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Abstract: In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally
negative Lévy process where the jump component is a tempered α-stable subordinator. Given a
discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of
the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the
estimator of ruin probability. The convergence rate of the integrated squared error for the estimator
is studied.
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1. Introduction

In actuarial science, the statistical inference of ruin probability has received much
attention from scholars. Many works have been contributed to parametric and nonparamet-
ric estimation of ruin probability. See, for example, Croux and Veraverbeke [1], Frees [2],
Mnatsakanov et al. [3], Pitts [4], Politis [5], and Veraverbeke [6]. In recent years, many
nice results have been obtained by actuarial scholars, such as Huang et al. [7], Li et al. [8],
You et al. [9], Zhang and Yang [10], Zhang and Yang [11], Zhang [12], and Zhang and
Yang [13]. As an extension of ruin probability, the Gerber–Shiu function has been intro-
duced and studied for its statistical properties. Interested readers can refer to Su and
Yu [14,15], Yang et al. [16], Zhang and Su [17], Su et al. [18], Zhang and Su [19], Zhang [20],
Shimizu [21], and Shimizu and Zhang [22], among others.

In Asmussen and Albrecher [23], an analytic (or probabilistic) approach was suggested,
and it needs much more detailed information about the risk model, such as the claim size
distribution. However, in practical situations, it is not easy to obtain the specific distribution
information. Instead, one observes the surplus process at some discrete time points. Then,
a statistical methodology can be directly used to estimate the claim size distribution with
the observed data. In Zhang and Yang [10], a nonparametric estimator of ruin probability
was proposed, based on the Pollaczek–Khinchin formula and the Fourier transform in
a pure-jump Lévy risk model. This estimation approach was extended by Zhang and
Yang [11] to a spectrally negative Lévy risk model. Subsequently, Shimizu and Zhang [22]
estimated the Gerber–Shiu function for an insurance surplus process driven by a Lévy
subordinator. In Zhang and Yang [10] and Comte and Genon-Catalot [24], they considered
high-frequency sampling with n discrete time observations of step width hn > 0 and
derived asymptotics under the framework that hn → 0 and nhn → ∞.

In the present work, our interest is to estimate ruin probability for a spectrally negative
Lévy risk model under the above framework. Assume that the surplus of the risk model
can be observed at a sequence of discrete time points {tn

k = khn, k = 0, 1, 2, 3, ...} with
hn ≥ 0 being the length of the sampling interval. Without observing the jump and diffusion
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parts of the risk model, it is challenging to estimate ruin probability, since it depends on
both parts in a spectrally negative Lévy risk model. In Mancini [25–28] and Shimizu [29,30],
they developed a threshold technique for identifying the times when jump sizes exceed
a suitably defined threshold. Using the threshold technique and the Fourier transform,
an estimator of ruin probability is constructed, and the convergence rate of its integrated
squared error is obtained.

The remainder of this paper is organized as follows. In Section 2, the risk model, as
well as some assumptions for the asymptotic theory are introduced. In Section 3, some
estimators are suggested, based on the Fourier transform and the threshold technique.
In Section 4, the convergence rate of our estimators is established. In Section 5, we conclude
this paper.

2. Preliminaries
2.1. Risk Model and Some Assumptions

A spectrally negative Lévy process is specified by:

Yt = ct + σWt − Jt, t ≥ 0, (1)

where c > 0 is a parameter, σ > 0 represents the perturbation coefficient, Wt is a standard
Brownian motion, and Jt is a subordinator. Suppose that Wt and Jt are independent of each
other. Then, the characteristic exponent of Yt is given by:

ψY(s) =
1
t

ln(E[eisYt ]) = ics− 1
2

σ2s2 −
∫ ∞

0
(1− e−isx)ν(dx), (2)

where ν is the Lévy measure on (0, ∞). By Sato [31], it can be rewritten as:

Jt = Lt + M∗t , (3)

where Lt is the sum of jumps over [0, t] with the jump size larger than one, and M∗t
is the sum of jumps over [0, t] with the jump size less than one. Specifically, Lt =∫ t

0

∫
x>1 xµ(ds, dx) = ∑Nt

k=1 γk, where µ is the Poisson random measure of Jt such that
E[µ(ds, dx)] = ν(dx)ds, Nt is a Poisson process, and γ1, γ2, γ3, ... are i.i.d. random variables,
that is Lt is a compound Poisson process representing the jumps of Jt with the jump size
larger than one. Process M∗t admits decomposition, M∗t = bt + Mt, where b =

∫
x≤1 xν(dx)

and Mt =
∫ t

0

∫
x≤1 xµ̃(ds, dx) is a martingale with µ̃(ds, dx) = µ(ds, dx)− ν(dx)ds being the

compensated measure of µ(ds, dx). It is known that Mt is a square integrable martingale
with infinite activity of the jump such that E[Mt] = 0 and Var[Mt] = t

∫
x≤1 x2ν(dx) < ∞.

