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Abstract: Gender recognition of pedestrians in uncontrolled outdoor environments, such as intelli-
gent surveillance scenarios, involves various problems in terms of performance degradation. Most
previous studies on gender recognition examined recognition methods involving faces, full body
images, or gaits. However, the recognition performance is degraded in uncontrolled outdoor envi-
ronments due to various factors, including motion and optical blur, low image resolution, occlusion,
pose variation, and changes in lighting. In previous studies, a visible-light image in which image
restoration was performed and infrared-light (IR) image, which is robust to the type of clothes,
accessories, and lighting changes, were combined to improve recognition performance. However, a
near-IR (NIR) image requires a separate NIR camera and NIR illuminator, because of which chal-
lenges are faced in providing uniform illumination to the object depending on the distance to the
object. A thermal camera, which is also called far-IR (FIR), is not widely used in a surveillance camera
environment because of expensive equipment. Therefore, this study proposes an attention-guided
GAN for synthesizing infrared image (SI-AGAN) for style transfer of visible-light image to IR image.
Gender recognition performance was improved by using only a visible-light camera without an
additional IR camera by combining the synthesized IR image obtained by the proposed method with
the visible-light image. In the experiments conducted using open databases—RegDB database and
SYSU-MM01 database—the equal error rate (EER) of gender recognition of the proposed method in
each database was 9.05 and 12.95%, which is higher than that of state-of-the-art methods.

Keywords: gender recognition; visible-light and IR cameras; style transfer of visible-light image to
IR image; SI-AGAN

1. Introduction

Pedestrian gender recognition in uncontrolled environments has been considered
across an array of fields, such as computer vision, marketing, security surveillance, foren-
sic affairs, and human–robot interactions. Conventional gender recognition software
recognizes genders based on high-resolution facial images captured in a controlled envi-
ronment [1] or based on continuously imaged gaits [2,3]. However, images acquired from
uncontrolled environments significantly reduce gender recognition performance due to
low image resolution, occlusion, images of backside appearance, lighting changes, and
optical and motion blur. Gender recognition has been performed using full body images
of a person in uncontrolled environments [4]. Pedestrian gender recognition using full
body images has limited recognition performance due to the following challenging points.
First, gender recognition using a full body image is sensitive to a person’s hair style or
clothes [4]. For images of a person captured from behind, gender recognition is performed
based on a person’s hair style or clothes. However, it is difficult to distinguish between two
genders if the person is wearing unisex clothes. In particular, it is even more challenging
to discern the gender from images taken in winter due to thick padded coats. Male and
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female subjects also may have similar hair styles, and it is difficult to discern their genders
if the subjects are wearing hats or caps. Second, the images used for pedestrian gender
recognition often have motion blur, optical blur, and noise as they are captured from a
distance. Therefore, most pedestrian images are low-resolution images, thus degrading
gender recognition performance. Third, images also have occlusion, pose changes, and
illumination variation as they are captured in uncontrolled environments. The performance
of pedestrian gender recognition is typically limited due to these challenges.

Most previous studies on pedestrian gender recognition performed gender recognition
using only visible-light images [4–10]. However, gender recognition based on visible-
light images has reduced recognition performance because features are difficult to train
when training a recognizer such as convolutional neural network (CNN) due to excessive
information such as background, accessories, clothes, and hair styles. To overcome such
drawbacks, infrared (IR) images were combined with visible-light images to enhance the
recognition performance in a previous study [11]. For using the gender recognition method
of the study [11], both visible-light images and IR images are required during testing.
However, near-IR (NIR) images require a separate NIR camera and NIR lighting, which
faces issues while providing uniform illumination to the object depending on the distance
from the object. A thermal camera, also called far-IR (FIR) camera, is not widely used in a
surveillance environment because of expensive equipment. Therefore, this study proposes
an attention-guided generative adversarial network (GAN) for synthesizing infrared image
(hereinafter called SI-AGAN), which performs style transfer from a visible-light image to a
synthesized IR image (syn-IR image) through a GAN. The gender recognition performance
was enhanced by combining syn-IR images generated through SI-AGAN and improved
visible-light images obtained by sequentially running two CNN models. This study has
the following four contributions:

- For improving gender recognition performance, we propose SI-AGAN, which trans-
fers the style of the visible-light image to resemble that of an IR image. Existing
multimodal camera-based methods required both a visible-light image and an IR
image during training and testing. In this study, however, an IR image is not required
during testing as the IR image generated by SI-AGAN is used.

- We reduced the computational cost of the SI-AGAN by revising convolutional layers
of the attention module, attention-guided generator, and attention-guided discrimi-
nator of the original attention-guided generative adversarial network (AGGAN) to a
depthwise separable convolution layer.

- Furthermore, the quality of generated images and the gender recognition performance
were improved by applying a perceptual loss in SI-AGAN. Moreover, the matching
score obtained through the residual network (ResNet)-101, trained with a visible-light
image and the syn-IR image generated by SI-AGAN, was applied with score-level
fusion based on a support vector machine (SVM) to improve gender recognition
performance.

- Our trained SI-AGAN models and the generated syn-IR dataset are disclosed
through [12] for a fair performance evaluation by other researchers.

The remaining parts of this paper are organized as follows. Section 2 highlights
the previous studies on pedestrian gender recognition. Section 3 explains our proposed
method, whereas Section 4 describes the experiment results and analysis. Finally, Section 5
concludes our study.

2. Related Work

In previous studies on gender recognition, face-based gender recognition was mostly
performed using clear facial images captured from a close distance [13]. In uncontrolled
environments, such as an intelligent surveillance system, however, detecting facial images
is challenging because the images are captured from a distance or detecting the face is
difficult in occluded images or in images taken from the side or behind. Due to such issues,
human body images have been used in previous studies on pedestrian gender recognition.
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Extensive research has been conducted on extracting features for recognizing genders in
pedestrian images. The extracted features can be divided into handcrafted feature-based or
deep feature-based approaches according to the extraction method.

2.1. Handcrafted Feature-Based Methods

Pedestrian gender recognition commonly uses images captured from a distance in
uncontrolled environments. Hence, the images are noisy and blurry. Previously, several
studies have been conducted on gender recognition in which color information of clothes
was used based on handcrafted features. Additional research was conducted on using
different handcrafted features for each view by distinguishing the front view or back
view. In the first study on pedestrian gender recognition [4], a pedestrian image was
segmented into patch images from which the histogram of oriented gradients (HOGs)
feature vector [14] was extracted to perform classification through adaptive boosting
(Adaboost) [15] and random forest [16] methods. An edge map was used instead of a
raw pixel, considering the changes in the color of clothes in the study [4]. However,
color information is particularly important in studies on pedestrian gender recognition.
Thus, in [5], shape features obtained by pixelHOG (PiHOG) and color features obtained
through local HSV color histogram (LSHV) were combined, and gender recognition was
performed using a linear-kernel SVM [17]. However, color features obtained through LSHV
have insufficient color representation, and the experiment was only conducted for the
frontal view, thus making it difficult to apply to back or side view images. In [6], gender
recognition was performed by extracting features using a part-based method based on
poselets to make the model robust to camera view. In [7], biologically inspired features
(BIF) extracted through a Gabor filter were combined with handcrafted features through
principal component analysis (PCA) [18], orthogonal locality preserving projections [19],
locality sensitive discriminant analysis (LSDA) [20], and marginal fisher analysis [21] to
classify the frontal and back view. However, performance evaluation was not conducted
for the side view, because PCA and LSDA need to be performed separately for each view.
In [22], gender recognition was performed using pedestrian images in which thermal
images were used in addition to visible-light images. HOG features were extracted from
visible-light images and thermal images and then combined to perform gender recognition.
However, gender recognition performance may be degraded due to the effects of the
background region. In [23], a weight HOG was proposed in which a greater weight was
given to the bright region when extracting HOG features in a visible-light image based on
the fact that the human region, which is the object of thermal light, is brighter than the
background region.

2.2. Deep Feature-Based Methods

In handcrafted feature-based pedestrian gender recognition, features are extracted
using pre-designed HOG, PiHOG, and BIF. Then, gender recognition is performed with
a separate classifier, SVM. It is difficult to respond flexibly to various types of data or
circumstances as pre-designed and fixed features are used. Therefore, research is actively
being conducted on pedestrian gender recognition through a deep feature-based method,
where features are self-extracted during training.

