
mathematics

Article

Compression of Neural Networks for Specialized Tasks via
Value Locality

Freddy Gabbay 1,* and Gil Shomron 2

����������
�������

Citation: Gabbay, F.; Shomron, G.

Compression of Neural Networks for

Specialized Tasks via Value Locality.

Mathematics 2021, 9, 2612. https://

doi.org/10.3390/math9202612

Academic Editor: Oliviu Matei

Received: 30 September 2021

Accepted: 15 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Ruppin Academic Center, Emek Hefer 4025000, Israel
2 Faculty of Electrical and Computer Engineering, The Technion—Israel Institute of Technology,

Haifa 3200000, Israel; gilsho@campus.technion.ac.il
* Correspondence: freddyg@ruppin.ac.il

Abstract: Convolutional Neural Networks (CNNs) are broadly used in numerous applications such
as computer vision and image classification. Although CNN models deliver state-of-the-art accuracy,
they require heavy computational resources that are not always affordable or available on every
platform. Limited performance, system cost, and energy consumption, such as in edge devices, argue
for the optimization of computations in neural networks. Toward this end, we propose herein the
value-locality-based compression (VELCRO) algorithm for neural networks. VELCRO is a method to
compress general-purpose neural networks that are deployed for a small subset of focused specialized
tasks. Although this study focuses on CNNs, VELCRO can be used to compress any deep neural
network. VELCRO relies on the property of value locality, which suggests that activation functions
exhibit values in proximity through the inference process when the network is used for specialized
tasks. VELCRO consists of two stages: a preprocessing stage that identifies output elements of the
activation function with a high degree of value locality, and a compression stage that replaces these
elements with their corresponding average arithmetic values. As a result, VELCRO not only saves
the computation of the replaced activations but also avoids processing their corresponding output
feature map elements. Unlike common neural network compression algorithms, which require
computationally intensive training processes, VELCRO introduces significantly fewer computational
requirements. An analysis of our experiments indicates that, when CNNs are used for specialized
tasks, they introduce a high degree of value locality relative to the general-purpose case. In addition,
the experimental results show that without any training process, VELCRO produces a compression-
saving ratio in the range 13.5–30.0% with no degradation in accuracy. Finally, the experimental
results indicate that, when VELCRO is used with a relatively low compression target, it significantly
improves the accuracy by 2–20% for specialized CNN tasks.

Keywords: machine learning; deep neural networks; convolutional neural network; deep compression

1. Introduction

Convolutional Neural Networks (CNNs) are broadly employed by numerous com-
puter vision applications such as autonomous systems, healthcare, retail, and security. Over
time, the processing requirements and complexity of CNN models have significantly in-
creased. For example, AlexNet [1], which was introduced in 2012, has eight layers, whereas
ResNet-101 [2], which was released in 2015, uses 101 layers and requires an approximately
sevenfold-greater computational throughput [3]. The increasing model complexity in con-
junction with large datasets used for model training has endowed CNNs with phenomenal
performance for various computer vision tasks [4]. Typically, large complex networks
can further extend their capacity to learn complex image features and properties. The
growing model size of CNNs and the requirement of significant processing power have
become major deployment challenges for migrating CNN models into mobile, Internet of
Things, and edge applications. Such applications incur limited computational and memory

Mathematics 2021, 9, 2612. https://doi.org/10.3390/math9202612 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6549-7957
https://doi.org/10.3390/math9202612
https://doi.org/10.3390/math9202612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202612
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202612?type=check_update&version=2

Mathematics 2021, 9, 2612 2 of 34

resources, energy constraints, and system cost and, in many cases, cannot rely on cloud
computational resources due to privacy, online communication network availability, and
real-time considerations.

The compression of CNN models without excessive performance loss significantly
facilitates their deployment by a variety of edge systems. Such compression has the poten-
tial to reduce computational requirements, save energy, reduce memory bandwidth and
storage requirements, and shorten inference time. Various techniques have been suggested
to compress CNN models, one of the most common of which is pruning [5–7], which
exploits the tendency to over-parameterize CNNs [8]. Pruning trades off degradation in
model prediction accuracy for model size by removing weights, Output Feature Maps
(OFMs), or filters that make minor or no contribution to the inference of a network. Quan-
tization [9–12] is another common technique that attempts to further compress network
size by reducing the number of bits used to represent weights, filters, and OFMs with
only a minor impact on accuracy. These methods and other compression approaches are
discussed in more detail in Section 2.

This paper focuses on machine learning models that are used for specialized tasks. A
specialized neural network is typically a general-purpose model which has been adjusted
and optimized to carry out a set of specific tasks. Specialized neural networks have re-
cently become common not only for edge devices but also for datacenters [13–15]. Unlike
general-purpose neural networks that are used for a diverse range of classification tasks,
specialized neural networks are used for a small number of specific classification tasks. For
example, a CNN model that is used to detect vehicles does not use its animal classification
capabilities. A common usage of specialized CNN is as a fast filter in front of a heavy
general-purpose CNN model. A typical example to such usage is related to offline video
analytics [14], which is processed by a specialized CNN model, and only when the model
has a low level of confidence are the corresponding frames sent to a general-purpose CNN.
Another example is related to game scrapping, where specialized CNNs are used to classify
video stream events in by scraping in-game text appearing in frames. A cascaded-CNN [16]
is another approach that employs multiple specialized CNNs. The result of each special-
ized CNN is combined to produce a complete prediction map. The mixture-of-experts
model [17] employs a combination of expert models, where each expert is a neural network
specialized in specific tasks. Hierarchical classification is another example for specialized
CNN usage. Since image categories are typically organized in hierarchical manner, hierar-
chical classification can be employed by performing a prediction starting from a super class
and can only perform detailed classification within the super class. We introduce in this
study the value-locality-based compression (VELCRO) algorithm. VELCRO is a method
to compress deep neural networks that were originally trained for a large set of diverse
classification tasks but are deployed for a smaller subset of specialized tasks. Although
this work focuses on CNN models, VELCRO can be used to compress any deep neural
network. The main principle of VELCRO is based on the property of value locality, which
we introduce herein in the context of neural networks. This property suggests that, when
the network is used for specialized tasks, a proximal range of values are produced by the
activation functions in the inference process. VELCRO consists of two stages: a prepro-
cessing stage, which identifies activation-function output elements with a high degree of
value locality, and a compression stage, which replaces these activation elements with their
corresponding arithmetic averages. As a result, VELCRO avoids not only the computation
of these activation elements but also the convolution computation of their corresponding
OFM elements. VELCRO also requires significantly fewer computational resources than
common pruning techniques due to the avoidance of back propagation training. For our
experimental analysis we use three CNN models: ResNet-18 [2], MobileNet V2 [18], and
GoogLeNet [19] with the ILSVRC-2012 (ImageNet) [20] dataset to examine compression
capabilities and model accuracy. Lastly, we implement VELCRO in hardware on a Field
Programable Gate-Array (FPGA) and demonstrate the computational and energy savings.

The contributions of this paper are summarized as follows:

Mathematics 2021, 9, 2612 3 of 34

1. We introduce the notion of value locality in the context of deep neural networks used
for specialized tasks.

2. We present the VELCRO algorithm, which exploits value locality to compress neural
networks that are deployed for specialized tasks.