Suppose that γk, Nt, and Mt are independent of each other.
Let u > 0 be the initial surplus of an insurance company. Then, the surplus at time t

can be modeled by:
Ut = u + Yt = u + ct + σWt − Jt, t ≥ 0, (4)

where c is the rate of the premium, σ represents the perturbation coefficient, Jt denotes the
claim payments and other expenses in insurance businesses, and Wt is a perturbation.

2.2. Ruin Probability and Its Fourier Transform

The infinite-time horizon ruin probability Φ(u) is defined as:

Φ(u) = P
(

inf
0≤t<∞

Ut ≤ 0|U0 = u
)

.

By Equation (1) in Zhang and Yang [11], Φ(u) admits the following representation:

Φ(u) = 1− (1− ρ)
∞

∑
i=0

ρi(G(i+1)∗ ∗ H(i)∗)(u), u > 0, (5)
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where ρ = µ1
c , µ1 =

∫ ∞
0 xν(dx), H(x) = 1

µ1

∫ x
0 ν(y, ∞)dy, and G is determined by the

Fourier transform
∫ ∞

0 eisxdG(x) = c{c− σ2

2 is}−1. Setting Φ(u) ≡ 0 for u < 0, Zhang and
Yang [11] obtained the Fourier transform of Φ(u):

FΦ(s) =
∫ ∞

0
eisuΦ(u)du =

σ2

2 is + 1
is
∫ ∞

0 (eisx − 1)ν(dx)− µ1

ics + σ2

2 s2 −
∫ ∞

0 (eisx − 1)ν(dx)

=
ics(1− ρ) + ψY(−s)
−isψY(−s)

, (6)

Once an estimator of FΦ(s) is available, Φ(u) can be estimated by the inverse
Fourier transform.

3. Estimation of Ruin Probability

Suppose that a discrete sample Yn = {Ytn
i
| tn

i = ihn; i = 0, 1, 2..., n} can be observed.
Let Zi = Ytn

i
−Ytn

i−1
, hn = tn

i − tn
i−1 > 0, limn→∞ hn = 0, and limn→∞ nhn = ∞. Our interest

is to estimate Φ(u) by Z1, Z2, ..., Zn when Lévy measure ν and perturbation coefficient σ
are unknown.

If one can estimate ρ and ψY(−s) in (6), then FΦ(s) can be estimated with the plug-in
device. Inspired by Zhang and Yang [10,11] and You and Yin [32], we define the estimator
of ψY(s):

ψ̂Y(s) =
1
hn

(
1
n

n

∑
k=1

eisZk − 1). (7)

To estimate ρ = µ1
c , we need to estimate µ1, the mean of J1. Zhang and Yang [11]

proposed to estimate µ1, by:

µ̂∗1 =
1

nhn

n

∑
k=1

(chn − Zk). (8)

Note that chn−Zk = (Jtn
k
− Jtn

k−1
)− σ(Wtn

k
−Wtn

k−1
). Ideally, we hope that the estimator

of µ1 is 1
nhn

∑n
k=1(Jtn

k
− Jtn

k−1
), but we cannot observe a discrete sample Jn = {Jtn

i
| tn

i =

ihn; i = 0, 1, 2..., n}. To this end, we introduce a threshold technique. Motivated by
Shimizu [29,30] and Mancini [26,27], we introduce the filter:

Dn
k := {ω ∈ Ω : (chn − Zk) > rn}, (9)

where rn > 0 is a suitable threshold parameter dependent on n such that limhn→0 rn = 0.
Let Cn

k := {ω ∈ Ω : (chn − Zk) ≤ rn} be the complement of Dn
k . By (9), if chn − Zk > rn,

we can detect the existence of a jump in an interval (tn
k−1, tn

k ], and then, we take chn − Zk as
an approximation to Jtn

k
− Jtn

k−1
. This leads to a natural estimate of µ1:

µ̂1 =
∑n

k=1(chn − Zk)IDn
k

nhn
. (10)

Then, ρ is estimated by:

ρ̂ =
∑n

k=1(chn − Zk)IDn
k

cnhn
. (11)

Combining (6), (7), and (11) leads to our estimator:

F̂Φ(s) =
ics(1− ρ̂) + ψ̂Y(−s)
−isψ̂Y(−s)

. (12)
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Note that the above estimate has no definition at s = 0. When s→ 0, ψ̂Y(−s)→ 0, and
thus, F̂Φ(s) may behave erratically. Applying the inverse Fourier transform and removing
a small neighborhood of s = 0, we propose to estimate Φ(u) by:

Φ̂(u) =
1

2π

∫ Mn

mn
e−iusF̂Φ(s)ds +

1
2π

∫ −mn

−Mn
e−iusF̂Φ(s)ds, u > 0, (13)

where mn and Mn are positive threshold numbers such that mn → 0 and Mn → ∞ as
n→ ∞.