2.2.1. CNN-Based Methods

Starting with [24], extensive research has been conducted on various object recognition
techniques using a CNN in which features are automatically trained in training data and
no separate classifier is required, unlike handcrafted feature-based methods, and notable
performances have been observed. Subsequently, CNNs provide increasingly superior
performance in pedestrian gender recognition. In [8], a CNN was used in pedestrian gender
recognition. More outstanding or similar performance as the conventional handcrafted
feature-based methods was observed with a simple architecture. In [9], gender recognition
was performed using Mini-CNN and AlexNet [24]. When deep feature and HOG feature
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were compared through a homogeneous dataset and heterogeneous dataset, a deep feature
was proven to show better performance, especially for the heterogeneous datasets. In [10],
a global CNN was trained using whole-body-part images, while the remaining three parts
of the body were used to train a local CNN each; ultimately, four CNNs were combined.
CaffeNet [25] and visual geometry group (VGG) Net-19 [26] were used as the CNN. In [27],
the authors claimed that the background region of an image is the cause of performance
degradation in pedestrian gender recognition. Hence, a stacked sparse auto encoder
(SSAE) was proposed for removing the background region as a preprocessing step for a
pedestrian image. Only a CNN has been used thus far in performing gender recognition.
Deep-learned features were combined with the weighted HOG handcrafted features in [28].
After generating a fusion layer by applying fusion to two features, the Softmax classifier
was used to perform gender recognition. Deep-learned and handcrafted features were
also combined in [29]. Better recognition performance was shown through a joint feature
acquired by combining obtained deep-learned features through VGG Net-19 and a deep
ResNet [30], and local maximal occurrence (LOMO) [31] features and HOG features, which
are handcrafted features.

Previous studies that have employed a CNN only used visible-light images. How-
ever, Ref. [32] stated that the visible light image is sensitive in various environments for
pedestrian recognition, so it will be helpful for performance as a multimodal camera-based
method. In [33], features were extracted by training AlexNet with visible-light image and
thermal image separately, and gender recognition was performed through SVM. In [11], the
gender recognition performance was enhanced by combining IR image with visible-light
image improved through CNN-based two-step reconstruction.

2.2.2. CNN and GAN-Based Methods

Starting with [34], a GAN has been widely used across various fields, such as style
transfer, augmentation, super resolution, and image completion. A GAN consists of a
generator and a discriminator. A generator generates fake images that appear real, whereas
the discriminator discriminates real images from fake images. Several studies are being
conducted in which a GAN is used for improving performance in pedestrian gender
recognition. The authors of [35] proposed a key pedestrian transfer generative adversarial
network (KPT-GAN). This network is designed to be robust to background changes by
applying scene transfer to the background. Moreover, gender recognition is performed
through CNN-based viewpoint adaptation feature learning. In most previous studies on
pedestrian gender recognition, the background region is removed in the pedestrian image
using various techniques or the background is changed through scene transfer using a
GAN to improve pedestrian gender recognition performance. In addition, pedestrian
gender recognition entails degraded recognition performance due to motion blur, optical
blur, and sensor noise as the images are captured from a distance. Considering these
drawbacks, this study proposes a gender recognition method in which a visible-light image
for which blur and noise are improved through two-step reconstruction is fused with a
syn-IR image, which is generated through SI-AGAN to be similar to an IR image that is less
affected by background, shadow, lighting changes, clothing type, and accessories. Table 1
presents a comparison of the advantages and disadvantages between the proposed method
and previous methods on pedestrian gender recognition.
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Table 1. Comparison of the previous and the proposed methods for pedestrian gender recognition.

Category Advantage Disadvantage

Handcrafted feature

HOG [4]
Effectively extracts HOG
features by segmenting a

pedestrian image into patches

Limited recognition
performance from not using
color information of a person

PiHOG + LSHV [5]
The color feature is used to

effectively extract
gender features

Gender recognition cannot be
performed using back or side

view images

Poselets [6] Robust to occlusion images by
using a part-based method

Requires heavily annotated
information

BIFs [7]

View classification is performed
through BIFs with manifold

learning and gender recognition
is performed for each view

No performance available for
side view

Multimodal Camera-based HOG [22,23]

Visible-light image and thermal
image are combined after

applying HOG or
weighted HOG

Less accurate recognition
because of low-resolution

images captured from a far
distance

Deep feature

CNN

CNN [8]
Similar or better performance

than a handcrafted feature with
simple architecture

Cannot exhibit high
performance improvement due

to a simple architecture

Mini-CNN [9]

Excellent performance in
heterogeneous datasets

compared to handcrafted
features

Similar performance as a
handcrafted feature in a
homogeneous dataset

Global CNN + local CNN
[10]

More discriminative features can
be obtained by separately

training the global region and
local region

Complicated due to the use of
four CNNs and can only be
applied to a whole image

SSAE [27]

Performance is improved by
using a pedestrian image in

which the background is
removed through preprocessing

Limited recognition performance
as color information, which is an

important factor

Handcrafted feature +
CNN [28,29]

The discriminative features can
be obtained by combining

low-level and high-level features

Limited recognition performance
due to various factor as only a

visible-light image is used

Multimodal
Camera-based CNN

[11,33]

Less affected by background,
lighting changes, clothing type,

and accessories because
visible-light image and thermal

image are combined

Time-consuming since a CNN is
applied to the visible-light image

and IR image separately

CNN + GAN

KPT-GAN [35]

Robust to scene variation as
KTP-GAN that performs scene

transfer for the background
is used

Numerous artifacts exist, and the
scene transferred background

region is noisier than the actual
background

SI-AGAN
(Proposed method)

Recognition performance is
improved by combining

reconstructed visible-light
images with the syn-IR image

generated by the proposed
SI-AGAN to be similar as an

IR image

Two-step image reconstruction
and GAN are time-consuming

3. Proposed Method
3.1. Overview of the Proposed Method

Figure 1 shows the overall flowchart of the proposed methods and Algorithm 1
shows the pseudo cod of the proposed methods. In step (1), a visible-light pedestrian
image is acquired in uncontrolled environments. The acquired visible-light pedestrian
image is blurry and noisy because the objects were moving pedestrians in uncontrolled
environments. In step (2), two-step image reconstruction is performed to improve image
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quality. In step (3), the score of gender recognition is obtained using the improved image as
the input of a deep ResNet. When only the visible-light image is used for pedestrian gender
recognition, the performance can be reduced due to the background of a pedestrian image
or hair style, accessories, and clothes of a pedestrian [11,22,23,33]. Therefore, a syn-IR
image, which is similar to an IR image where a human region is distinctive, is generated
through SI-AGAN to perform pedestrian gender recognition. Accordingly, in step (4), the
image is converted to a grayscale image to reduce the influence of color information in the
visible-light image, and then the converted image is used as the input of SI-AGAN to obtain
a syn-IR image. In step (5), the score of gender recognition is obtained by using the syn-IR
image as the input of a deep ResNet. In step (6), score fusion is applied through SVM to
the scores obtained from each visible-light image, and the gender is finally determined in
step (7). Two-step image reconstruction is further explained in Section 3.2, the proposed
SI-AGAN for generating vis-image in Section 3.3, and SVM-based score-level fusion in
Section 3.4.

Figure 1. Flowchart of the proposed method.

Algorithm 1 The proposed method detailed by using pseudo code

Input visible-light image: X = {X1, . . . Xm}
Input reconstructed image: R = {R1, . . . Rm}
Input synthesized image: S = {S1, . . . Sm}
Output score obtained from reconstructed image: O = {O1, . . . , Om}
Output score obtained from synthesized image: N = {N1, . . . , Nm}
Final output score: Z
2-step image reconstruction model = r_model
SI-AGAN model = s_model
Gender recognition CNN model = g_model
SVM classifier = svm

Algorithm procedure
X = {Xt−0, Xt−1, . . . Xt}
R = {R1, . . . Rm} = r_model(X)
S = {S1, . . . Sm} = s_model(X)

O = {O1, . . . , Om} = g_model(R)
N = {N1, . . . , Nm} = g_model(S)

O′ = concatenate(O1, . . . , Om, axis = vertical)
N′ = concatenate(N1, . . . , Nm, axis = vertical)

Z = svm(O′, N′)
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3.2. 2-Step Image Reconstruction

Pedestrian images captured in uncontrolled environments have degraded recognition
performance due to optical blur, motion blur, noise, and low resolution. To solve such
problems, enhanced performance was achieved by improving the visible-light image
through CNN-based two-step image reconstruction in [11]; the quality of the visible-light
image was also improved in this study through CNN-based two-step image reconstruction.
The two-step image reconstruction process is as follows. In the first step, denoising is
performed using an image restoration CNN (IRCNN) [36]. An IRCNN is a residual learning-
based method in which the noise information of an input image is learned and subtracted.
The architecture of an IRCNN is explained in Table 2. Then, in the second step, the image
quality is enhanced through super-resolution using very deep convolutional networks
(VDSR) [37]. The VDSR learns the shape information of an input image and adds it to the
input image. The architecture of VDSR is explained in Table 3. Using two types of CNNs,
the improved image quality is obtained by adding the shape information and removing
noise in images captured under uncontrolled environments. A further explanation is
provided below.

Table 2. Architecture of IRCNN. (D Conv in n-D Conv indicates a dilated convolution layer. Here, n is the dilation rate,
which is the same as that applied for standard convolution when n = 1. ReLU refers to a rectified linear unit, and Bnorm
refers to batch normalization. An IRCNN uses an original image with unfixed width and height; thus, W and H are
denoted).