3. VELCRO introduces a fast compression process which solely employs statistics gath-
ering through the inference process and avoids heavy computations involved in back-
propagation training, which is usually used by traditional compression approaches
such as pruning.

4. VELCRO can be used directly in conjunction with other compression methods such
as pruning and quantization.

5. The results of our experiments indicate that

a. VELCRO produces a compression-saving ratio of computations in the range
20.0–27.7% for ResNet-18, 25–30% for GoogLeNet, and 13.5–20% for MobileNet
V2 with no impact on model accuracy;

b. VELCRO significantly improves accuracy by 2–20% for specialized-task CNNs
when given a relatively small compression-savings target.

6. We demonstrate the computational and energy savings of VELCRO by implementing
the compression algorithm in hardware on FPGA. Our experimental results indicate
a 13.5–30% reduction in energy consumption with VELCRO, which corresponds to
the compression-saving ratio.

The remainder of this paper is organized as follows: Section 2 reviews previous
work. Section 3 introduces the proposed method and algorithm. Section 4 presents the
experimental results. Finally, Section 5 summarizes the conclusions and suggests future
research directions.

2. Prior Works

Numerous recent studies have proposed various techniques to optimize CNN com-
putations, reduce redundancy, and improve computational efficiency and memory storage.
This section describes the following related methods: pruning, quantization, knowledge
distillation, deep compression, CNN folding, ablation and CNN filters compression methods.

Pruning is one of the most common methods used for CNN optimization and was
introduced in Refs. [5–7]. The concept of pruning, which is inspired by neuroscience,
assumes that some network parameters are redundant and may not contribute to network
performance. Various pruning techniques [5,21–25] suggest the removal of activations,
weights, OFMs, or filters that make a minor or no contribution to the inference process of an
already-trained network. Thereby, pruning can significantly reduce the network size and
the number of computations. Traditional pruning techniques typically require fine-tuned
training on the full model, which may involve significant computational overhead [26].

Pruning techniques can be classified into unstructured and structured classes. Un-
structured pruning imposes no constraints on the activations or weights with respect to the
network structure (i.e., individual weights or activations are removed by replacing them
with zero). Structured pruning [27], in contrast, restricts the pruning process to a set of
weights, channels, filters, or activations. Whereas structured pruning incurs limitations on
the sparsity that can be exploited in the network due to its coarse pruning granularity, un-
structured pruning uses a broader scope of the available sparsity. Conversely, unstructured
pruning may involve additional overhead for representing the pruned elements and may
not always fit parallel processing elements such as GPUs.

The process of pruning is typically performed by ranking the network elements
in accordance with their contribution. The rank can be determined by using various
functions such as the L1 or L2 norms [28–31] of weights, activations, or other metrics [32].
Activation pruning requires dynamic mechanisms to monitor activation values because
activation importance may depend on the model input. For example, Ref. [33] employs
reinforcement learning to prune channels, and Refs. [34,35] leverage spatial correlations of
CNN OFMs to predict and prune zero-value activations. Further pruning techniques based

Mathematics 2021, 9, 2612 4 of 34

on weight magnitudes were recently introduced in Refs. [21,36,37], which demonstrate
that computation efficiency and network scale can be improved significantly. Various
gradual pruning approaches [38], given memory footprints and computational bounds,
were studied by examining the accuracy and size tradeoffs. The neuron importance score
propagation, introduced by Ref. [39], suggests jointly pruning neurons based on a unified
goal. Other approaches such as random neuron pruning and random grouping of weight
connections into hash buckets were introduced in Refs. [40,41]. Pruning based on a Taylor-
expansion criterion [42] focuses on transfer learning by optimizing a network trained to a
large dataset of images into a smaller and more efficient network specialized in a subset of
classes. Their pruning method performs an iterative backpropagation pruning by removing
feature maps with the least level of importance. Ref. [42] evaluated their pruning method
by using various criteria such as weight pruning, using l2 norm, and activation pruning,
using mean, variance, mutual information, and Taylor-expansion criteria. Their results
indicate that the importance of OFMs decreases with layer depth and that each layer has
feature maps with both high and low degrees of importance. Ref. [43] introduced pruning
by compression using residual connections and limited data (CURL) for residual CNN
compression when relying on small datasets that represent specialized tasks.

Quantization methods attempt to reduce the number of bits used to represent the
values of weights, filters, and OFMs from 32-bit floating point to 8 bit or less with a slight
degradation in model accuracy while simplifying computational complexity. Employing
quantization methods that use fewer than 8 bits, however, is not trivial because quan-
tization noise excessively degrades model accuracy. Quantization-aware training uses
training processes for quantization to reduce quantization noise and recover model ac-
curacy [44–46]. This approach can be limited when the training process cannot be used
due to lack of dataset availability or lack of computational resources. Various fixed-point
and vector quantization methods, introduced in Refs. [9–12], present tradeoffs between
network accuracy and quantization-compression ratios. A combination of pruning and
quantization was introduced in Ref. [22]. Post-training quantization methods [47–50] avoid
these limitations by searching for the optimal tensor-cutting values to reduce quantization
noise after the network model has been trained.

Knowledge distillation is another machine learning optimization [51,52] that trans-
fers knowledge from a large machine learning model into a smaller compact model that
mimics the original model (instead of being trained on the original dataset) to perform
competitively. These systems consist of three main elements: knowledge, an algorithm
for knowledge distillation, and a teacher–student model. A broad survey of knowledge
distillation is available in Ref. [53].

Deep compression was introduced in Ref. [22] and consists of a three-stage pipeline:
pruning, trained quantization, and Huffman coding, which operate simultaneously to
optimize model size. The first stage prunes the model by learning the important con-
nections, the second stage performs weight quantization and sharing, and the last stage
uses Huffman coding. Ref. [54] extends the deep compression idea and introduces the
once-for-all network, which can be installed under diverse architectural constraints and
configurations, such as performance, power, and cost. The once-for-all approach introduces
the progressive shrinking techniques that generalize pruning. Whereas pruning shrinks
the network width, progressive shrinking operates on four dimensions: image resolution,
kernel size, depth, and width, thereby achieving a higher level of flexibility.

FoldedCNN [15] is another approach to optimize CNNs for specialized-inference tasks.
Unlike compression techniques, FoldedCNN does not aim at compressing the CNN model
but rather attempts to increase the inference throughput and hardware utilization. The
FoldedCNN approach suggests CNN model transformations to increase their arithmetic
intensity when processing a large batch size without increasing processing requirements.

Additional studies have attempted to understand the internal mechanisms of CNNs
and their contribution to classification tasks. From various CNN models, Refs. [55,56]
created visualized images based on the OFMs of different layers and units. Their results

Mathematics 2021, 9, 2612 5 of 34

indicate that OFMs extract features that detect patterns, textures, shapes, concepts, and
various elements related to the classified images. Ablation techniques were used by Ref. [57]
to further quantify the contribution of OFM units to the classification task. Their results
indicate that elements that are selective to certain classes may be excluded from the network
without necessarily impacting the overall model performance. The impact on ablation
of a subset of classes was further studied in Ref. [58], which found that single-OFM-unit
ablation can significantly impact the model accuracy for a subset of classes, leading them
to suggest different methods to measure the importance of internal OFM units to specific
classification accuracy.

