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Abstract: In this paper, we prove Hermite-Hadamard-Mercer inequalities, which is a new version
of the Hermite-Hadamard inequalities for harmonically convex functions. We also prove Hermite—
Hadamard-Mercer-type inequalities for functions whose first derivatives in absolute value are
harmonically convex. Finally, we discuss how special means can be used to address newly discovered
inequalities.
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1. Introduction

In the literature, the well-known Jensen inequality [1] states that if f is a convex
function on an interval and contains x1, X, . .., X, then:

f Z;ijj SZiAjf(xj), 1
j= j=

n
where)\j >0,j=0,1,...,nand ) A =1
j=1
In the theory of convex functions, the Hermite-Hadamard inequality is very important.
It was independently discovered by C. Hermite and J. Hadamard (see also [2,3] (p. 137)):

f<Kl —;K2> = K2 i K1 /1:2 f(X)dx = f(Kl) _;f(KZ)’ (2)

where f : I — R is a convex function over I, and «1,x, € I, with ¥; < k. In the case of
concave mappings, the above inequality is satisfied in reverse order.

The following variant of the Jensen inequality, known as the Jensen—-Mercer, was
demonstrated by Mercer [4]:

Theorem 1. If f is a convex function on [a,b], then the following inequality is true:

n
f ﬂ+b—;/\jx]'
=

< f(a) + f(b) — i/\jf(xj)r 3
L
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n
where Y Aj =1, x; € [a,b]and A; € [0,1].
j=1

In [5], the idea of the Jensen-Mercer inequality was used by Kian and Moslehian, and
the following Hermite-Hadamard—-Mercer inequality was demonstrated:

flarn-"5Y) < s+ o) -2 [ foae @
< s+ o) - £( 1Y)
f(KH-Kz—x;y) < yix/xyf(Kl-l-Kz—T)dT
< f(K1+K2—x)72Lf(K1+K2—y) 5)
£+ £()

< f(K1)+f(K2)—72 ,

where f is a convex function on [k, k;]. For some recent studies linked to the Jensen-Mercer
inequality, one can consult [6,7].

2. Harmonic Convexity and Related Inequalities

In this section, we will study the concepts of harmonically convex functions and the
integral inequalities associated with them.

Definition 1. A mapping suchas f : I C R\{0} — R [8] is called harmonically convex if the
following inequality holds for all x,y € I and T € [0,1] :

f(T +11T> <Tf(y) + (1 =1)f (). (6)
y T x

When the inequality (6) is reversed, f is described as harmonically concave.

Dragomir recently proved the following Jensen-type inequality for harmonically
convex functions:

Theorem 2 (Jensen inequality). If f is a harmonically convex function on an interval containing
X1,X2,...,Xn, then the following inequality is true [9]:

f

< }"jlmxi), @)

i1t
n

where Aj > 0,j=0,1,...,nand }, Aj =1
=1

In [8], Iscan established the Hermite-Hadamard type of inequalities for harmonically
convex functions as follows:

Theorem 3. For a harmonically convex mapping f : I C R\{0} — R with 1,k € I and
K1 < ko, the following inequality holds:

f< 2K1%2 > < _fak (" f(x)dx < f(x1) +f(’<2). ®)

K1+%x2) = Kko—k1 Sy X2 2
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Furthermore, to find right-hand-side estimates of inequality (8), Iscan proved the
following lemma:

Lemma 1. For a differentiable mapping f : I C R\{0} — R on I° with k1, € I and k1 < k3,
the following equality holds:

2 Ko — K1 Jig X2

_ KaKkp(kp — K1) /1 1-27 f’( K1K2 )dT
2 0 (Tky+ (1 —7)K1)*" \Th2 + (1 = T)x1

For the estimates of the right-hand side of the inequality (8), one can consult [8].
The Jensen—Mercer inequality is a new variant of Jensen’s inequality (7) for harmoni-
cally convex functions, as proved by Baloch:

f(k) +f(Kk2) k%2 f(x) 9

Theorem 4 (Jensen-Mercer inequality). For harmonically convex functions on [a, b], the follow-
ing inequality is true [10]:

! < fla)+ F(B) = Yo Aif (), (10)

n
+ —Z% i=1
i=1""

Q=
=

where i Ai=1,x; € [a,b]and A; € [0,1].
i=1

For some recent inequalities via harmonically convex functions, one can consult [11-15].
The authors used the inequality (10) to prove the following Hermite-Hadamard-
Mercer type of inequalities in [10,16]:

Theorem 5. For a harmonically convex mapping f : I C R\{0} — R with x1,x2 € I and
K1 < ko, the following inequality holds [10]:

f<f<1+1<z12W> Sf(K1)+f(K2)—yxfyx/j%drgf(m)—kf(xz)_f( 2xy ) (1)

K1K2 x+y . +y
for x,y € [K1,K2].