Layer Type Number of Filters
Size of Feature Map
(Width × Height ×

Channel)

Size of Kernel
(Width × Height)

Number of
Stride

Number of
Padding

Input layer
[image] W × H × 3

1-D Conv 1
(ReLU) 64 W × H × 64 3 × 3 1 × 1 1 × 1

2-D Conv 2
(Bnorm + ReLU) 64 W × H × 64 3 × 3 1 × 1 2 × 2

3-D Conv 3
(Bnorm + ReLU) 64 W × H × 64 3 × 3 1 × 1 3 × 3

4-D Conv 4
(Bnorm + ReLU) 64 W × H × 64 3 × 3 1 × 1 4 × 4

3-D Conv 5
(Bnorm + ReLU) 64 W × H × 64 3 × 3 1 × 1 3 × 3

2-D Conv 6
(Bnorm + ReLU) 64 W × H × 64 3 × 3 1 × 1 2 × 2

1-D Conv 7 64 W × H × 64 3 × 3 1 × 1 1 × 1

Table 3. Architecture of VDSR. (Conv refers to a convolution layer. Here, N* indicates a number from 1 to 19. ReLU refers
to a rectified linear unit. VDSR uses an original image with unfixed width and height; thus, W and H are denoted).

Layer Type Number of Filters
Size of Feature Map
(Width × Height ×

Channel)

Size of Kernel
(Width × Height)

Number of
Stride

Number of
Padding

Input layer
[image] W × H × 3

Conv N*
(ReLU) 64 W × H × 64 3 × 3 1 × 1 1 × 1

Conv 20 64 W × H × 64 3 × 3 1 × 1 1 × 1
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When the two CNNs were applied in this study, we used pre-trained models rather
than separately training them with the training dataset. Because the dataset used in this
study was captured in uncontrolled environments, there is no pair of low-resolution, noisy
images and high-resolution, denoised images.

3.3. SI-AGAN

The shape information of a person is as important as a person’s hair style or clothing in
terms of improving the performance of pedestrian gender recognition. However, pedestrian
gender recognition using only a visible-light image shows poor performance because
feature extraction from an image focus on the background, a person’s hair style, accessories,
and clothes. To overcome this drawback, this study proposes SI-AGAN, which generates
a syn-IR image in which pedestrian region information is considered important in an IR
image.

SI-AGAN is largely divided into a generator and a discriminator, as shown in Figure 2,
and an attention module is added to the generator. The generator of SI-AGAN is further
explained in Section 3.3.1, in addition to the attention module. The discriminator of SI-
AGAN is further explained in Section 3.3.2, while the loss of SI-AGAN is further explained
in Section 3.3.3.

Figure 2. Cont.
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Figure 2. SI-AGAN structure. (a) Overall architecture of SI-AGAN. (b) Detailed architecture of the black dashed rectangle
in (a), which includes the attention network.

3.3.1. Attention-Guided Generator Architecture

SI-AGAN consists of two generators and two discriminators for performing style
transfer in both directions, from a source domain (X) to a target domain (Y) and from
a target domain (Y) to a source domain (X), based on the architecture of AGGAN as a
backbone. In this section, the characteristics and structure of an attention-guided generator
of SI-AGAN are explained in detail.

Our attention-guided generator, operated as shown in Figure 2b, can be divided into
the foreground and background regions. In the foreground region, the input image x ∈ X
of the source domain becomes the input in which xg is generated through generator GXY.
Then, the same input image x ∈ X becomes the input of an attention module A, and the
attention mask xa becomes the output. An attention mask is obtained from the attention
module, as shown in Figure 3, and has a value between [0, 1]. It is trained such that
the region requiring attention, or a human region, has a value close to 1. By performing
pixel-wise multiplication on the image generated by the generator, the foreground image
x f is generated. In the background region, the value of the previously generated attention
mask is reversed to perform pixel-wise multiplication with input image x, thus generating
background region image xb. A final fake image is generated, as expressed in Equation (1),
by performing pixel-wise sum for the foreground region image and the background region
image.

x′ = xa GXY (x) + (1− xa) x (1)

Figure 3 and Table 4 show the architecture of the attention module. Figure 4 and
Table 5 show the architecture of our attention-guided generator. Figure 5 illustrates the
difference between general convolution and depthwise separable convolution used in
the proposed SI-AGAN. As shown in Figure 5b, depthwise Separable Convolution has
the characteristic that the output values of channels are combined into one. It operates
almost similarly to the existing convolution operation, but the number of parameters and
the amount of operation reduce. The attention module and generator of the proposed
SI-AGAN reduces the computational cost by using a depthwise separable convolution
layer. Furthermore, VGG Net-19 based perceptual loss was used in addition to consistency
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loss and the least square GAN (LSGAN) loss of the original AGGAN was used for training
the generator. The perceptual loss was trained to reduce the difference in feature maps,
thus improving training convergence speed as well as the quality of the generated image.
A detailed description of the loss is provided in Section 3.3.3.

Figure 3. Description of the SI-AGAN attention module.

Table 4. Architecture of the attention module. (Conv, DWConv, IN, and ReLU refer to convolution layer, depthwise
separable convolution layer, instance normalization, and rectified linear unit, respectively).

Layer Type Number of
Filters

Size of Feature Map
(Width × Height
× Channel)

Size of Kernel
(Width ×
Height)

Number of
Stride

Number of
Padding (Top, Left,

Bottom, Right)

Input layer 224 × 100 × 3

Padding 229 × 105 × 3 (2, 2, 3, 3)

Conv 1
(IN + ReLU) 32 112 × 50 × 32 7 × 7 2 × 2

Conv 2
(IN + ReLU) 64 56 × 25 × 64 3 × 3 2 × 2 (0, 0, 1, 1)

Residual block

Padding 58 × 27 × 64 (1, 1, 1, 1)

DWConv
(IN + ReLU) 64 56 × 25 × 64 3 × 3 1 × 1

Padding 58 × 27 × 64 (1, 1, 1, 1)

DWConv
(IN + ReLU) 64 56 × 25 × 64 3 × 3 1 × 1

Add 56 × 25 × 64

Upsampling layer 112 × 50 × 64

Conv 3
(IN + ReLU) 64 112 × 50 × 64 3 × 3 1 × 1 (1, 1, 1, 1)

Upsampling layer 224 × 100 × 64

Conv 4
(IN + ReLU) 32 224 × 100 × 32 3 × 3 1 × 1 (1, 1, 1, 1)

Conv 5
(IN) 1 224 × 100 × 1 7 × 7 1 × 1 (3, 3, 3, 3)

Sigmoid layer 224 × 100 × 1
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Figure 4. Description of the attention-guided generator of SI-AGAN.

Table 5. Architecture of the attention-guided generator. (Conv, DWConv, IN, ReLU, TransConv, and Tanh each refer
to convolution layer, depthwise separable convolution layer, instance normalization, rectified linear unit, transposed
convolution, and hyperbolic tangent, respectively; N* indicates a number from 1 to 9).

Layer Type Number of
Filters

Size of Feature Map
(Width × Height
× Channel)

Size of Kernel
(Width ×
Height)

Number of
Stride

Number of
Padding (Top, Left,

Bottom, Right)

Input layer 224 × 100 × 3

Padding 230 × 106 × 3 (3, 3, 3, 3)

Conv 1
(IN + ReLU) 32 224 × 100 × 32 7 × 7 1 × 1

DWConv1
(IN + ReLU) 64 112 × 50 × 64 3 × 3 2 × 2 (0, 0, 1, 1)

DWConv2
(IN + ReLU) 128 56 × 25 × 128 3 × 3 2 × 2 (0, 0, 1, 1)

Residual block N*

Padding 58 × 27 × 128 (1, 1, 1, 1)

DWConv
(IN + ReLU) 128 56 × 25 × 128 3 × 3 1 × 1

Padding 58 × 27 × 128 (1, 1, 1, 1)

DWConv
(IN + ReLU) 128 56 × 25 × 128 3 × 3 1 × 1

Add 56 × 25 × 128

TransConv1
(IN + ReLU) 64 112 × 50 × 64 3 × 3 2 × 2 (1, 1, 1, 1)

TransConv2
(IN + ReLU) 32 224 × 100 × 32 3 × 3 2 × 2 (1, 1, 1, 1)

Conv 2 + Tanh 3 224 × 100 × 3 7 × 7 1 × 1 (3, 3, 3, 3)
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Figure 5. Comparison of convolution. (a) General convolution. (b) Depthwise separable convolution.

3.3.2. Attention-Guided Discriminator Architecture

In this section, the architecture and characteristics of the attention-guided discrimina-
tor of our proposed SI-AGAN are explained in detail. Figure 6 shows the architecture of
the SI-AGAN discriminator. The input of a conventional discriminator is a real image, or a
fake image generated by a generator. The discriminator is trained to be able to effectively
discriminate between real and fake images. A problem associated with this process is that
only the foreground region is converted through the attention mask in the attention-guided
generator of SI-AGAN, as explained in Section 3.3.1. However, the discriminator distin-
guishes between real and fake images by considering both foreground and background
regions. Hence, generator performance is affected as the discriminator becomes less ef-
fective as the training proceeds. To solve this problem, a switch parameter s is set in our
attention-guided discriminator to use a real image before reaching the epoch corresponding
to the switch parameter, and then the real image considering the attention module is used
as the input after reaching the respective epoch. This is represented as a blue dash-single
dotted line in Figure 2a, in which the input of the discriminator is determined by the switch
parameter. For the real image considering the attention module, the a ∈ xa (attention mask)
value generated in the attention module, as expressed in Equation (2), is updated to 1 when
higher than or equal to the mask threshold parameter t (set to 0.1 in this study) or to 0
otherwise, and then pixel-wise multiplication with the real image is performed.

anew =

{
1 i f a ≥ t
0 i f a < t

(2)

Figure 6 and Table 6 show the architecture of the attention-guided discriminator. The
discriminator of the proposed SI-AGAN reduced the computational cost by using the
depthwise separable convolution layer.
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Figure 6. Description of the SI-AGAN discriminator.