CNN filter compression techniques attempt to remove kernel and filters that have
small contribution to the network performance. Removal of specific convolution filters
based on their importance has been introduced in Ref. [59]. The authors suggest considering
two consecutive network layers as a coupled function where the weights are used to
compute the coupling factors. In addition, they suggest using the coupling factors to
prune filter and maximize the variance of feature maps. Another study on convolution
filters compression [60] has highlighted that certain feature maps inside and across CNN
layers may have a different contribution to the accuracy of the inference process. The
authors indicate that, first model layers typically extract semantic features while the deep
layers may extract simple features. Thereby, understanding the importance of feature
map can help the compression of the network. They investigate the relationship between
input feature map and filter kernels and suggest Kernel Sparsity and Entropy (KSE) as a
quantitative indicator for the feature map importance.

These recent studies [55–60] provide the motivation for the present study by suggesting
that, when using the CNN model for specialized tasks, we eliminate unrelated computations
and thereby compress the model, all with minimal impact on classification accuracy.

3. Method and Algorithm

Our proposed VELCRO compression algorithm relies on the fundamental property
of value locality. We start our discussion by first presenting qualitative and quantitative
aspects of value locality, following which we describe the VELCRO compression algorithm
for specialized neural networks.

3.1. Value Locality of Specialized Convolutional Neural Networks

The principle of the method proposed to compress specialized CNNs is based on the
property of value locality. Value locality suggests that, when a CNN model runs specialized
tasks, the output values of the activation tensor is in proximity through inference of images.
The rationale behind this theory relies on the assumption that the inferred images, which
already have a certain level of similarity, exhibit common features such as patterns, textures,
shapes, and concepts. As a result, the intermediate layers of the model produce similar
values in the vicinity. Figure 1 explains the property of value locality by illustrating the
activation-function output tensors in each convolution layer k and channel c. In this
example, the set of elements A(m)[k][c][i][j] for images m = 0, 1, . . . , N − 1 in the activation
tensor is populated with values in proximity through the inference between images.

For every convolution layer k, we define a variance tensor V[k], where each element
V[k][c][i][j] in the variance tensor is defined as

V[k][c][i][j] = Var(A[k][c][i][j]) = E(A[k][c][i][j]2)− E(A[k][c][i][j])2

= 1
N ∑N−1

m=0 A(m)[k][c][i][j]2 − (1
N ∑N−1

m=0 A(m)[k][c][i][j])
2
,

(1)

where c is the channel index and i and j are the element coordinates.
We use the variance tensor as a measure to quantify the proximity of values for every

activation tensor element A[k][c][i][j]. Thereby, a small value of V[k][c][i][j] suggests that
the corresponding activation element has a high degree of value locality. The proposed
compression algorithm leverages such activation elements for compression. Section 4

Mathematics 2021, 9, 2612 6 of 34

presents an experimental analysis of the distribution of the variance tensor for various
specialized CNN models.

Figure 1. Value locality: The elements with coordinates i, j of the activation-function output tensor
in convolutional layer k, channel c, are populated with values in proximity through the inference
between images 0 to N − 1. The variance tensor V serves to measure the degree of value locality.

3.2. VELCRO Algorithm for Specialized Neural Networks

The VELCRO algorithm consists of two stages: preprocessing and compression.

1. Preprocessing stage: In this stage, VELCRO makes an inference by applying the
original CNN model to a small subset of images from the specialized task preprocess-
ing dataset. Note that the performance of the compressed model is evaluated on a
validation dataset which is distinct from the preprocessing dataset. This is discussed
in detail in Section 4. During this stage, the variance tensor is calculated by using
Equation (1) for each activation output in each convolution layer in the CNN model.
Because the preprocessing stage of VELCRO relies only on inference, it involves a
significantly smaller computational overhead with respect to traditional compression
methods, which employ heavy backpropagation training processes that can last from
a few hours up to hundreds of hours [61].

2. Compression stage: The compression stage uses a tuple of threshold values provided
by the user as a hyperparameter for the algorithm. Each threshold element in the
tuple corresponds to an individual activation function in each convolution layer. The
threshold value of each layer represents the percentile of elements in the variance
tensor to be compressed by the algorithm. All elements in the activation tensor with
a variance within the percentile threshold are replaced by the arithmetic average
constant of the elements located in the same corresponding coordinates. All other acti-
vation elements remain unchanged. Replacing activation function output elements by
constants avoids not only the activation function computation but also the particular
convolution computation of their related OFM elements. In fact, the compression
savings of each layer is determined by the corresponding threshold, so the user can
determine the overall compression-saving ratio C for the model through the threshold
tuple as follows:

C = 1− Compressed model computations
Original model computations

=
K−1

∑
k=0

Tkckwkhk (2)

Mathematics 2021, 9, 2612 7 of 34

where the tuple T = {T0, T1, . . . , TK} contains the threshold values for the activation
in each convolution layer. In addition, ck, wk, and hk are the number of channels, the
width, and the height of the activation function output tensor for convolution layer k,
respectively.

The complete and formal definition of the algorithm is given in Algorithm 1.
A simple example that demonstrates the VELCRO algorithm is illustrated in Figure 2,

which shows the activation output tensor in convolution layer k for a preprocessing dataset
of N = 3 images. The dimensions of the activation tensor are ck = 1, wk = 3, and hk = 3. The
VELCRO preprocessing stage performs inference on the preprocessing dataset to create a
variance tensor V[k] and an arithmetic average tensor B[k]. The hyperparameter threshold
value for layer k is defined in this example as Tk = 0.33, which means that the three elements
in the activation function output tensor with the lowest variance (highlighted in red) are
replaced with their arithmetic average. The remaining elements remain unchanged. The
outcome of the VELCRO compression stage is given by the compressed activation-function
output tensor Ã[k], where the computation of three elements (highlighted in green) are
replaced by the arithmetic averages.

Algorithm 1: VELCRO algorithm for specialized neural networks

Input: A CNN model M with K activation-function outputs (each in a different convolution
layer), N preprocessing images, and a threshold tuple T = {T0, T1, . . . , TK}, where
∀ 0 ≤ n < N 0 ≤ Tn < 1.
Output: A compressed CNN Model MC.
Preprocessing stage
Step 1: Let A(k) be the activation-function output tensor in convolution layer k and let A(m)(k) be
the corresponding activation-tensor values at the inference of image m, 0 ≤ m < N, where the
tensors A[k] and A(m)[k] have dimension ck ×wk × hk and ck, wk, and hk are the number of
channels, the width, and the height of the tensor at convolution layer k, respectively.
Step 2: For every 0 ≤ k < K, 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk:
Let tensors S and K be initialized such that S[k][c][i][j] = 0 and Q[k][c][i][j] = 0
Step 3: For each image 0 ≤ m < N:
Perform inference by model M on image m.
For every convolution layer 0 ≤ k < K:
For every 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk,
Let the tensors S and Q be
S[k][c][i][j] = S[k][c][i][j] + A(m)[k][c][i][j]
Q[k][c][i][j] = Q[k][c][i][j] + (A(m)[k][c][i][j])2.
Step 4: Let B[k] be the arithmetic average tensor in convolution layer k such that each tensor
element is
B[k][c][i][j] = 1

