

− 1−it
2

B ⊗ idC

)
ρ

1−it
2

BC , for any X ∈ B(HB), t ∈ R. (A8)

Proof of Theorem A3 of Lemma 1.

(3⇒ 1) This implication comes for free from the definition of QMC. Moreover, the map
PB→BC(·) is clearly CPTP. The complete positivity indeed comes for free from the
Hermitianicity of ρB ⊗ idC/dC and ρBC, then of their square-roots.
(1⇒ 3) Equation (A8) for t = 0 gives exactly the Petz map in (3), so the implication
comes as corollary of Theorem A3.
(1⇔ 2) This follows from the statement of Theorem A3.
(2⇔ 4) It comes as corollary of Theorem A2, using the settings in Corollary A1.

Appendix C. Lemmas for Theorem 2 and 3

We need the following Lemmas to derive the proof.

Lemma A6. Let X = {A, B, C, D} be the labeling of parts of a finite dimensional Hilbert space
H and C = {ρXY ∈ B(HXY), X, Y ∈ X} an admissible set of two-body marginals. Assume
ρAB, ρBC ∈ C and ∃ ρ̃ABC ∈ B(HABC) : ρ̃ABC ∈ Comp(ρAB, ρBC) such that

Iρ(A : C|B) = 0. (A9)

(a) If the associate graph GC is a chain A-B-C-D (i.e., C = {ρAB, ρBC, ρCD}) then

∃ ρ̃ ∈ B(H) : ρ̃ ∈ Comp(C) s.t Iρ(A : CD|B) = 0 iff

∃ ρ̃BCD ∈ B(HBCD) : ρ̃BCD ∈ Comp(ρBC, ρCD) s.t Iρ(B : D|C) = 0.
(A10)

(b) If the associate graph GC is a star centered in B (i.e., C = {ρAB, ρBC, ρBD})

GC : B

A C D

(A11)

then
∃ ρ̃ ∈ B(H) : ρ̃ ∈ Comp(C) s.t Iρ(A : CD|B) = 0 iff (A12)

(i) ∃ ρ̃CBD ∈ Comp(ρBC, ρBD), ρ̃BCD ∈ B(HBCD) s.t. Iρ(C : D|B) = 0 and
(ii) ∃ ρ̃ABD ∈ Comp(ρAB, ρBD), ρ̃ABD ∈ B(HABD) s.t. Iρ(A : D|B) = 0.

In both the cases, ρ̃ = arg max
ρ∈Comp(C)

S(ρ) and factorizes over the elements of C via Petz following a

constructive ordering for C.

Proof of Lemma A6. We prove cases (a) and (b) together, but each direction of the equiva-
lence at a time. We notice than one direction follows easily from the chain rule, we start
with that direction (⇐) Recall the chain rule for quantum conditional mutual information:

Iρ(A : X1, . . . , Xn|B) = Iρ(A : X1|B)+Iρ(A : X2|BX1)+

+ · · ·+ Iρ(A : Xn|BX1, . . . , Xn−1)
(A13)

and recall that the conditional mutual information is non negative.
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Case (a)

Iρ(AB : D|C) = Iρ(B : D|C) + Iρ(B : D|AC) = 0 ⇒ Iρ(B : D|C) = 0 (A14)

The case (b) is analogous:

Iρ(AC : D|B) = Iρ(A : D|B) + Iρ(A : D|BC) = 0 ⇒ Iρ(A : D|B) = 0

Iρ(AC : D|B) = Iρ(C : D|B) + Iρ(C : D|AB) = 0 ⇒ Iρ(C : D|B) = 0
(A15)

(⇒) (a) To prove the other direction of the statement, we show that there exists a
ρ̃ ∈ B(H): ρ̃ ∈ Comp(ρ̃ABC, ρ̃BCD) and QMC on the order AB-C-D.

By hypothesis and using Lemma 1, the tripartite states can be recovered from two of
its two-body marginals using the Petz recovery map:

Iρ(A : C|B) = 0 iff ρ̃ABC = ρ
1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC = ρ

1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB, (A16)

Iρ(B : D|C) = 0 iff ρ̃BCD = ρ
1
2
BCρ

− 1
2

C ρCDρ
− 1

2
C ρ

1
2
BC = ρ

1
2
CDρ

− 1
2

C ρBCρ
− 1

2
C ρ

1
2
CD. (A17)

Using Lemma 2, we check the compatibility of the two marginals with the desired

QMC showing that the operator ΘABCD := ρ̃
1
2
ABCρ

− 1
2

C ρ
1
2
CD is normal:

ΘABCDΘ†
ABCD = ρ̃

1
2
ABCρ

− 1
2

C ρCDρ
− 1

2
C ρ̃

1
2
ABC (A18)

= ρ
1
2
AB ρ

− 1
2

B ρ
1
2
BCρ

− 1
2

C ρCDρ
− 1

2
C ρ

1
2
BC︸ ︷︷ ︸

ρ̃BCD

ρ
− 1

2
B ρ

1
2
AB (A19)

= ρ
1
2
ABρ

− 1
2

B ρ
1
2
CDρ

− 1
2

C︸ ︷︷ ︸ ρBC ρ
− 1

2
C ρ

1
2
CDρ

− 1
2

B ρ
1
2
AB︸ ︷︷ ︸ (A20)

= ρ
1
2
CDρ

− 1
2

C ρ
1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB︸ ︷︷ ︸

ρ̃ABC

ρ
− 1

2
C ρ

1
2
CD (A21)

= Θ†
ABCDΘABCD. (A22)

Equality in Equation (A19) follows for Equation (A16) and Lemma 2. Equality in
Equation (A20) follows from permuting density operators in different Hilbert spaces.