Table 6. Architecture of attention-guided discriminator. (Conv, DWConv, IN, and LReLU refer to convolution layer,
depthwise separable convolution layer, instance normalization, and leaky rectified linear unit, respectively; N* indicates a
number from 1 to 9; for IN*, IN is executed until reaching the epoch corresponding the pre-determined switch parameter,
and IN is not executed afterward).

Layer Type Number of
Filters

Size of Feature Map
(Width ×

Height × Channel)

Size of Kernel
(Width × Height)

Number of
Stride

Number of
Padding (Top, Left,

Bottom, Right)

Input layer 224 × 100 × 3

Padding 228 × 104 × 3 (2, 2, 2, 2)

Conv 1
(IN* + LReLU) 64 113 × 51 × 64 4 × 4 2 × 2

Padding 116 × 54 × 64 (1, 1, 2, 2)

DWConv 1
(IN* + LReLU) 128 57 × 26 × 128 4 × 4 2 × 2

Padding 60 × 30 × 128 (1, 2, 2, 2)

DWConv 2
(IN* + LReLU) 256 29 × 14 × 256 4 × 4 2 × 2

Padding 33 × 18 × 256 (2, 2, 2, 2)

Conv 2
(IN* + LReLU) 512 30 × 15 × 512 4 × 4 1 × 1

Padding 34 × 19 × 512 (2, 2, 2, 2)

Output layer
(Conv) 1 31 × 16 × 1 4 × 4 1 × 1

3.3.3. Loss Function of SI-AGAN

In the original AGGAN, LSGAN loss was used to generate a sharper image; the cycle-
consistency loss proposed in the cycle-consistent adversarial networks (CycleGAN) [38]
was also used to prevent the identity of the input image from being considerably modified.
In our SI-AGAN, the perceptual loss was additionally used for the losses of the original
AGGAN to improve the quality of the generated person image.

First, LSGAN expressed in Equation (3) below was introduced for adversarial training
between the generator and discriminator of SI-AGAN. Here, DXY is the attention-guided
discriminator from the source domain (X) toward the target domain (Y), GXY is the attention-
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guided generator from the source domain toward the target domain, and AX is the attention
module in the source domain.

Lx
GAN(GXY, AX , DXY) = Ex∼pdata(x)

[
DX(GXY(x))2

]
+Ey∼pdata(y)

[
(DX(y)− 1)2

]
(3)

Second, the cycle-consistency loss expressed in Equation (4) was introduced to prevent
the identity of the input image of SI-AGAN from being modified substantially. Here, x is the
input image x ∈ X of the source domain. The consistency loss is trained so that x becomes
less different from the image obtained through inverse mapping, or the reconstructed
image in Figure 2a, thus preventing the input image’s identity from being significantly
modified.

Lx
CYC(GXY, AX) = Ex∼pdata(x)

||x− GYX(GXY(x))||1 (4)

The cycle-consistency loss is trained to simply reduce the pixel difference between the
input image and the reconstructed image. Here, our SI-AGAN reduced the difference in
feature maps through VGG-based perceptual loss of the input image and reconstructed
image. In [11], the difference in feature maps of visible-light images and IR images was
shown to illustrate that the concentrated regions vary on feature maps. Accordingly, VGG-
based perceptual loss expressed in Equation (5), which is trained to reduce the difference in
the feature step between the reconstructed image and the input image x of source domain
that are on the same domain, was added in this paper for generating a syn-IR image, which
is similar to an IR image. Here, ∅i(x) is the feature map of x extracted from the i-th layer
of VGG Net-19, while Hi, Wi, and Ci refer to the height, width, and the channel of a feature
map for x extracted from the i-th layer, respectively.

Lx
PER(GXY, AX) =

1
HiWiCi

Hi

∑
h=1

Wi

∑
w=1

Ci

∑
c=1

(
∅i(x)h, w,c −∅i(GYX(GXY(x)))h,w,c

)2
) (5)

The losses explained thus far are for times when training is performed from the source
domain (X) toward the target domain (Y). The same losses are applied in the inverse
direction from the target domain toward the source domain. Accordingly, the final SI-
AGAN loss is as expressed in Equation (6). Here, λCYC d λPER are loss hyper-parameters
for our experiment.

L(GXY, GYX , AX , AY, DXY, DYX) = Lx
GAN + Ly

GAN + λCYC(Lx
CYC + Ly

CYC) + λPER(Lx
PER + Ly

PER) (6)

3.3.4. Differences between the Proposed SI-AGAN and Original AGGAN

In this section, the differences between the proposed SI-AGAN and the original
AGGAN are summarized:

- In the original AGGAN, a square image is used as an input. However, body shapes
and body proportions of males and females provide critical information regarding
gender recognition. Therefore, the proposed SI-AGAN was trained using vertically
long rectangular input images instead of square images.

- To reduce the computational cost, certain convolutional layers of the original AGGAN
were revised to depthwise separable convolutional layers in the SI-AGAN. The re-
vised convolutional layers are the entire convolutional layers of the residual blocks in
the attention module, second and third convolutional layers of the attention-guided
generator, entire convolutional layers of the residual blocks in the attention-guided
generator, and second and third convolutional layers of the attention-guided discrimi-
nator.

- Finally, VGG Net-19-based perceptual loss was applied between the input image
and the reconstructed image in SI-AGAN. While training the SI-AGAN, pixels of the
images on the same domain and the quality of the image generated by considering
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the difference in feature maps were improved, thus enhancing the gender recognition
performance.

3.4. CNN and Score-Level Fusion for Gender Recognition

The reconstructed visible-light image obtained through two-step image reconstruction
and the syn-IR image generated through SI-AGAN were used as the input of ResNet-101
to obtain the scores, which were then applied with SVM-based score-level fusion to finally
perform gender recognition. The existing ResNet-101 was trained with a train from scratch
method using the training data of this study. ResNet-101 has a total of five stages, in which
stages 2–5 consist of convolutional blocks and identity blocks [30]. Once the five stages
are completed, a fully connected layer is configured after average pooling, and gender
recognition finally proceeds through the Softmax layer. The reconstructed visible-light
image and the syn-IR image generated by SI-AGAN are applied to the ResNet-101 to obtain
scores from the fully connected layer and perform score-level fusion.

The score obtained from the reconstructed visible-light image and the score obtained
from the syn-IR image undergo normalization first for the stable performance of SVM. For
finding the optimal performance in this study, six normalization methods (standard scaler,
min-max scaler, robust scaler, normalizer scaler, quantile transformer, power transformer)
were compared, whereas SVM was compared with the linear kernel, radial basis function
(RBF) kernel, polynomial kernel, and sigmoid kernel. Each kernel function for mapping
the vector of a low-dimensional space to the vector of a high-dimensional space can be
expressed as in Equations (7)–(10). Normalization and kernel function proceeded using the
optimal value found in the training data.

K
(
si, sj

)
= sT

i sj (Linear kernel) (7)

K
(
si + sj

)
= exp

{
−
‖ si − sj ‖2

2

2σ2

}
, σ 6= 0 (RBF kernel) (8)

K
(
si, sj

)
=
(

sT
i sj + c

)d
, c > 0) (Polynomial kernel) (9)

K
(
si, sj

)
= tanh

{
a
(

sT
i sj

)
+ b
}′

, a, b ≥ 0 (Sigmoid kernel) (10)

For the SYSU-MM01 database with a large number of images, computational time
was measured in the desktop environment explained in Section 4.2. There are a total of
9819 training images, and the computational time of each kernel of Equations (7)–(10)
with 9819 images was measured to be 4.9, 305.2, 8.9, and 11.9 ms, respectively. The
computational time with a total of 3727 test images were measured to be 2.9, 117.2, 3, and
5.9 ms, respectively, for each kernel of Equations (7)–(10). The processing time per image
shows 0.03 ms for both the training and test images based on the RBF kernel of Equation
(8), which takes the longest processing time. In this paper, SVM shows fast processing time
by using two scores extracted from each CNN step as input for one image.

The subjects can be finally classified into male and female based on the threshold of
the score obtained through SVM. During classification, incorrect classification of a male
image as a female image is a Type I error, while incorrect classification of a female image as
a male image is a Type II error. Type I and Type II errors have a tradeoff relationship. The
value when Type I and Type II errors match is defined as the equal error rate (EER). In this
study, the point of obtaining the EER was used as the threshold for classifying the gender.