N S[k][c][i][j]
For every 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk,
Step 5: Let V[k] be the variance tensor of convolution layer k such that each tensor element is
V[k][c][i][j] = 1

N Q[k][c][i][j]− (B[k][c][i][j])2

For each 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk
Compression stage:
Step 6: For each convolution layer 0 ≤ k < K:
Let p(x,Y) be the percentile function of element x in tensor Y. p returns the percentile value for x
with respect to all elements in tensor Y.
Let the tensor Ã[k] be

Ã[k][c][i][j] =
{

A[k][c][i][j] p(V[k][c][i][j], A[k]) > Tk
B[k][c][i][j] p(V[k][c][i][j], A[k]) ≤ Tk

For each 0 ≤ c < ck, 0 ≤ i < wk, and 0 ≤ j < hk
Step 7: Let the compressed CNN model MC be such that every activation function output tensor
A[k] is replaced with Ã[k] for every convolution layer 0 ≤ k < K.

Mathematics 2021, 9, 2612 8 of 34

Figure 2. Example of VELCRO preprocessing and compression stages.

4. Experimental Results and Discussion

Our experimental study consists of a comprehensive analysis of both value locality
and the performance of various CNN models when used for specialized tasks. In the
following, we first describe the experimental environment and then introduce the value
locality experimental measurements. Next, we discuss the performance of the VELCRO
compression algorithm. Finally, we demonstrate the computational and energy savings of
VELCRO by designing a hardware that implements the compression algorithm on FPGA.

4.1. Experimental Environment

Our experimental environment is based on PyTorch [62], the ILSVRC-2012 dataset
(also known as “ImageNet”) [20,60], and the ResNet-18, MobileNet V2, and GoogLeNet
CNN models [18,19,55] with their PyTorch pretrained models. The VELCRO algorithm,
described in Algorithm 1, has been fully implemented on the PyTorch environment. Table 1
summarizes the specialized tasks used for our experimental analysis. The experiments
examine five groups of specialized tasks: the groups Cats-2, Cats-3, and Cats-4 include

Mathematics 2021, 9, 2612 9 of 34

two, three, and four classes from the ILSVRC-2012 dataset, respectively, and the groups
Dogs and Cars include four classes each. Throughout the experimental analysis, we do
not modify the first layer of the model, which is a common practice that has been used by
numerous studies [46].

Table 1. Specialized tasks summary.

Specialized Tasks ILSVRC-2012 Classes

Cats-2 Egyptian cat
Persian cat

Cats-3
Egyptian cat
Persian cat

Cougar

Cats-4 (Cats)

Egyptian cat
Persian cat

Cougar
Tiger cat

Dogs

English setter
Siberian husky

English springer
Scottish deerhound

Cars

Beach wagon
Cab

Convertible
Minivan

4.2. Experimental Analysis of Value Locality

The distribution of the variance tensor elements in each layer (skipping the first
layer) is a measure to quantify the proximity of the activation-function output. Figure 3
shows the distribution of the variance tensor elements for the selected activation function
outputs in the convolution layers 1, 3, 7, 10, and 14 in ResNet-18. The distribution is shown
for the groups of classes Cats-2, Cats-3, and Cats-4, which include two, three, and four
classes of cats from the dataset, respectively. The group “all” contains a mixture of all
ILSVRC-2012 dataset classes and represents the case when the CNN model is used for
general tasks. When the CNN model is used for specialized tasks (Cats-1, -2, and -3),
the distribution of the variance tensor elements clearly shifts toward zero with respect to
the distribution when the model is used for general tasks (all), which indicates that the
CNN model produces values of closer proximity (i.e., a higher degree of value locality)
for specialized tasks. Another important outcome made apparent in Figure 3 is that the
three groups of specialized tasks behave similarly regardless of the number of classes. The
distribution of variance tensor elements in all ReseNet-18 layers is presented in Figure A1
(Appendix A) and behaves similarly to the distribution presented herein.

Figure 4 illustrates the same experimental analysis but for the GoogLeNet CNN model
for selected layers 1, 6, 12, 21, 32, 38, 47, 51, and 56. The variance tensor elements of
GoogLeNet behave very similarly to those of ResNet-18. When the model is used for
specialized tasks, the variance distribution shifts left with respect to the general-purpose
use, indicating a higher degree of value locality. The distribution in all GoogLeNet layers
is presented in Figure A2 (Appendix A).

Mathematics 2021, 9, 2612 10 of 34

Figure 3. Distribution of ResNet-18 variance tensor elements in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: all
ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figure 4. Distribution of GoogLeNet variance tensor elements in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized
tasks: all ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figure 5 presents a similar experimental analysis for MobileNet V2 layers 1, 6, 12, 19,
28, 30, and 35, and the distribution in all MobileNet V2 layers is presented in Figure A3
(Appendix A). The results indicate that a lower degree of value locality occurs relative to
ResNet-18 and GoogLeNet when MobileNet V2 is used for specialized tasks. The results
indicate that the shift of the variance tensor elements distribution is smaller with respect
to the other CNN models. These observations reflect the highly compact nature of the

Mathematics 2021, 9, 2612 11 of 34

MobileNet V2 network with respect to ResNet-18 and GoogLeNet, which results in a lower
potential for leveraging value locality for the former.

Figure 5. Distribution of MobileNet-V2 variance tensor elements in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks: all
ImageNet classes, Cats-2, Cats-3, and Cats-4.

Figures 6–8 extend our experimental analysis for additional groups of specialized
tasks, Dog and Cars, each of which includes four classes from the ILSVRC-2012 dataset.
Note that the Cats group corresponds to the group Cats-4. The results further confirm
those shown in Figures 3–5. In all the examined CNN models and in the majority of
activation-function outputs in all convolution layers, the distribution of variance tensor
elements for the specialized tasks clearly shifts toward zero relative to the distribution
when the model is used for general tasks (all). Like the results presented in Figure 5, we
also observe that MobileNet V2 can leverage value locality but in a smaller magnitude with
respect to ResNet-18 and GoogLeNet.

These experimental results support our expectations that CNN models that are used
for specialized tasks exhibit a high degree of value locality. Figures A4–A6 (Appendix A)
show the experimental results for all layers of all models. The complete experimental
results for all layers behave similarly to the distribution presented in Figures 6–8.

Mathematics 2021, 9, 2612 12 of 34

Figure 6. Distribution of ResNet-18 variance tensor elements in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: Cats, Dogs,
Cars, and all ImageNet classes.

Figure 7. Distribution of GoogLeNet variance tensor elements in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized
tasks: Cats, Dogs, Cars, and all ImageNet classes.

Mathematics 2021, 9, 2612 13 of 34

Figure 8. Distribution of MobileNet V2 variance tensor elements in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks:
Cats, Dogs, Cars, and all ImageNet classes.