(b) Similarly to (a), we show that there exists a ρ̃ ∈ B(H): ρ̃ ∈ Comp(ρ̃ABC, ρ̃CBD, ρ̃ABD)
and QMC on the order AC-B-D. Again, using Lemma 1, the tripartite states can be recovered
from two of its two-body marginals using the Petz recovery map:

Iρ(A : C|B) = 0 iff ρ̃ABC = ρ
1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC = ρ

1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB, (A23)

Iρ(C : D|B) = 0 iff ρ̃CBD = ρ
1
2
BCρ

− 1
2

B ρBDρ
− 1

2
B ρ

1
2
BC = ρ

1
2
BCρ

− 1
2

B ρBDρ
− 1

2
B ρ

1
2
BC, (A24)

Iρ(A : D|B) = 0 iff ρ̃ABD = ρ
1
2
ABρ

− 1
2

B ρBDρ
− 1

2
B ρ

1
2
AB = ρ

1
2
ABρ

− 1
2

B ρBDρ
− 1

2
B ρ

1
2
AB. (A25)
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First, by using Lemma 2, we check the compatibility of the two marginals ρBD and

ρABC with the desired QMC showing that the operator ΘABCD := ρ̃
1
2
ABCρ

− 1
2

B ρ
1
2
BD is normal:

ΘABCDΘ†
ABCD = ρ̃

1
2
ABCρ

− 1
2

B ρBDρ
− 1

2
B ρ̃

1
2
ABC (A26)

= ρ
1
2
AB ρ

− 1
2

B ρ
1
2
BCρ

− 1
2

B ρBDρ
− 1

2
B ρ

1
2
BC︸ ︷︷ ︸

ρ̃BCD

ρ
− 1

2
B ρ

1
2
AB (A27)

= ρ
1
2
ABρ

− 1
2

B ρ
1
2
BD︸ ︷︷ ︸

ρ̃ABD

ρ
− 1

2
B ρBCρ

− 1
2

B ρ
1
2
BDρ

− 1
2

B ρ
1
2
AB︸ ︷︷ ︸

ρ̃ABD

(A28)

= ρ
1
2
BDρ

− 1
2

B ρ
1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB︸ ︷︷ ︸

ρ̃ABC

ρ
− 1

2
B ρ

1
2
BD (A29)

= Θ†
ABCDΘABCD. (A30)

Moreover, the QMC ρ̃ = ΘABCDΘ†
ABCD is in Comp(ρ̃ABC, ρ̃CBD, ρ̃ABD) by using

Equations (A23)–(A25).

The previous lemma can be trivially extended to the n-partite scenario, i.e., to an
arbitrary chain and a star:

Corollary A2. Let X = {X1, . . . Xn} be the labeling set of the parts of a finite dimensional Hilbert
space H and C = {ρXY ∈ B(HXY), X, Y ∈ X} a set of two-body marginals on it classically
compatible. Assume GC is a star centered in some Y ∈ X, i.e., C = {ρXiY, i = 1, . . . , n− 1} then
there exists ρ̃ ∈ B(H) : ρ̃ ∈ Comp(C) such that ρ̃ is a quantum Markov network iff

Iρ

(
Xi : Xj|Y

)
= 0 ∀i 6= j ∈ 1, . . . , n− 1. (A31)

Moreover,
ρ̃ = arg max

ρ∈Comp(C)
S(ρ) (A32)

and factorizes over the elements of C via Petz following a constructive ordering for C.

Proof of Corollary A2. The proof follows by adding at each step a node to the setting
of Lemma A6 (case b). Shortly, consider the constructive ordering for the graph X =
{Y, X1, . . . , Xn}. Start from graph G3, where V3 ≡ Y, X1, X2, X3, clearly in this case we are
in the situation of Lemma A6 (b), then:

Iρ(X2 : X1|Y) = 0 Iρ(X3 : X1|Y) = 0 ⇔ Iρ(X3 : X1X2|Y) = 0. (A33)

Observe that the two conditions Iρ(X3 : X1X1|Y) = 0 and Iρ(X2 : X1|Y) = 0 are those
required by Theorem 2 s.t. there exists a Petz-factorizable d.o. ρ3 over G3. Next, we add the
link X4 −Y to the graph and verify that Iρ(X4 : X1X2X3|Y) = 0 also holds. We need to use
again Theorem 2 to construct a Petz-factorizable ρ4. This condition follows by applying
Lemma A6 (b):

Iρ(X4 : X1X2X3|Y) = 0 iff

Iρ(X3 : X1X2|Y) = 0 and Iρ(X4 : X1X2|Y) = 0.
(A34)

where the first condition is the one we got in the previous step, the second comes from
Lemma A6 (b):

Iρ(X4 : X1X2|Y) = 0 iff

Iρ(X4 : X1|Y) = 0 and Iρ(X4 : X2|Y) = 0.
(A35)
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Then, we keep adding nodes and decomposing the next required condition by
Theorem 2. We notice that at each step, i.e., every time we add a node, in order to have a
Petz decomposable d.o. on the new graph we have to add to the previous set of 3-chains,
all the new 3-chains, i.e., the ones that involve the last added node.