4. Experimental Results
4.1. Experimental Database and Environment

For the first experiment, the RegDB database [39], which is an open database, was
used for gender recognition. The human images in the RegDB database were captured in
uncontrolled environments using one visible-light camera and one thermal camera. The
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RegDB database has images of moving persons taken outdoors in uncontrolled environ-
ments, as shown in Figure 7a; thus, low-resolution images with severe blur and noise were
captured. Moreover, images were captured using visible-light and thermal cameras simul-
taneously; thus, the images were paired for the same pose. The RegDB database consists of
4120 visible-light and thermal images and 412 human classes. Fivefold cross-validation
was applied in the experiment as the total number of images in the database is small in
which the classes of different persons were configured for fivefold cross-validation (open
world setting). During the first fold, 3310 images among 4120 images were applied with
data augmentation based on translation and cropping to obtain a total of 74,820 images,
which were then used as the training set, as shown in Table 7, while 810 images were used
as the test dataset.

Figure 7. Example of the experiment database. (a) RegDB database and (b) SYSU-MM01 database.

Table 7. Descriptions of the experimental database.

Database RegDB SYSU-MM01

Subset Training Test Training Validation Testing

Number of people
(male/female)

331
(204/127)

81
(50/31)

295
(154/141)

96
(58/38)

99
(63/36)

Number of
images

(male/female)

3310
(2040/1270)

810
(500/310)

9819
(5190/4629)

1949
(1259/690)

3727
(2283/1444)

For the second experiment, the SYSU-MM01 database [40], which is also an open
database, was used for gender recognition. The human images in the SYSU-MM01 database
were captured in both indoor and outdoor environments, as shown in Figure 7b, using
four visible-light cameras and two NIR cameras. Visible-light images were captured in the
daytime, while NIR images were captured in the nighttime; thus, the database consists
of unpaired images as the person of the same class was captured at different times. Also,
a person of the same class may have different images depending on clothes, bags, or
accessories. The original SYSU-MM01 database consists of 287,628 visible-light images,
15,792 NIR images, and 691 human classes. In this study, the numbers of visible-light
images and NIR images were set to be identical for the same class. If the number of visible-
light images is greater in the same class, the images that can be easily used to recognize
gender because they were captured from a relatively close distance have been excluded
from the experiment. The same process was applied for the opposite case. A total of



Mathematics 2021, 9, 2535 17 of 32

15,495 images of the SYSU-MM01 database were used for gender recognition in this study;
as shown in Table 7, 9819 images were used for the training dataset, 1949 images were used
for the validation dataset, and 3727 images were used for the testing dataset, as specified
by the database provider. Training, validation, and testing datasets are configured so that
the classes do not overlap (open-world setting).

4.2. Training of SI-AGAN and CNN Models

The adaptive moment estimation (ADAM) [41] was used as an optimizer for training
SI-AGAN. The initial learning rate was set to 0.002, beta 1–0.5, and beta 2–0.999. The RegDB
database was trained for a total of 200 epochs in which the learning rate was maintained
at 0.002 until 100 epochs then gradually became 0 at 200 epochs. When classification was
performed for real images in the attention-guided discriminator of SI-AGAN, the switch
parameter determined when to apply the attention module for the real images. The switch
parameter was set to 30 in this study where classification was performed with real images
of the discriminator before 30 epochs, and then classification was performed with the
images applied with the attention module after 30 epochs. The SYSU-MM01 database is an
unpaired dataset that is difficult to be trained at first; thus, the model in which the RegDB
database was trained was fine-tuned. Other parameters matched with the RegDB database,
and the switch parameter was set to 0 because training values were initially available from
fine-tuning. Figure 8 shows the training and validation loss curves of attention-guided
generator and attention-guided discriminator of SI-AGAN. In GAN, a generator is usually
more complicated than a discriminator because the generator creates an image. Therefore,
the loss value of discriminator tends to be lower than that of the generator as shown in
Figure 8 because the discriminator simply performs binary classification [34]. The reason
why there are oscillates in the loss graphs of Figure 8 is as follows. We used a switch
parameter of 30 epochs for training, which means our attention module is operated at the
first time after 30 epochs, which causes oscillates in the loss graphs of Figure 8a. Also,
before 100 epochs, the learning rate is fixed, but we made the learning rate go down after
100 epochs, which causes another oscillates in the loss graphs of Figure 8a,b. Nevertheless,
as the learning rate decreases afterward, the training loss graphs converge stably as shown
in Figure 8.

Figure 8. Training and validation loss graphs. (a) Training and validation loss graph of attention-guided generator of
SI-AGAN and (b) training and validation loss graph of attention-guided discriminator of SI-AGAN.

ResNet-101 was used as the CNN model for performing gender recognition in this
study. Stochastic gradient descent (SGD) [42] was used as an optimizer for training ResNet-
101. The initial learning rate was set to 0.01, momentum to 0.9, and weight decay to 0.0001.
The learning rate was optimized by multiplying with a gamma value every 10 epochs
based on the stepped policy. ResNet-101 trained the image applied with two-step CNN-
based reconstruction and the syn-IR image generated through SI-AGAN. Both the RegDB
database and the SYSU-MM01 database used in the experiment were trained with the same
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parameters. Figure 9 shows the training and validation loss and accuracy of ResNet-101.
The loss converged to a low value as the training epochs increased, whereas the training
accuracy converged to nearly 100%. Thus, ResNet-101 was considered stably trained. As
shown in the validation loss and accuracy graphs in Figure 9, ResNet-101 was also not
overfitted by the training data.

Figure 9. Training and validation loss and accuracy graphs of ResNet-101. (a) Training loss and accuracy graph. (b) Valida-
tion loss and accuracy graph.

The proposed algorithm was implemented using MatConvNet (version 1.0-beta
25) [43], Caffe framework (version 1.0.0) [25], and TensorFlow-GPU 1.12.0 [44]. The exper-
iment was conducted using a PC equipped with Intel® Core™ i7-7700 CPU @ 3.6 GHz
(4 cores) with 32 GB of main memory, and NVIDIA GeForce GTX 1070 Ti (2432 compute
unified device architecture (CUDA) cores) with a graphics memory of 8 GB (NVIDIA, Santa
Clara, CA, USA) [45].

4.3. Testing of SI-AGAN and CNN Models with RegDB
4.3.1. Ablation Studies

As the first ablation study, we evaluated the performance of two-step CNN-based
reconstruction. As shown in Table 8 and Figure 10, the recognition performance was de-
graded when an IRCNN was applied to visible-light images, whereas the best performance
was exhibited when IRCNN- and VDSR-based two-step reconstruction methods were
applied.

Figure 10. ROC curves of gender recognition accuracies using visible-light images.
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Table 8. Comparisons of gender recognition accuracies using reconstructed visible-light images.

Methods 5-Fold Cross
Validation

EER (%)

1~5 Fold Average

Original image

1 fold 16.78

19.54
2 fold 22.32

3 fold 23.21

4 fold 19.01

5 fold 16.42

Original image +
IRCNN [36]

1 fold 24.81

24.25
2 fold 23.73

3 fold 25.96

4 fold 22.59

5 fold 24.19

Original image +
VDSR [37]

1 fold 13.73

18.75
2 fold 19.57

3 fold 20.46

4 fold 20.98

5 fold 19.01

Original image +
IRCNN + VDSR

(proposed method)

1 fold 14.09

15.07
2 fold 18.65

3 fold 14.09

4 fold 14.45

5 fold 14.09

In the second ablation study, the performance was compared to that of the proposed SI-
AGAN with or without perceptual loss and depthwise separable convolution. As shown in
Table 9 and Figure 11, SI-AGAN with perceptual loss and depthwise separable convolution
exhibited the best gender recognition performance.

Figure 11. ROC curves of gender recognition accuracies of SI-AGAN with or without perceptual loss
and depthwise separable convolution. (w/o refers to without, ploss refers to perceptual loss, dsconv
refers to depthwise separable convolution).
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Table 9. Comparison of the gender recognition accuracies of SI-AGAN with or without perceptual
loss and depthwise separable convolution.

Methods 5-Fold Cross
Validation

EER (%)

1~5 Fold Average

SI-AGAN without
perceptual loss and
depthwise separable

convolution

1 fold 14.55

19.01

2 fold 16.62

3 fold 24.61

4 fold 19.21

5 fold 20.10

SI-AGAN with
perceptual loss

1 fold 24.45

20.99

2 fold 18.39

3 fold 25.08

4 fold 21.86

5 fold 15.18

SI-AGAN with
depthwise separable

convolution

1 fold 18.65

20.74

2 fold 17.67

3 fold 23.83

4 fold 18.49

5 fold 25.08

SI-AGAN with
perceptual loss and
depthwise separable

convolution
(proposed method)

1 fold 18.03

17.65

2 fold 14.45

3 fold 19.37

4 fold 19.27

5 fold 17.14

4.3.2. Comparative Experiments of SI-AGAN with the State-of-the-Art Methods for Style
Transfer

This section describes the comparative experiments of SI-AGAN with state-of-the-art
methods for style transfer. For state-of-the-art methods for style transfer, CycleGAN [38],
ThermalGAN [46], and AGGAN [47] were used. Furthermore, the recognition network
was fixed to be ResNet-101 for fair comparisons; the generated image was trained using
the train from scratch method in the same environment proposed in Section 4.2.