4.3. Performance of Compression Algorithm

As part of our experimental analysis, we examine the compression-saving ratio of the
VELCRO algorithm on three groups of specialized tasks: cats, cars, and dogs (see Table 1).
Only a very small subset (<2%) of images from the preprocessing dataset has been used
for the preprocessing stage of the algorithm, while the remaining images have used for
the validation of the compressed model. This approach is essential in order to perform an
unbiased evaluation of the model performance and preserved the generalization property
of the model. Figure 9a–c present the top-1 prediction accuracy versus the compression-
saving ratio for cars, dogs, and cats, respectively. The experimental analysis is applied to
the ResNet-18, GoogLeNet, and MobileNet V2 CNN models. For each compression-saving
ratio, we examine different thresholds by running trial-and-error and choose those that
produce the highest top-1 accuracy. Tables A1–A3 in Appendix B summarize the tuples
of threshold values. Table 2 summarizes the maximum compression-saving ratio for each
group of specialized tasks and each CNN model that produces the same accuracy as the
original uncompressed model.

The experimental results indicate that VELCRO produces a compression-saving ratio
of 20.00–27.73% in ResNet-18 and 25.46–30.00% in GoogLeNet. The higher compression-
saving ratio in GoogLeNet is attributed to the fact that GoogLeNet uses significantly a
greater number of parameters and thereby has higher potential to leverage value locality.
This explains why GoogLeNet better leverages value locality when the network is employed
for special tasks. Conversely, MobileNet V2 produces a smaller compression-saving ratio,
13.50–19.76%, for the specialized tasks examined. These results comply with our previous
measurements of the distribution of the variance tensor elements, which imply that the
potential of leveraging value locality in MobileNet V2 is smaller than that of the other
CNNs examined. This is explained by the fact that MobileNet V2 is much more compact
than the other CNNs examined and thereby has a lower potential to leverage value locality.

Mathematics 2021, 9, 2612 14 of 34

Figure 9. Accuracy for ResNet-18, GoogLeNet, and MobileNet V2 versus compression-saving ratio
for specialized tasks: (a) Cars, (b) Dogs, and (c) Cats.

Mathematics 2021, 9, 2612 15 of 34

Table 2. Maximum compression-saving ratio achieved while maintaining the accuracy of the original
uncompressed CNN model.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 27.73% 30.00% 13.50%
Dogs 27.70% 25.46% 19.76%
Cars 20.00% 27.70% 16.80%

Note that VELCRO does not aim to compress the network memory footprint but rather
to reduce the computational requirements. Therefore, any comparison of VELCRO to prun-
ing approaches should consider computation aspects rather than the number of parameters
in the network. Table 3 compares the VELCRO algorithm with other pruning approaches
for both specialized CNNs and general-purpose ones. Although VELCRO achieves smaller
computation savings, it requires significantly fewer computational resources than common
pruning techniques [61] due to the avoidance of back propagation training.

Table 3. Comparison summary of VELCRO with respect to punning techniques. We also examine the output of the
activation functions compressed by VELCRO.

Compression Method Network Specialized
Task

Training
Required

Computation
Acceleration Accuracy Loss

Taylor criterion [42] AlexNet Yes Yes 1.9X 0.3%

CURL [43] MobileNet V2
ResNet-50

Yes
Yes

Yes
Yes

3X
4X

Up to 4%
Up to 2%

Deep compression [22] Various CNN
models No Yes 3X None

Weights and connection
learning [21] AlexNet No Yes 3X None

KSE [59] ResNet-50 No Yes 3.8–4.7X 0.84–0.64%

VELCRO
ResNet-18

GoogLeNet
MobileNet V2

Yes No
1.25–1.38X
1.38–1.42X
1.15–1.24X

None
None
None

Table 4 presents the percent compression of activation elements with zero value
out of all the compressed activation elements. The results in Table 3 correspond to the
compression-saving ratios in Table 2 (i.e., when the network achieves maximum compres-
sion without losing accuracy). With ResNet-18 and GoogLeNet, the fraction of compressed
zero values is in the range 0.08–0.31% and 0.56–0.64%, respectively. In contrast, MobileNet
V2 produces a significantly larger fraction of compressed zero values: 10.48–14.91%, which
is attributed to the fact that MobileNet V2 is a much more compact model than the other
CNNs. These results indicate that VELCRO offers an extended level of compression with
respect to pruning, which aims to remove weak connections of zero values.

Table 4. Compressed activation elements with zero value as a percent of all compressed activation
elements.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 0.08% 0.56% 14.91%
Dogs 0.20% 0.63% 10.48%
Cars 0.31% 0.64% 12.00%

Another important result gained from Figure 9a–c is that, when VELCRO is used with
a relatively moderate compression ratio, it produces a significant increase in accuracy. The
results are presented in Table 5, which summarizes the maximum top-1 accuracy achieved
by VELCRO. These results are attributed to the fact that a relatively moderate level of
compression helps the network leverage value locality to strengthen connections, thereby

Mathematics 2021, 9, 2612 16 of 34

increasing the probability of favoring the prediction of classes that are in the scope of the
specialized tasks.

Table 5. The maximum top-1 accuracy increase produced by VELCRO with respect to the uncom-
pressed model when used for specialized tasks.

Specialized Task ResNet-18 GoogLeNet MobileNet V2

Cats 13.00% 20.00% 3.50%
Dogs 8.50% 11.00% 2.50%
Cars 4.00% 15.00% 4.50%

4.4. Hardware Implementation

In the last part of our experimental analysis, we demonstrate the computational
optimization and energy savings of VELCRO through hardware implementation on the
Xilinx® Alveo™ U280 Data Center accelerator card [63]. Our hardware implementation,
which is illustrated in Figure 10, consists of 16 instance modules where each is comprised of
a two-dimensional convolution layer with a 64× 64 input feature map (IFMAP), 3× 3 filter,
and a ReLU activation function. In addition, each module also includes a compression
control logic which skips the compressed computations and replaces them with their
corresponding arithmetic averages. Our hardware implementation was designed in Verilog
and implemented using the Xilinx® VivadoTM [64] design suite.

Figure 10. VELCRO compression implementation on Xilinx® AlveoTM U280 Accelerator Card.

Figure 11 presents the (normalized) throughput and energy consumption of a single
module instance, denoted as conv2d, which consists of the hardware implementation of a
two-dimensional convolution layer and ReLU activation. As expected, the computational
throughput of the conv2d layer, which is measured as the number of conv2d operations
per second, exhibits a growth rate proportional to 1

1−C , where C is the compression
saving ratio). In addition, it can be observed that the energy consumption related to
the computation of a single conv2d layer decays linearly with the compression saving
ratio. Thereby, for the compression saving results presented in Table 2, VELCRO can
achieve 13.5–30% energy consumption savings while maintaining the same accuracy of the
uncompressed model.

Mathematics 2021, 9, 2612 17 of 34

Figure 11. VELCRO throughput and energy consumption Xilinx® AlveoTM U280 Accelerator Card.