Theorem 6. For a harmonically convex mapping f : I C R\{0} — R with 1,k € I and
K1 < ko, the following inequality holds:

fl—=>t xy /wf%?xwf(r)dr )
mf%(m) = y—x)_mw 2

K1K2 xy Ky+K1y—K1K

< fl) + f(k2) — f 1) quf(y)

A

for x,y € [x1, 2]

Inspired by these ongoing studies, we will then establish modified versions of inequal-
ities (11) and (12) for harmonically convex functions because we discovered some flaws in
the proof of inequality (11). We will also prove some new Hermite—-Hadamard-Mercer-type
inequalities for differentiable harmonically convex functions.
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3. Main Results
For harmonically convex functions and differentiable harmonically convex functions,
we will prove Hermite-Hadamard-Mercer-type inequalities in this section.

Theorem 7. For a harmonically convex mapping f : I C R\{0} — R with «1,x, € I and
K1 < ko, the following inequality holds:

K1K2X
f 1 Xy Ko XK X—K1 K f(T) dt (13)
mmfl(m) - y—x)_rmv 12
K1K2 2\ xy Ky+Ky—K1K
KKy K1KpX
f<sz+K1y*K1K2) +f(K2X+K1x*K1Kz>
- 2

< fla) + fl) - LTI®

A

forx,y € [k, K2].

Proof. Since the given mapping f is harmonically convex, we have

1 1 1 1
i) i) ()l o

K1K2 X1Y1

By setting

and
1 1 1 1 1 1 1 1 1
—F———=(1-7) ==+t =+ ===
K1 Ko ]/1 K1 Ko X K1 Ko y
inequality (14) becomes
1 1 1
(i) = 4 ) o
+ 1(x+ 2 141 _ 1 1,1 _1
e -3 (s 1) ra-o(E+E-7)
1
+f .
(<1—T>(é+é—i)+f(é+é—§))]
Integrating inequality (15) with respect to T over an interval [0, 1], we have
1 1] ! 1
+ 1(x+ 2 1,1 1 1.1 _ 1
e -5 (5) C\e(Frg ) ra-o(E g )
1f 1 p
—i—/ T|.
0 (1—7)(,}—1+Ki2—%)+r(,}—1+%2—§)

Thus, we obtain the first inequality of (13) because each integral on the right side of (16)

Klex
is equal to yxfyx "2"};‘,12"; 1 %dt To prove the second inequality in (13) through the
Kpy+K1y—K1K

harmonic convexity function of f, we have the following:
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1
f( ) (17)
Gk i) oo
K1K2Yy K1K2X

< _
- Tf<K2y+K1y—K1K2> +( T)f<K2x+K1X—K1K2>

and

1
f((l—r)(,}lJr,}z_;)JrT(KllJr;}z_}C)) (18)

k1KoY K1KpX
_ B )
S T>f(K2y+K1y—K1K2> +Tf<K2x+le_K1K2>

By adding (17) and (18) and using inequality (10), we have

1
f(r(,}l+,}z—;)+(1—r)(,31+,32—}c)) (19)
+f( 1 )
-0k —3) (i i)

Frmmar ) () <ol + f(ea)] - ) + )

Koy + K1Y — K1K2 KoX + K1X — K1Kp

Integrating inequality (19) with respect to T over an interval [0, 1], we have

! 1
'Of(f(é+éi)+<1r)(é+éi))dT =
! 1
+/0 f((l_T)<"11+’<12_;)+T(K11+K12—}C>>d7

f<441@QL47>+f<445§§;——)SZU@ﬂ+f&ﬁ%ﬁﬂﬂ+f@H

KoY + K1Y — K1K2 KoX + K1 X — K1Kp

Hence, we obtain the last inequality of (13). O

Remark 1. In Theorem 7, if we set x = x1 and y = k3, then inequality (13) is reduced to
inequality (8).

The simple lemma below is needed to discover some new Hermite-Hadamard-Mercer-
type inequalities for functions whose first derivatives are harmonically convex.