Table 10 and Figure 12 show the performance results of recognizing IR images gen-
erated by various GAN models measured through ResNet-101. Our proposed method,
SI-AGAN, exhibited better performance than conventional GAN model in which Cy-
cleGAN and ThermalGAN had poorer performance than the case in which the original
visible-light image was used, as shown in Table 8. Our proposed SI-AGAN trains human
images through the attention module and generates images with more focus on the hu-
man region, thus exhibiting outstanding performance. Figure 13 shows the examples of
the generated syn-IR image. Relatively clear visible-light images adequately generate IR
images in all GAN models. For visible-light images with severe noise or blur, however,
the quality of the IR images generated by the conventional GAN models was significantly
reduced. Certain images with bags or accessories were also not generated properly in the
GAN models. Therefore, the syn-IR images generated by the proposed SI-AGAN have
excellent gender recognition performance as well as visibility of the generated images.
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Table 10. Gender recognition accuracies of various style transfer methods.

Methods 5-Fold Cross
Validation

EER (%)

1~5 Fold Average

CycleGAN [38]

1 fold 21.18

19.37

2 fold 17.67

3 fold 20.62

4 fold 20.52

5 fold 16.88

ThermalGAN [46]

1 fold 26.42

24.57

2 fold 28.61

3 fold 20.16

4 fold 27.20

5 fold 20.46

AGGAN [47]

1 fold 14.55

19.01

2 fold 16.62

3 fold 24.61

4 fold 19.21

5 fold 20.10

SI-AGAN

1 fold 18.03

17.65

2 fold 14.45

3 fold 19.37

4 fold 19.27

5 fold 17.14

Figure 12. ROC curves of gender recognition accuracies with various style transfer methods.
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Figure 13. Comparisons of synthesized images according to different GAN models.

4.3.3. Recognition Accuracies Based on Score-Level Fusion and Comparisons with
State-of-the-Art Methods

In this section, the final gender recognition is compared by conducting SVM-based
score-level fusion for the syn-IR images generated by the GAN models and the recon-
structed visible-light images. Table 11 and Figure 14 show the comparisons of final gender
recognition performance, where SVM-based score-level fusion is applied to the syn-IR
images generated by various GAN models and the visible-light image is applied with
IRCNN and VDSR. Our proposed method was found to be superior in terms of single
performance of syn-IR images and the combined performances. Figure 15 shows the Type
I and Type II errors of the proposed method and correct cases. As shown in the images
of Type I and Type II errors, recognition is rather unsuccessful if the original image has
severe noise or blur, which hinder gender recognition, or the image is distorted severely
during the two-step image reconstruction process. Correct cases were classified correctly
even when it was difficult to perform gender classification using the image.

Figure 14. ROC curves of gender recognition accuracies using score-level fusion (SVM with Cycle-
GAN [38] refers to Visible-light image (+IRCNN+VDSR) + syn-IR image (CycleGAN) [38], SVM
with ThermalGAN [46] refers to Visible-light image (+IRCNN+VDSR) + syn-IR image (Thermal-
GAN) [46], SVM with AGGAN [47] refers to Visible-light image(+IRCNN+VDSR) + syn-IR image
(AGGAN) [47]).
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Table 11. Comparison of gender recognition accuracies based on score-level fusion.

Methods 5-Fold Cross
Validation

EER (%)

1~5 Fold Average

Visible-light image
(+IRCNN+VDSR)

+ syn-IR image
(CycleGAN) [38]

1 fold 14.31

13.63

2 fold 19.74

3 fold 18.35

4 fold 14.77

5 fold 1.00

Visible-light image
(+IRCNN+VDSR)

+ syn-IR image
(ThermalGAN) [46]

1 fold 14.47

13.57

2 fold 18.60

3 fold 19.20

4 fold 14.49

5 fold 1.10

Visible-light image
(+IRCNN+VDSR)

+ syn-IR image
(AGGAN) [47]

1 fold 13.61

12.92

2 fold 18.03

3 fold 17.39

4 fold 14.43

5 fold 1.16

Visible-light image
(+IRCNN+VDSR)

+ syn-IR image
(SI-AGAN)

(proposed method)

1 fold 9.94

9.05

2 fold 9.16

3 fold 13.51

4 fold 10.92

5 fold 1.75

Moreover, our proposed method was compared with previous methods in which
visible-light image and IR image are combined. As shown in Table 12, our proposed
method exhibited better performances than previous methods. In previous studies, various
methods have been researched to extract important features of the gender of a person
from visible-light and IR images. HOG features showed poor performance in the initial
experiment, but the performance improved by applying the weighted HOG, which can
focus more on the human region using the characteristics of IR images. The possibility of
utilizing the handcrafted features was proven through research on deep features using
CNNs as the technologies related to CNNs continue to advance. Furthermore, visible-light
images were improved through two-step image reconstruction in [11] methods, while
gender recognition performance was improved through SI-AGAN, which was used to
generate syn-IR images in our proposed method. Both visible-light images and IR images
are required for testing in previous methods, but gender recognition can be performed
only with visible-light images in our proposed method.

We performed t-test [48] and measured Cohen’s d-value [49] between proposed
method and the second-best method in Tables 11 and 12 for the statistical test. Cohen’s
d-value around 0.2 means a small effective size, 0.5 means a medium effective size, and
0.8 means a large effective size. As shown in Figure 16a, we measured the p-values of the
second-best method and our proposed method in Table 11. The p-value of result was 0.318,
which means a 68% confidence level, and Cohen’s d-value was 0.67 (medium effective
size). As shown in Figure 16b, we measured the p-values of the second-best method and
our proposed method in Table 12. The p-value of result was 0.423, which means a 57%
confidence level, and Cohen’s d-value was 0.53 (medium effective size).
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Figure 15. Cases of Type I error, Type II error, correct recognition. (a) Cases of Type I error, (b) cases
of Type II error, (c) correct recognition cases (male), (d) correct recognition cases (female). In (a–d),
from left to right are original visible-light image, original IR image, reconstructed visible-light image,
and syn-IR image.
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Table 12. Comparison of gender recognition accuracies with our method and previous methods.

Methods EER (%)

Visible-light image + IR image using HOG feature [4,22] 16.28

Visible-light image + IR image using weighted HOG feature [23] 13.06

Visible-light image + IR image using AlexNet [9,33] 11.71

Visible-light image (+IRCNN+VDSR) + IR image using ResNet-101 [11] 10.98

Visible-light image (+IRCNN+VDSR) + syn-IR image (SI-AGAN) using ResNet-101
(proposed method) 9.05

Figure 16. T-test result between our proposed method and the second-best method. (a) Comparison
between proposed method and Visible-light image(+IRCNN+VDSR) + syn-IR image (AGGAN) [47]
in Table 11. (b) Comparison between proposed method and Visible-light image (+IRCNN+VDSR) +
IR image using ResNet-101 [11] in Table 12.
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4.4. Testing of SI-AGAN and CNN Models with SYSU-MM01

In this section, an experiment was conducted using the SYSU-MM01 database. The
reconstruction performance of the visible-light image is explained first, and then the
performance of the methods for generating syn-IR images is explained afterwards. Finally,
the final performance where two images are applied with SVM-based score-level fusion is
explained.

4.4.1. Ablation Studies

As the first ablation study, the performance of applying CNN-based reconstruction to a
visible-light image was compared with original image. As shown in Table 13 and Figure 17,
higher recognition performance was exhibited when two-step image reconstruction was
applied

Table 13. Comparisons of gender recognition accuracies using the reconstructed visible-light images.

Methods EER (%)

Original image 16.24

Original image + IRCNN + VDSR
(proposed method) 14.90

Figure 17. ROC curves of gender recognition accuracies with visible-light images.

As in the second ablation study, Table 14 and Figure 18 show the comparisons of
gender recognition accuracies of SI-AGAN with or without perceptual loss and depthwise
separable convolution. As shown in Table 14 and Figure 18, SI-AGAN with perceptual
loss and depthwise separable convolution exhibited higher recognition performance than
SI-AGAN without perceptual loss and depthwise separable convolution.

Table 14. Comparisons of gender recognition accuracies using the reconstructed visible-light images.

Methods EER (%)

SI-AGAN without perceptual loss and
depthwise separable convolution 39.13

SI-AGAN with perceptual loss and
depthwise separable convolution

(proposed method)
25.21
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Figure 18. ROC curves of gender recognition accuracies with SI-AGAN with or without perceptual
loss and depthwise separable convolution. (w/o refers to without, ploss refers to perceptual loss,
dsconv refers to depthwise separable convolution).