5. Conclusions

We present herein value-locality-based compression algorithm (VELCRO), wherein a
compression approach is introduced for general-purpose deep neural networks deployed
for a small subset of specialized tasks. We introduce the notion of value locality in the
context of neural networks for specialized tasks and show that CNNs that are used for
specialized tasks produce a high degree of value locality. An analysis of the experimental
results indicates that VELCRO leverages value locality to compress the network and thereby
saves up to 30% of the computations in ResNet-18 and GoogLeNet and up to 20% in
MobileNet V2. The analysis also indicates that, for specialized tasks, VELCRO significantly
improves the accuracy by 2–20% when given a relatively small compression-saving target.
Finally, a major advantage of VELCRO is that it offers a fast compression process that is
based on inference rather than backpropagation training, thereby liberating VELCRO from
a significant computational load. We demonstrate the feasibility of VELCRO by designing
the algorithm in hardware on the Xilinx® Alveo™ U280 Data Center accelerator card. Our
hardware implementation indicates that VELCRO translates the computation compression
into an energy consumption savings of 13.5–30%, corresponding to the compression-
saving ratio.

Author Contributions: Conceptualization, F.G.; methodology, F.G. and G.S.; software, G.S. and F.G.;
validation, F.G. and G.S.; formal analysis, F.G. and G.S.; investigation, F.G. and G.S.; resources, F.G.
and G.S.; data curation, F.G. and G.S.; writing—original draft preparation, F.G. and G.S.; writing—
review and editing, F.G. and G.S.; visualization, F.G. and G.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The ImageNet data sets used in our experiments are publicly available
at https://image-net.org (accessed on 11 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://image-net.org

Mathematics 2021, 9, 2612 18 of 34

Appendix A

Figure A1. Distribution of ResNet-18 variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

Mathematics 2021, 9, 2612 19 of 34

Figure A2. Cont.

Mathematics 2021, 9, 2612 20 of 34

Figure A2. Cont.

Mathematics 2021, 9, 2612 21 of 34

Figure A2. Distribution of GoogLeNet variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

Mathematics 2021, 9, 2612 22 of 34

Figure A3. Cont.

Mathematics 2021, 9, 2612 23 of 34

Figure A3. Distribution of MobileNet V2 variance tensor elements for specialized tasks: all ImageNet classes, Cats-2, Cats-3,
and Cats-4.

Mathematics 2021, 9, 2612 24 of 34

Figure A4. Distribution ResNet-18 variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.

Mathematics 2021, 9, 2612 25 of 34

Figure A5. Cont.

Mathematics 2021, 9, 2612 26 of 34

Figure A5. Cont.

Mathematics 2021, 9, 2612 27 of 34

Figure A5. Distribution of GoogLeNet variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all Ima-
geNet classes.

Mathematics 2021, 9, 2612 28 of 34

Figure A6. Cont.

Mathematics 2021, 9, 2612 29 of 34

Figure A6. Distribution of MobileNet V2 variance tensor elements for specialized tasks: Cats, Dogs, Cars, and all Ima-
geNet classes.

Mathematics 2021, 9, 2612 30 of 34

Appendix B

Table A1. Threshold tuple for Cats.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (3, 3, 4, 4, 10, 10, 10, 10, 10, 10,
10, 10, 70, 10, 80, 90)

(8, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 0, 0, 0, 0,
0, 0, 0, 0, 5, 6, 5, 5, 5, 5, 5, 5, 14, 14,
5, 5, 5, 8, 5, 5, 5,15, 15, 15, 36, 37,

18, 20, 34, 34, 34, 25, 40, 34, 34, 90,
90, 96, 90, 92, 92)

(22, 21, 10, 11, 11, 11, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 40, 40, 40, 40, 40,

40, 90)

13.5% n/a n/a

(40, 40, 7, 2, 5, 2, 1, 11, 2, 10, 10,
15, 10, 15, 20, 10, 10, 15, 2, 5, 5,

10, 10, 10, 10, 15, 7, 5, 40, 42,
40, 40, 40, 40, 90)

20% (17, 16, 17, 10, 10, 20, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(17, 15, 15, 15, 15, 15, 17, 15, 15, 15,
15, 19, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 22, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 17, 37, 37, 37, 36,
37, 37, 40, 34, 34, 34, 34, 40, 34, 34,

90, 90, 96, 90, 92, 92)

(35, 35, 18, 17, 17, 20, 8, 8, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16,
4, 16, 0, 16, 3, 16, 16, 16, 23, 16,

42, 40, 40, 42, 40, 45, 90)

27.3% (34, 36, 30, 15, 10, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90) n/a n/a

30% (40, 40, 36, 15, 12, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(34, 24, 24, 24, 24, 24, 27, 24, 24, 24,
24, 29, 25, 24, 25, 24, 24, 25, 26, 24,
25, 24, 33, 25, 24, 24, 24, 24, 24, 24,
24, 24, 24, 25, 24, 27, 56, 56, 54, 52,
56, 54, 60, 52, 52, 52, 52, 60, 52, 52,

90, 90, 96, 90, 92, 92)

(38, 38, 33, 32, 32, 31, 20, 20, 25,
31, 31, 26, 26, 26, 26, 26, 26, 26,
4, 28, 0, 27, 6, 26, 26, 25, 24, 17,

42, 40, 40, 42, 40, 45, 90)

40% (70, 61, 60, 15, 12, 25, 20, 20, 20,
20, 30, 27, 70, 10, 80, 90)

(46, 32, 32, 32, 32, 32, 36, 32, 32, 32,
32, 36, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 44, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 36, 75, 75, 75, 75,
75, 75, 80, 75, 75, 75, 75, 80, 75, 75,

92, 92, 96, 92, 94, 94)

(66, 66, 35, 17, 32, 20, 17, 38, 13,
52, 52, 64, 44, 58, 58, 42, 42, 54,
13, 33, 33, 36, 36, 36, 36, 54, 26,

21, 80, 80, 80, 80, 80, 80, 90)

Table A2. Threshold tuple for Dogs.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (8, 8, 8, 3, 8, 9, 9, 9, 9, 9, 9, 17,
17, 6, 60, 80)

(7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 10, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 27, 16, 72, 72,

90, 92, 90, 91)

(20, 20, 10, 10, 10, 10, 5, 0, 10, 0,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 40, 40, 40, 40, 40,
40, 90)

19.76% n/a n/a

(29, 29, 16, 11, 15, 18, 13, 13, 36,
35, 43, 21, 13, 5, 16, 30, 23, 8, 5,

6, 0, 1, 7, 17, 10, 10, 5, 13, 40,
47, 41, 40, 42, 42, 90)

20% (21, 21, 20, 6, 10, 21, 20, 20, 20,
18, 33, 24, 30, 6, 71, 80)

(15, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 20, 40, 40, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 55, 32,

72, 72, 90, 92, 90, 91)

n/a

Mathematics 2021, 9, 2612 31 of 34

Table A2. Cont.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

25.46% n/a

(20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 22, 22, 20, 20, 20, 22, 20, 20,
20, 20, 20, 20, 20, 20, 20, 22, 20, 20,
20, 20, 20, 20, 20, 25, 50, 52, 50, 50,
50, 52, 50, 52, 50, 50, 55, 55, 68, 42,

92, 90, 90, 92, 90, 91)

n/a

27.7% (44, 28, 38, 12, 12, 21, 20, 20, 20,
20, 33, 24, 32, 10, 71, 87) n/a n/a

30% (49, 33, 44, 13, 12, 21, 20, 20, 20,
20, 33, 24, 32, 12, 72, 90)