Lemma 2. For a differentiable mapping f : I C R\{0} — R on I° with k1, € I and k1 < k3,
the following equality holds:

Kik2Yy KK X K{KpX
f ( KY+K1Y—K1K ) + f(K2X+K1X—K1K2 ) Xy K2x+x11x—;<1x2 f(T) dt (21)
2 y—x K2y+KK11Ky2*yK1 K2 v

y—x [ 1-21 1
T 2wy /0 (1+1(T_‘_lT))zf,(Kl]_FKlz(;—}—lxr))dT

K1 K2

for x,y € [k, K2
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Proof. Using the basic rules of integration, we have

1 1-21 ! 1 d
by (éﬂz—(;w)) '

_ _xy(1-21) 1 _ 2y 1 1
R (M(;W)) , <1+1(5+T>>‘” 22
_ Xy KKy K1Ko X
- ﬂ[ (sz-&-;{llyz K1K2> +f(xzx+1<113?—;<1;<2)}
(t

2x212 K2¥+K1r K1) f )d
2 f K1ky T
KQY+K1Y—K K2

Thus, we obtain the resultant equality (21) by multiplying the equality (22) with

Remark 2. In Lemma 2, if we put x = x1 and y = «y, then equality (21) becomes equality (9).

Now, for the sake of brevity, we shall use the following notations:

L:l—i-i—landM:l—i-l—l.
K1 Ko X K1 K2 Y

Theorem 8. The conditions of Lemma 2 are assumed to be true. The following inequality holds if
the mapping | f'|", g > 1 is harmonically convex on I:

K1K2lY K1KoX k1 KpX
f(sz—i-Kly—Kle) +f(K2x+K1x—K1K2) . Xy Ko XK1 X—K %) f( )dT

i (23)
2 y—x K2y+’<11y2*y’<1’<2 v
y—x,1-3 q q q 7]\
< G (el + 1] - [l ol + Al )
where
1 2 (L4 M)?
A1(L = — — |
1(L, M) LM~ (L— M) n( ALM )
1 3L+ M (L4 M)?
Ao (L = - |
2(L, M) MM—-1) ' (M—L) “( ALM
and
A3(L/ M) =N (L/ M) - AZ(L/ M)
Proof. We can deduce from Lemma 2 and the power mean inequality that:
K1K2Yy KiKpX K1k X
f(;czyﬂlyﬂqxz) +f<;<2x+1<119?71<11<2) _xy et f(1) it (24)

2 y—x k1KY T2

kYR y—K Ky

y—x/1 1-21 1
2xy Jo (L+i7(§+%))z f/(gle,}z—(;erT))dT

X1 K2

141

K1 Ko

—xf o 1-2
=\ o
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/1 1-21
R+ -GrE)

k1K

By inequality (10), we have the following;:

K1K2Y K1K2X K1KpX
f<K2y+K]y*K]K2) +f(K2x+K]x7K]K2) _ Xy ¥R YK f<T) ks

_ k1KoY 2
2 y X Koy+K Yy =K1K T

1
1q

< y—x /1 1-2t 5 |dT /1 Lo 2
=0 (b [ () J(E k- (5+15)
1

< [F I+ ) = 7lf o) - = Dlf ()] ar)’

_1
xl,,

= yz;y e <A1{|f’(1€1)|q+ |f/(K2)|ﬂ _ {A2|f/(y)|q+/\3|f’(x)|qD%_

It is simple to verify this:
/1 |1 — 27| it — /1 |1 — 27| it
2 2
0 (1,1 _ (t,1-1 0 (tM+(1—-71)L
(R+2-(z+59)) ( (1-1)L)
2 (L4 M)?
LM (L— Mm)? aLM )’

/1 7|1 — 27| ir — /1 7|1 — 27| v
2 - 2
0 1 1 1— 0 M 1—1)L
(Kl + K2 <§ + xT)) (T +( T) )

B 1 3L+ M (L4 M)?
- _M(M—L)+(M_L)3n ALM

and

L1

3 K2

/1 (1—1)]1—21| it
2=

_ /1 |1 — 21| _/1 7|1 — 27
0 (tM+ (1—1)L)? 0 (TM+ (1—1)L)?
1 2, (L+M)? 1 3L+M (L4 M)*
T OIM (L—mP T\ 4M ) _M(M—L)+(M_L)3 " Tam '

O

Remark 3. In Theorem 8, if we set x = k1 and y = xp, then Theorem 8 becomes ([8], Theorem 2.6).

Theorem 9. The conditions of Lemma 2 are assumed to be true. The following inequality holds if
the mapping | f'|", g > 1 is harmonically convex on I:

K1K2y K1K2x KlKZ?C
f<K2y+K1y—K1K2)+f(K2X+K1x—K1K2) _ Xy [ RoxFRI—K Ky f(T)d
2 yox ) mmy Al
Koy FK1Y—K1K) (25)

< () (@l )l +1f (k)] — [l ()7 + Tl /() ])
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where
1-2q _ 11-2q
m, - M L /
(29 -1)(L-M)
- L2720 + MI=2[(M — L)(1 —2q) — L]
2 pu—
2(M = L)*(1 - q)(1 - 29)
and
I = MEH LM - L) (1-29) + M]
2= .