4.4.2. Recognition Accuracies Based on Score-Level Fusion and Comparisons with
State-of-the-Art Methods

Table 15 and Figure 19 show the comparisons of the final gender recognition where
SVM-based score-level fusion is applied to the syn-IR images generated by various GAN
models and the visible-light image applied with IRCNN and VDSR. Our proposed method
is superior in the single performance of syn-IR images as well as in the combined perfor-
mances. Figure 20 shows the Type I and Type II errors of the proposed method and correct
recognition cases. As shown in the images of Type I and Type II errors, recognition is rather
unsuccessful if the original image has severe noise or blur to hinder gender recognition or
the image is distorted severely during the two-step image reconstruction process. Correct
recognition cases were classified correctly even when the image made it difficult to do so.

Table 15. Comparison of gender recognition accuracies based on score-level fusion.

Methods EER (%)

Visible-light image (+IRCNN+VDSR) + syn-IR image (AGGAN) 17.60

Visible-light image (+IRCNN+VDSR) + syn-IR image (SI-AGAN)
(proposed method) 12.95

Figure 19. ROC curves of gender recognition accuracies using score-level fusion. (SVM with
AGGAN [47] refers to Visible-light image(+IRCNN+VDSR) + syn-IR image (AGGAN) [47]).
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Figure 20. Cases of Type I error, Type II error, correct recognition cases. (a) Cases of Type I error, (b) cases of Type II error, (c)
correct recognition cases (male), (d) correct recognition cases (female). In (a–d), from left to right are original visible-light
image, original IR image, reconstructed visible-light image, and syn-IR image.

Moreover, our proposed method was compared with previous methods where visible-
light and IR images are combined. As shown in Table 16, our proposed method exhibited
better performances than previous methods. Previous methods enhanced the gender
recognition performance through handcrafted and CNN features. For a fair experiment,
the study of [11] was divided into train, test, and validation, which are the same datasets
as ours. In our proposed method, gender recognition performance was improved through
SI-AGAN, which generated syn-IR images. Both visible-light and IR images are required
for testing in previous methods, but gender recognition can be performed only with
visible-light images in our proposed method.

Table 16. Comparison of gender recognition accuracies with our method and previous methods for
the SYSU-MM01 database.

Methods EER (%)

Visible-light image +
IR image using HOG feature [4,22] 18.51

Visible-light image +
IR image using weighted HOG feature [23] 23.90

Visible-light image +
IR image using AlexNet [9,33] 24.53

Visible-light image (+IRCNN+VDSR)
+ IR image using ResNet-101 [11] 14.43

Visible-light image (+IRCNN+VDSR)
+ syn-IR image (SI-AGAN) using ResNet-101

(proposed method)
12.95

4.5. Computational Cost and Processing Time

Computational costs were measured and compared to prove that our proposed SI-
AGAN reduced the computational cost than the original AGGAN. The average processing
time was also measured and compared.
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4.5.1. Computational Cost

The computational costs of AGGAN and SI-AGAN were compared using floating
point operations (FLOPS) and parameters (Params). Two evaluation metrics, the total
number of FLOPs and Params, were measured using the profile library provided by using
the TensorFlow framework. The computational costs of SI-AGAN and the original AGGAN
were compared. As explained above, the computation cost was reduced by changing the
convolutional layer to the depthwise separable convolution layer and the perceptual loss
was applied. For a quantitative comparison, Table 17 shows the comparison of FLOPS
and the number of parameters between our proposed SI-AGAN and the original AGGAN.
As shown in Table 17, our proposed SI-AGAN significantly reduced the computational
cost compared to the conventional model. Accordingly, it was proven that our proposed
SI-AGAN model has a lower computational cost and higher efficiency than other previous
models.

Table 17. Comparison of FLOPs and parameters between AGGAN and SI-AGAN. #FLOPs and
#Params refer to the total number of FLOPs and trainable parameters, respectively.

#FLOPs #Params

AGGAN [47] 9.19 × 109 2.95 × 106

SI-AGAN 2.28 × 109 5.40 × 105

4.5.2. Processing Time

The average processing time was measured and compared between our proposed
SI-AGAN and the original AGGAN; the average processing time of our proposed method
was also measured. The measurements were performed in a desktop environment and in
the Jetson TX2 embedded system (NVIDIA Pascal TM-family GPU including 256 CUDA
cores) [50]. Table 18 presents the average processing time of SI-AGAN and AGGAN in
each environment. Compared to AGGAN, SI-AGAN had a shorter processing time by
1.72 ms on a desktop environment and by 20.56 ms on the Jetson TX2 environment. Our
proposed SI-AGAN has a shorter processing speed than the original AGGAN

Table 18. Comparison of the average processing time between AGGAN and SI-AGAN. (unit: ms).

Environments AGGAN SI-AGAN

Desktop computer 18.01 16.29

Jetson TX2 embedded system 66.17 45.61

Table 19 presents the average processing time of our proposed method in desktop
and Jetson TX2 environments. The average processing time is approximately 47.29 ms
in a desktop environment and approximately 144.87 ms in the Jetson TX2 environment.
The Jetson TX2 environment has a higher processing time than the desktop environment
because the Jetson TX2 is an embedded system with limiting processing time.

Table 19. Average processing time of our proposed method (unit: ms).

Environments 2-Step Image
Reconstruction SI-AGAN ResNet-101 and

Score-Level Fusion Total

Desktop computer 6.31 16.29 24.69 47.29

Jetson TX2 embedded
system 8.48 45.64 90.78 144.90
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5. Conclusions

We proposed a method for enhancing gender recognition in human images captured
in uncontrolled environments. In most previous studies, gender recognition performance
was limited because only visible-light images were used. Features are usually difficult
to train due to excessive information such as background, accessories, clothes, and hair
styles when training a recognizer. Also, there were many constraints to using both visible-
light and IR images in previous research. NIR images require a separate NIR camera
and NIR illuminator, and FIR camera is not widely used because of expensive equipment.
Considering such facts, we proposed SI-AGAN that generated syn-IR images having similar
characteristics as IR images. Because the syn-IR image generated by SI-AGAN has similar
characteristics to the IR image, the performance degradation caused by various factors
such as background, accessories, clothes, and hair styles was prevented. Our proposed
SI-AGAN reduced computational costs by using a depthwise separable convolutional layer.
This was proved by comparing the original AGGAN and our proposed SI-AGAN based on
floating point operations and processing time. SI-AGAN not only reduced computational
cost, but also showed higher performance than original AGGAN. Also, SI-AGAN used
perceptual loss based on VGG Net-19 as well as pixel-based loss. Therefore, we improved
the recognition performance of the generated image by considering the differences between
the feature maps, and SI-AGAN generates relatively clear image compared to other various
GAN models.

We combined the image generated through SI-AGAN with the visible-light image ob-
tained through a two-step image reconstruction process to improve the gender recognition
performance. By applying two-step image reconstruction, we improved the performance
by reducing the influence of factors such as blur, noise, and low resolution, which degrade
the performance of gender recognition.

In particular, our proposed method requires only visible-light images for conducting
an experiment during the test step. We showed that our proposed method has superior
performance to the state-of-the-art methods.

In future work, we will study different methods for improving quality even further by
considering super resolution in addition to style transfer when generating images. Diverse
pruning algorithms will be also applied to further reduce computational costs.

Author Contributions: Methodology, N.R.B.; Conceptualization, S.W.C.; Validation, J.H.K.; Supervi-
sion, K.R.P.; Writing—original draft, N.R.B.; Writing—editing and review, K.R.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (MSIT) through the Basic Science Research Program (NRF-
2021R1F1A1045587), in part by the NRF funded by the MSIT through the Basic Science Research
Program (NRF-2020R1A2C1006179), and in part by the MSIT, Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2021-2020-0-01789) supervised by the IITP
(Institute for Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ng, C.-B.; Tay, Y.-H.; Goi, B.-M. A review of facial gender recognition. Pattern Anal. Appl. 2015, 18, 739–755. [CrossRef]
2. Yu, S.; Tan, T.; Huang, K.; Jia, K.; Wu, X. A study on gait-based gender classification. IEEE Trans. Image Process. 2009, 18, 1905–1910.

[PubMed]
3. Patua, R.; Muchhal, T.; Basu, S. Gait-based person identification, gender classification, and age estimation: A review. Prog. Adv.

Comput. Intell. Eng. 2021, 1198, 62–74.

http://doi.org/10.1007/s10044-015-0499-6
http://www.ncbi.nlm.nih.gov/pubmed/19447706


Mathematics 2021, 9, 2535 31 of 32

4. Cao, L.; Dikmen, M.; Fu, Y.; Huang, T.S. Gender recognition from body. In Proceedings of the 16th ACM international Conference
on Multimedia, Vancouver, BC, Canada, 26–31 October 2008; pp. 725–728.

5. Collins, M.; Zhang, J.; Miller, P.; Wang, H. Full Body Image Feature Representations for Gender Profiling. In Proceedings of
the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4
October 2009; pp. 1235–1242.

6. Bourdev, L.; Maji, S.; Malik, J. Describing People: A Poselet-Based Approach to Attribute Classification. In Proceedings of the
2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1543–1550.

7. Guo, G.; Mu, G.; Fu, Y. Gender from Body: A Biologically-Inspired Approach with Manifold Learning. In Proceedings of the
Asian Conference on Computer Vision, Xi’an, China, 23–27 September 2009; pp. 236–245.