(25, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 26, 24, 24, 24, 26, 24, 24,
24, 24, 24, 24, 24, 24, 24, 26, 24, 24,
24, 24, 24, 24, 24, 30, 60, 60, 60, 60,
60, 60, 60, 60, 60, 60, 65, 65, 68, 50,

92, 90, 90, 92, 90, 91)

(45, 45, 25, 27, 23, 28, 19, 19, 54,
53, 64, 31, 19, 7, 24, 45, 34, 12,
7, 9, 0, 1, 10, 25, 15, 15, 7, 20,

60, 70, 61, 60, 62, 62, 90)

40% (50, 50, 50, 50, 40, 21, 20, 20, 20,
20, 33, 24, 32, 10, 70, 90)

(36, 36, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 38, 36, 36, 36, 38, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 45, 70, 70, 70, 70,
70, 70, 70, 70, 70, 70, 65, 65, 68, 50,

92, 90, 90, 92, 90, 91)

(67, 67, 34, 37, 31, 38, 28, 28, 73,
71, 64, 42, 27, 9, 32, 60, 45, 16,
9, 12, 0, 1, 13, 33, 20, 20, 9, 26,

65, 75, 65, 65, 65, 70, 90)

Table A3. Threshold tuple for Cars.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

10% (3, 5, 5, 10, 10, 10, 10, 10, 10, 10,
10, 12, 30, 13, 50, 80)

(6, 9, 9, 9, 9, 9, 15, 7, 7, 7, 7, 7, 10, 7,
8, 7, 10, 7, 7, 7, 8, 8, 8, 10, 8, 8, 8, 10,
8, 10, 12, 9, 7, 7, 2, 8, 10, 7, 7, 5, 12,
10, 30, 1, 27, 27, 30, 1, 32, 27, 23, 40,

90, 90, 95, 90)

(20, 20, 20, 10, 10, 10, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 20, 20, 30, 75)

16.8% n/a n/a

(30, 31, 20, 10, 15, 15, 11, 10, 10,
21, 16, 11, 1, 0, 26, 17, 21, 20, 2,
10, 0, 2, 8, 5, 5, 20, 4, 5, 2, 22,

20, 23, 20, 30, 75)

20% (21, 21, 20, 20, 20, 20, 10, 20, 20,
10, 10, 12, 30, 13, 50, 80)

(15, 20, 20, 20, 20, 20, 30, 14, 14, 14,
14, 14, 20, 14, 16, 14, 20, 14, 14, 14,
17, 17, 17, 20, 17, 17, 17, 20, 17, 20,
24, 18, 14, 14, 4, 17, 20, 14, 14, 10,

24, 20, 60, 3, 55, 55, 60, 2, 65, 55, 50,
90, 90, 90, 95, 90)

(35, 35, 25, 12, 19, 19, 14, 13, 13,
26, 24, 13, 1, 0, 30, 17, 21, 20, 2,
12, 0, 2, 9, 6, 6, 23, 5, 6, 2, 22,

20, 23, 20, 30, 75)

27.70% n/a

(20, 30, 30, 30, 30, 30, 45, 20, 20, 20,
20, 20, 30, 20, 25, 20, 30, 20, 20, 20,
25, 25, 25, 30, 25, 25, 25, 30, 25, 30,
35, 25, 20, 20, 7, 25, 30, 20, 30, 15,

35, 20, 60, 3, 55, 55, 60, 2, 65, 55, 50,
90, 90, 90, 95, 90)

30% (35, 30, 30, 30, 30, 30, 30, 30, 30,
10, 12, 12, 30, 30, 50, 85)

(24, 32, 32, 32, 32, 32, 49, 22, 22, 22,
22, 22, 32, 22, 27, 22, 33, 22, 22, 22,
28, 28, 27, 33, 28, 28, 27, 33, 27, 33,
38, 27, 22, 22, 7, 27, 32, 22, 33, 16,

38, 20, 66, 3, 60, 60, 66, 2, 71, 60, 55,
90, 90, 90, 94, 89)

(52, 52, 42, 20, 29, 29, 21, 19, 19,
39, 36, 19, 1, 0, 45, 25, 31, 30, 3,
18, 0, 2, 13, 9, 9, 34, 7,8, 3, 22,

20, 23, 20, 30, 75)

Mathematics 2021, 9, 2612 32 of 34

Table A3. Cont.

Compression Saving
Ratio

ResNet-18
Threshold Tuple

GoogLeNet
Threshold Tuple

MobileNet V2
Threshold Tuple

40% (50, 40, 40, 40, 40, 40, 40, 40, 40,
10, 20, 20, 35, 35, 80, 90)

(36, 44, 44, 44, 44, 44, 55, 32, 32, 32,
30, 30, 43, 30, 37, 30, 44, 30, 30, 30,
40, 40, 38, 44, 36, 36, 36, 44, 30, 44,
52, 37, 30, 30, 12, 40, 44, 40, 45, 18,
55, 30, 67, 10, 65, 65, 66, 60, 71, 60,

55, 90, 90, 90, 94, 89)

(67, 67, 34, 37, 31, 38, 28, 28, 73,
71, 64, 42, 27, 9, 32, 60, 45, 16,
9, 12, 0, 1, 13, 33, 20, 20, 9, 26,

65, 75, 65, 65, 65, 70, 90)

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
3. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.

IEEE Access 2018, 6, 64270–64277. [CrossRef]
4. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
5. Reed, R. Pruning algorithms—A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef]
6. LeCun, Y.; Denker, J.S.; Solla, S.; Howard, R.E.; Jackel, L.D. Optimal brain damage. In Advances in Neural Information Processing

Systems (NIPS 1989); Touretzky, D., Ed.; Morgan Kaufmann: Denver, CO, USA, 1990; Volume 2.
7. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal Brain Surgeon and general network pruning. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 293–299.
8. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning Requires Rethinking Generalization. arXiv

2016, arXiv:1611.03530.
9. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature

Learning Workshop; NIPS: Granada, Spain, 2011.
10. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
11. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with binary weights during prop-

agations. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Bali, Indonesia,
8–12 December 2015.

12. Lin, Z.; Courbariaux, M.; Memisevic, R.; Bengio, Y. Neural networks with few multiplications. arXiv 2015, arXiv:1510.03009.
13. Shen, H.; Han, S.; Philipose, M.; Krishnamurthy, A. Fast Video Classification via Adaptive Cascading of Deep Models. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
14. Kang, D.; Emmons, J.; Abuzaid, F.; Bailis, P.; Zaharia, M. NoScope: Optimizing Neural Network Queries over Video at Scale. Proc.

VLDB Endow. 2017, 10, 1586–1597. [CrossRef]
15. Kosaian, J.; Phanishayee, A.; Philipose, M.; Dey, D.; Vinayek, R. Boosting the Throughput and Accelerator Utilization of

Specialized CNN Inference beyond Increasing Batch Size. In Proceedings of the Proceedings of the 38th International Conference
on Machine Learning, PMLR 139, Long Beach, CA, USA, 18–24 July 2021.

16. Violaand, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001;
Volume 1, pp. I–511–I–518.

17. Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.V.; Hinton, G.E.; Dean, J. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv 2017, arXiv:1701.06538.

18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

20. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009.

21. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,
arXiv:1506.02626.

22. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. arXiv 2015, arXiv:1510.00149.

http://doi.org/10.1145/3065386
http://doi.org/10.1109/ACCESS.2018.2877890
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1109/72.248452
http://doi.org/10.14778/3137628.3137664

Mathematics 2021, 9, 2612 33 of 34

23. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural
Netw. 1997, 8, 519–531. [CrossRef] [PubMed]

24. Collins, M.D.; Kohli, P. Memory bounded deep convolutional networks. arXiv 2014, arXiv:1412.1442.
25. Stepniewski, S.W.; Keane, A.J. Pruning backpropagation neural networks using modern stochastic optimisation techniques.

Neural. Comput. Appl. 1997, 5, 76–98. [CrossRef]
26. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2018, arXiv:1810.05270.
27. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.

2017, 13, 1–18. [CrossRef]
28. Lebedev, V.; Lempitsky, V. Fast ConvNets using group-wise brain damage. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.
29. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact CNNs. In Computer Vision—ECCV 2016; Springer International

Publishing: Cham, Switzerland, 2016; pp. 662–677. ISBN 9783319464923.
30. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in Deep Neural Networks. Adv. Neural Inf. Process. Syst.

2016, 29, 2074–2082.
31. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2016, arXiv:1608.08710.
32. Srinivas, S.; Babu, R.V. Data-Free Parameter Pruning for Deep Neural Networks. In Proceedings of the British Machine Vision

Conference 2015, Swansea, UK, 7–10 September 2015; British Machine Vision Association: Guildford, UK, 2015.
33. Rao, Y.; Lu, J.; Lin, J.; Zhou, J. Runtime Neural Pruning. In Proceedings of the Advances in Neural Information Processing

Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2181–2191.
34. Shomron, G.; Weiser, U. Spatial Correlation and Value Prediction in Convolutional Neural Networks. IEEE Comput. Arch. Lett.

2019, 18, 10–13. [CrossRef]
35. Shomron, G.; Banner, R.; Shkolnik, M.; Weiser, U. Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight

Convolutional Neural Networks. In Computer Vision—ECCV 2020; Springer International Publishing: Cham, Switzerland, 2020;
pp. 234–250.

36. See, A.; Luong, M.-T.; Manning, C.D. Compression of Neural Machine Translation Models via Pruning. arXiv 2016,
arXiv:1606.09274.

37. Narang, S.; Elsen, E.; Diamos, G.; Sengupta, S. Exploring Sparsity in Recurrent Neural Networks. arXiv 2017, arXiv:1704.05119.
38. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,

arXiv:1710.01878.
39. Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.-Y.; Davis, L.S. NISP: Pruning Networks Using Neuron

Importance Score Propagation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018.

40. Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. High-Performance Neural Networks for Visual Object
Classification. arXiv 2011, arXiv:1102.0183.

41. Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing Neural Networks with the Hashing Trick. In Proceedings
of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015.

42. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.
arXiv 2016, arXiv:1611.06440.

43. Luo, J.-H.; Wu, J. Neural Network Pruning with Residual-Connections and Limited-Data. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.

44. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.-J.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized Clipping acTivation
for quantized neural networks. arXiv 2018, arXiv:1805.06085.

45. Park, E.; Yoo, S.; Vajda, P. Value-aware quantization for training and inference of neural networks. In Computer Vision—ECCV
2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 608–624; ISBN 9783030012243.

46. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv 2016, arXiv:1606.06160.

47. Banner, R.; Nahshan, Y.; Hoffer, E.; Soudry, D. Post-training 4-bit quantization of convolution networks for rapid-deployment.
arXiv 2018, arXiv:1810.05723.

48. Choukroun, Y.; Kravchik, E.; Yang, F.; Kisilev, P. Low-bit quantization of neural networks for efficient inference. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019.

49. Fang, J.; Shafiee, A.; Abdel-Aziz, H.; Thorsley, D.; Georgiadis, G.; Hassoun, J.H. Post-training piecewise linear quantization for
deep neural networks. In Computer Vision—ECCV 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 69–86;
ISBN 9783030585358.

50. Shomron, G.; Gabbay, F.; Kurzum, S.; Weiser, U. Post-Training Sparsity-Aware Quantization. arXiv 2021, arXiv:2105.11010.
51. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining—KDD’06, Philadelphia, PA, USA, 20–23 August 2006; ACM Press: New
York, NY, USA.

52. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
53. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]

http://doi.org/10.1109/72.572092
http://www.ncbi.nlm.nih.gov/pubmed/18255656
http://doi.org/10.1007/BF01501173
http://doi.org/10.1145/3005348
http://doi.org/10.1109/LCA.2018.2890236
http://doi.org/10.1007/s11263-021-01453-z

Mathematics 2021, 9, 2612 34 of 34

54. Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-All: Train One Network and Specialize It for Efficient Deployment. arXiv
2019, arXiv:1908.09791.

55. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014; Springer
International Publishing: Cham, Switzerland, 2014; pp. 818–833.

56. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Object Detectors Emerge in Deep Scene CNNs. arXiv 2014,
arXiv:1412.6856.

57. Morcos, A.S.; Barrett, D.G.T.; Rabinowitz, N.C.; Botvinick, M. On the Importance of Single Directions for Generalization. arXiv
2018, arXiv:1803.06959.

58. Zhou, B.; Sun, Y.; Bau, D.; Torralba, A. Revisiting the Importance of Individual Units in CNNs via Ablation. arXiv 2018,
arXiv:1806.02891.

59. Boone-Sifuentes, T.; Robles-Kelly, A.; Nazari, A. Max-Variance Convolutional Neural Network Model Compression. In Proceed-
ings of the 2020 Digital Image Computing: Techniques and Applications (DICTA), Melbourne, Australia, 29 November–2 Decem-
ber 2020; pp. 1–6.

60. Li, Y.; Lin, S.; Zhang, B.; Liu, J.; Doermann, D.; Wu, Y.; Huang, F.; Ji, R. Exploiting kernel sparsity and entropy for interpretable
CNN compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, California, CA,
USA, 16–20 June 2019; pp. 2800–2809.

61. Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.; Hu, X. Pruning from Scratch. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12273–12280.

62. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

63. Xilinx. Breathe New Life into Your Data Center with Alveo Adaptable Accelerator Cards. Xilinx White Paper, WP499 (v1.0). Available
online: https://www.xilinx.com/support/documentation/white_papers/wp499-alveo-intro.pdf (accessed on 19 November 2018).

64. Xilinx. Vivado Design Suite. Xilinx White Paper, WP416 (v1.1). Available online: https://www.xilinx.com/support/
documentation/white_papers/wp416-Vivado-Design-Suite.pdf (accessed on 22 June 2012).

https://www.xilinx.com/support/documentation/white_papers/wp499-alveo-intro.pdf
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf

	Introduction
	Prior Works
	Method and Algorithm
	Value Locality of Specialized Convolutional Neural Networks
	VELCRO Algorithm for Specialized Neural Networks

	Experimental Results and Discussion
	Experimental Environment
	Experimental Analysis of Value Locality
	Performance of Compression Algorithm
	Hardware Implementation

	Conclusions
	
	
	References