2(M—L)*(1—¢)(1-29)

Proof. We can deduce from Lemma 2 and Holder’s inequality that:

K1K2Y K1KpX
‘f(sz—‘f-Kly—Kle) +f(K2x+K11)?—K1K2) oy Ry f(7) it (26)

2 — X k1KY T2
y Koy +K1y—K K2

, 1
()

y—x/l 1-27
T Gy

1

— 1 f

Y x(/ |1—27|pd7)p
2xy \Jo

b G

KK

By inequality (10), we have the following;:

1KY K1KoX K1KpX
‘f(;{zy—i-fcly—xlkz) + f(K2x+K1x—K1K2) Xy Ko XK1 X—KKp f(‘L') dt

2 S y—x) v g2
y Koy +K1y—K K

yz_x</l|1—2T”dT); /1 1 .
v e G

K1 K2

==

< [|f )|+ |f )| = 7| )] = (1= 1) f'(x)|7] )

1

e (@)p(m[!f’oq)\u F6)l"] - [l @)l + 1))

It is simple to verify this:

/1 1 P M0 — L1729
et T gD —M)
0 1 1 T 1-t q
F+es-(G+5))
/1 7|1 — 27| jr — L2727 + M'=24[(M — L)(1 —2q) — L]
2q o 2
0 (1.1 1- 2IM—-L)*(1—¢)(1-2
(ﬂ_‘_ﬁ_(%—i_%)) ( )( q)( 5])

and

/1 (1—1)|1 - 21| Jr— M2729 + LI=29[(M — L)(1 —2q) +M]
0 <l+l_(1+ﬁ>)2q 2(M—L)*(1 - ¢)(1-29)
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O

Remark 4. In Theorem 9, if we choose x = x1 and y = ky, then Theorem 9 is reduced to ([8],
Theorem 2.7).
4. Application to Special Means
For arbitrary positive numbers k1, k (k1 # k2), we consider the means as follows:
1.  The arithmetic mean

A= Alxy, 1) = Kt K2,

2. The geometric mean

3. The harmonic mean

_ 2K1K2
H = ’H(Kl,Kz) = 1 +K2

4.  The logarithmic mean
Ezﬁ(K1,K2) = a7k

~Inky —Ink;’

5. The generalized logarithmic mean

4

Kp+1 _prl
, p € R\{-1,0};

Ly = LP(KLKZ) = [(Kzz—iq)(’;}—l—l)

6. The identric mean

1
1k |2
I =1I(x1,%2) = €<K"1) i #E K2 e > 0,
K1, if K1 = Ko,

These means are often employed in numerical approximations and other fields. How-
ever, the following straightforward relationship has been stated in the literature:

H<SGLK<LLI<A

Proposition 1. For k1, € (0, c0), the following inequality is true:

1 1
<
2H (i, 00) —H Uz y) — ! -
L((Fra-b) (F+a-3)
-1 -1
. A<<1+1_1) ,(1+1_1> )
K1 K2 Y K1 K2 X
< 2A(K1,10) — A(x,y).

Proof. Inequality (13) in Theorem 7 for the mapping f : (0,00) — R, f(x) = x leads to this
conclusion. [

Proposition 2. For k1, € (0,00), the following inequality is true:

1 < ¢%1+1_{1+1_w
(2H 1 (x1,10) — H (%, y))




Mathematics 2021, 9, 2556

10 of 11

References

IN
™~
RS
A~

| —
| =
|

| =
~_
b
A~
e
+
51~
|
| =
~__

S
N———

K1 K2 Y
2A(K%,K%> - A(xz,y2>.

Proof. Inequality (13) in Theorem 7 for the mapping f : (0,00) — R, f(x) = x* leads to
this conclusion. [

IN

Proposition 3. For x1,%; € (0,00) and p € (—1,00)\{0}, the following inequality is true:
<<1 1 1)1 (1 1 1)1)
ll=+=-=) (=+=-=
K1 K2 Y K1 Ky X
1 1 1\ (P2 /4 1 1\ (2
K1 K2 Y Kl K2 X

2A (Kfﬂ, K§+2) - A (x”*z,yPH) )

1
(2H (K1, K0) — H—l(x,y))p+2

IN
y
=

IN

IN

Proof. Inequality (13) in Theorem 7 for the mapping f : (0,00) — R, f(x) = xP*2 leads to
this conclusion. [

5. Conclusions

In this paper, we proved some new Hermite-Hadamard-Mercer inequalities for
harmonically convex functions and differentiable harmonically convex functions. It was
also demonstrated that the results of this paper generalize the findings of Isgan in [8]. It
is an interesting and challenging problem, and researchers may be able to obtain similar
inequalities for various fractional operators in their future work.
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