8. Ng, C.-B.; Tay, Y.-H.; Goi, B.-M. A Convolutional Neural Network for Pedestrian Gender Recognition. In Proceedings of the
International Symposium on Neural Networks, Dalian, China, 4–6 July 2013; pp. 558–564.

9. Antipov, G.; Berrani, S.-A.; Ruchaud, N.; Dugelay, J.-L. Learned vs. Hand-Crafted Features for Pedestrian Gender Recognition. In
Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1263–1266.

10. Ng, C.-B.; Tay, Y.-H.; Goi, B.-M. Pedestrian gender classification using combined global and local parts-based convolutional
neural networks. Pattern Anal. Appl. 2019, 22, 1469–1480. [CrossRef]

11. Baek, N.R.; Cho, S.W.; Koo, J.H.; Truong, N.Q.; Park, K.R. Multimodal camera-based gender recognition using human-body
image with two-step reconstruction network. IEEE Access 2019, 7, 104025–104044. [CrossRef]

12. Attention-Guided GAN for Synthesizing Infrared Image (SI-AGAN) and Syn-IR Datasets. Available online: http://dm.dgu.edu/
link.html (accessed on 24 August 2021).

13. Althnian, A.; Aloboud, N.; Alkharashi, N.; Alduwaish, F.; Alrshoud, M.; Kurdi, H. Face gender recognition in the wild: An
extensive performance comparison of deep-learned, hand-crafted, and fused features with deep and traditional models. Appl. Sci.
2021, 11, 89. [CrossRef]

14. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

15. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the 13th International Conference on
Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156.

16. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
17. Joachims, T. Making Large-Scale Support Vector Machine Learning Practical, Advances in Kernel Methods. Support Vector

Learning. 1999. Available online: https://ci.nii.ac.jp/naid/10011961265/en/ (accessed on 1 October 2021).
18. Webb, A.R. Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2003.
19. Cai, D.; He, X.; Han, J.; Zhang, H.-J. Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 2006, 15, 3608–3614.
20. Cai, D.; He, X.; Zhou, K.; Han, J.; Bao, H. Locality Sensitive Discriminant Analysis. In Proceedings of the International Joint

Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 708–713.
21. Yan, S.; Xu, D.; Zhang, B.; Zhang, H.-J.; Yang, Q.; Lin, S. Graph embedding and extensions: A general framework for dimensional-

ity reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 29, 40–51. [CrossRef]
22. Nguyen, D.T.; Park, K.R. Body-based gender recognition using images from visible and thermal cameras. Sensors 2016, 16, 156.

[CrossRef]
23. Nguyen, D.T.; Park, K.R. Enhanced gender recognition system using an improved histogram of oriented gradient (HOG) feature

from quality assessment of visible light and thermal images of the human body. Sensors 2016, 16, 1134. [CrossRef]
24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Proceedings

of the 2012 Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp.
1097–1105.

25. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture
for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7
November 2014; pp. 675–678.

26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
27. Raza, M.; Sharif, M.; Yasmin, M.; Khan, M.A.; Saba, T.; Fernandes, S.L. Appearance based pedestrians’ gender recognition by

employing stacked auto encoders in deep learning. Futur. Gener. Comp. Syst. 2018, 88, 28–39. [CrossRef]
28. Cai, L.; Zhu, J.; Zeng, H.; Chen, J.; Cai, C.; Ma, K.-K. HOG-assisted deep feature learning for pedestrian gender recognition. J.

Frankl. Inst. 2018, 355, 1991–2008. [CrossRef]
29. Fayyaz, M.; Yasmin, M.; Sharif, M.; Raza, M. J-LDFR: Joint low-level and deep neural network feature representations for

pedestrian gender classification. Neural Comput. Appl. 2020, 33, 1–31. [CrossRef]
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
31. Liao, S.; Hu, Y.; Zhu, X.; Li, S.Z. Person Re-Identification by Local Maximal Occurrence Representation and Metric Learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 2197–2206.

32. Wang, X.; Zheng, S.; Yang, R.; Zheng, A.; Chen, Z.; Tang, J.; Luo, B. Pedestrian attribute recognition: A survey. Pattern Recognit.
2021, 121, 108220. [CrossRef]

http://doi.org/10.1007/s10044-018-0725-0
http://doi.org/10.1109/ACCESS.2019.2932146
http://dm.dgu.edu/link.html
http://dm.dgu.edu/link.html
http://doi.org/10.3390/app11010089
http://doi.org/10.1023/A:1010933404324
https://ci.nii.ac.jp/naid/10011961265/en/
http://doi.org/10.1109/TPAMI.2007.250598
http://doi.org/10.3390/s16020156
http://doi.org/10.3390/s16071134
http://doi.org/10.1016/j.future.2018.05.002
http://doi.org/10.1016/j.jfranklin.2017.09.003
http://doi.org/10.1007/s00521-020-05015-1
http://doi.org/10.1016/j.patcog.2021.108220


Mathematics 2021, 9, 2535 32 of 32

33. Nguyen, D.T.; Kim, K.W.; Hong, H.G.; Koo, J.H.; Kim, M.C.; Park, K.R. Gender recognition from human-body images using
visible-light and thermal camera videos based on a convolutional neural network for image feature extraction. Sensors 2017, 17,
637. [CrossRef] [PubMed]

34. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. arXiv 2014, arXiv:1406.2661.

35. Cai, L.; Zeng, H.; Zhu, J.; Cao, J.; Wang, Y.; Ma, K.-K. Cascading Scene and Viewpoint Feature Learning for Pedestrian Gender
Recognition. IEEE Internet Things J. 2020, 8, 3014–3026. [CrossRef]

36. Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN Denoiser Prior for Image Restoration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938.

37. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

38. Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

39. Hi-CMD. Available online: https://github.com/bismex/HiCMD (accessed on 24 August 2021).
40. Wu, A.; Zheng, W.S.; Yu, H.X.; Gong, S.; Lai, J. RGB-infrared Cross-Modality Person Re-Identification. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5380–5389.
41. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
42. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012;

pp. 421–436.
43. Vedaldi, A.; Lenc, K. MatConvNet—Convolutional Neural Networks for MATLAB. In Proceedings of the ACM International

Conference on Multimedia, Shanghai, China, 23–26 June 2015.
44. Tensorflow: The Python Deep Learning Library. Available online: https://www.tensorflow.org/ (accessed on 24 August 2021).
45. NVIDIA GeForce GTX 1070 Card. Available online: https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-10

70/ (accessed on 24 August 2021).
46. Kniaz, V.V.; Knyaz, V.A.; Hladuvka, J.; Kropatsch, W.G.; Mizginov, V. Thermalgan: Multimodal Color-to-Thermal Image

Translation for Person Re-Identification in Multispectral Dataset. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, Munich, Germany, 8–14 September 2018.

47. Mejjati, Y.A.; Richardt, C.; Tompkin, J.; Cosker, D.; Kim, K.I. Unsupervised attention-guided image to image translation. arXiv
2018, arXiv:1806.02311.

48. Livingston, E.H. Who was student and why do we care so much about his t-test? J. Surg. Res. 2004, 118, 58–65. [CrossRef]
[PubMed]

49. Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [CrossRef] [PubMed]
50. Jetson TX2 Module. Available online: https://developer.nvidia.com/embedded/jetson-tx2 (accessed on 24 August 2021).

http://doi.org/10.3390/s17030637
http://www.ncbi.nlm.nih.gov/pubmed/28335510
http://doi.org/10.1109/JIOT.2020.3021763
https://github.com/bismex/HiCMD
https://www.tensorflow.org/
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1070/
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1070/
http://doi.org/10.1016/j.jss.2004.02.003
http://www.ncbi.nlm.nih.gov/pubmed/15093718
http://doi.org/10.1037/0033-2909.112.1.155
http://www.ncbi.nlm.nih.gov/pubmed/19565683
https://developer.nvidia.com/embedded/jetson-tx2

	Introduction 
	Related Work 
	Handcrafted Feature-Based Methods 
	Deep Feature-Based Methods 
	CNN-Based Methods 
	CNN and GAN-Based Methods 


	Proposed Method 
	Overview of the Proposed Method 
	2-Step Image Reconstruction 
	SI-AGAN 
	Attention-Guided Generator Architecture 
	Attention-Guided Discriminator Architecture 
	Loss Function of SI-AGAN 
	Differences between the Proposed SI-AGAN and Original AGGAN 

	CNN and Score-Level Fusion for Gender Recognition 

	Experimental Results 
	Experimental Database and Environment 
	Training of SI-AGAN and CNN Models 
	Testing of SI-AGAN and CNN Models with RegDB 
	Ablation Studies 
	Comparative Experiments of SI-AGAN with the State-of-the-Art Methods for Style Transfer 
	Recognition Accuracies Based on Score-Level Fusion and Comparisons with State-of-the-Art Methods 

	Testing of SI-AGAN and CNN Models with SYSU-MM01 
	Ablation Studies 
	Recognition Accuracies Based on Score-Level Fusion and Comparisons with State-of-the-Art Methods 

	Computational Cost and Processing Time 
	Computational Cost 
	Processing Time 


	Conclusions 
	References