Lemma A7. Let ρ ∈ B(H), where X = {X1, . . . , Xn} and H =
⊗n

i=1HXi , such that ρ ∈
Comp(C) with GC a tree (i.e., we work under Assumption 1, and take X1 < · · · < Xn the
constructive order). If for some ` ≤ n the following conditions hold

Iρj

(
Xi : Yj|Yj

)
= 0, ∀j = 3, . . . , `, (A36)

then, by taking any i and mi ≥ i such that

degXi|Gi = degXi|Gmi
and degYi|Gi = degYi|Gmi

, (A37)

the following conditions also hold

Iρ(Xi : Vri \ {Xi, Yi}|Yi) = 0, ∀ri : i ≤ ri ≤ mi ≤ `, (A38)

Proof of Lemma A7. Take that Equation (A36) with j = ρri . By Theorem 2, we know that
ρri factorizes via Petz over its two-body marginals according to Cri . Then, set

∆k := ρ
1
2
XkYk

ρ
− 1

2
Yk

, (A39)

it follows that the factorization via Petz can be written as follows:

ρri = ∆ri ∆ri−1 . . . ∆i . . . . . . ρX1X2 . . . ∆i . . . ∆ri−1∆ri , (A40)

where, in general, [∆i, ∆j] 6= 0. Note that, from the definition of mi it must be the case
that [∆ri , ∆s] = 0 ∀s : i ≤ s ≤ ri. This follows since Equation (A37) imposes that no more
nodes are connected to Xi and Yi when adding nodes from step i to mi; and therefore,
the additional ∆k’s operate on different Hilbert spaces. Then, Equation (A40) is to be
written as:

ρk = ∆i . . . ∆ri . . . ρX1X2 . . . ∆ri . . . ∆i. (A41)

Now consider a new, but equivalent, constructive ordering <′

X1 <′ · · · <′ Xi−1 <′ Xri <
′ Xi+1 <′ · · · <′ Xri−1 <′ Xi, (A42)

obtained from the order < by exchanging ri with i. By using Theorem 2 (ii) with the order
<′, we get in C ′ri

the condition

Iρr′i

(
Xr′i

: Yr′i
|Yr′i

)
= 0. (A43)

Which for the usual order < can be stated as:

Iρ(Xi : Vri\{Xi, Yi}|Yi) = 0. (A44)

The latter equality is valid for all ri : i ≤ ri ≤ mi ≤ `, since the only property used
was the fact that degXi|Gi = degXi|Gri

.

Appendix D. Number of 3-Chains

Proof of Lemma 3. We make the proof by counting, for each node Xi, how many 3-chains
Xj − Xi − Xk can be formed, and summing all of them afterwards.

For a spanning tree, the lower bound is the number of 3-chains in a n-chain (all nodes
have degree 2, with exception of the root and the leaf). In this case, every node is the
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central node of only one 3-chain, aside for the root and the leaf; thus, #c = n− 2. The upper
bound is derived by counting the number of 3-chains in a n-star (there is a root and all
the remaining nodes are leaves). The root, say Y, has degY = n− 1, and the remaining
nodes (enumerate them as X1, . . . Xn−1), have degree one. In this case, consider the first
edge X1Y, it can be linked through Y to more n-2 nodes, which also gives the number of
3-chains it can be part of. The next edge X2Y, it can be connected through Y to n− 3 nodes
to form n− 3 different chains (the chain X2 − Y − X1 is the same as X1 − Y − X2, which
has been already counted for). It is now clear that the number of 3-chains in an n-star is

#ci =
n

∑
k=2

(n− k) =
n−2

∑
k=1

k =
1
2
(n− 1)(n− 2). (A45)

The number of chains in a n-star is also the number of 3-chains that a node contributes
in a complete graph. Then, to obtain the number of 3-chains in a complete graph it is enough
to multiply Equation (A45) by the number of nodes, and so #c = n#ci =

1
2 n(n− 1)(n− 2).

Another way of obtaining this value consists in using well-known formulas from
combinatorial calculus, and observing that the number of 3-chains in a complete graph
of n vertices is the number of simple dispositions, i.e., the number of ordered sequences of
length 3 without repetitions in a set of n elements, divided by two. The factor 2 comes from
the symmetry of the 3-chains; that is, A− B− C is the same 3-chain as C− B− A. Then,
once again,

#c =
1
2

n!
(n− 3)!

=
1
2

n(n− 1)(n− 2) (A46)
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