4. Asymptotic Properties of Estimators

In this section, the asymptotic properties of ρ̂ and Φ̂(u) are studied. For the ease
of exposure, we first introduce some notations. For integer k = 1, 2, µk :=

∫ ∞
0 xkν(dx).

For any two positive sequences {xn}∞
n=1 and {yn}∞

n=1, xn . yn means that xn ≤ Cyn
for some constant C and large index n. For any function f (x) with support (0, ∞), define
‖ f ‖2 =

∫ ∞
0 f 2(x)dx. Let µL =

∫ ∞
1 xν(dx), µγ = E[γk], σ2

γ = Var(γk), and σ2
M =

∫ 1
0 x2ν(dx).

Next, we make the following assumptions for our theoretical results:

Assumption 1. The safety loading condition holds, i.e., c− µ1 < ∞.

Assumption 2. Jt is the tempered α-stable subordinator.

Assumption 3. hn = n−κ1 , mn = O(n−κ2), α ∈ [0, 1), and θ ∈ (0,
1
2
), where κ1, κ2 > 0,

κ1 + 3κ2 < 1, 1− κ1(2− 2θ) + κ2 < 0, and κ2 − 2θκ1(1− α) < 0.

Assumption 1 guarantees that the ruin is not a certain event. Assumption 2 means

that ν has a density of the form ν(x) =
ze−λx

x1+α
Ix>0, where z > 0, λ > 0, and α ∈ [0, 1).

Assumption 2 implies that µ1 < ∞, µ2 < ∞,∫ rn

0
xkν(dx) ∼ (rn)

k−α, k = 1, 2, 3, 4, (14)

and
∫ 1

rn
xν(dx) ∼ (m + r1−α

n ), (15)

where m indicates a generic constant.
To establish the convergence rate of Φ̂(u), we need to calibrate the estimation errors

of ρ̂. The following Theorem 1 gives the rate of convergence of ρ̂.

Theorem 1. Let rn = hθ
n with θ ∈ (0, 1/2). Then, under Assumptions 1 and 2,

ρ̂− ρ =
1√
nhn

Qhn + OP(h
θ(1−α)
n + nh2−2θ

n ), (16)

where Qhn
D−→ N

(
0,

1
c2 (µLµγ +

µLσ2
γ

µγ
+ σ2

M)
)

.
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Proof. Let ∆k J = (Jtn
k
− Jtn

k−1
), ∆k M = (Mtn

k
−Mtn

k−1
), ∆kL = (Ltn

k
− Ltn

k−1
), ∆kW = σ(Wtn

k
−

Wtn
k−1

), and ∆k N = (Ntn
k
− Ntn

k−1
). By (9) and (11), we have:

ρ̂− ρ =
∑n

k=1(chn − Zk)IDn
k

cnhn
− 1

c
µ1

=
1
c

[∑n
k=1(∆k J − ∆kW)I{∆k J−∆kW>hθ

n}
nhn

− µ1

]
=

1
c

[∑n
k=1(bhn + ∆kL− ∆kW + ∆k M)I{bhn+∆k L−∆kW+∆k M>hθ

n}
nhn

− µ1

]
=

4

∑
j=1

Ij, (17)

where:

I1 =
1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n}
nhn

−
∫ ∞

1
xν(dx)

]
,

I2 =
1
c

[∑n
k=1(∆kL− ∆kW)

nhn
(I{bhn+∆k L−∆kW+∆k M>hθ

n} − I{∆k L−∆kW>hθ
n})
]
,

I3 =
1
c

[∑n
k=1(bhn + ∆k M)

nhn
−
∫ 1

0
xν(dx)

]
,

I4 = −1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n}.

In the following, we study each of I1 to I4.
(i) Note that:

I1 =
1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N=1}
nhn

− µL

]
+

1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N=0}
nhn

]
+

1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N≥2}
nhn

]
≡ I11 + I12 + I13. (18)

By Mancini [25], {∆kL− ∆kW > hθ
n} is equal to {∆k N = 1} almost surely for small hn.

Thus, for small hn,

I11 =
1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N=1}
nhn

− µL

]
=

1
c

[∑n
k=1(γk − ∆kW)I{∆k N=1}

nhn
− µL

]
. (19)

Rewrite:

I11 =
1√
nhn

[∑n
k=1{(γk − ∆kW)I{∆k N=1} − hnµL}

c
√

nhn

]
≡

Zhn√
nhn

. (20)

Then, due to the independence of γk, Nt, and Wt, by the central limit theorem, we

have Zhn
D−→ N (0,

1
c2 (µLµγ +

µLσ2
γ

µγ
)).

By (A.2)–(A.4) in You and Yin [32], we have:

I12 =
1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N=0}
nhn

]
= oP(

1√
nhn

)
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and:

I13 =
1
c

[∑n
k=1(∆kL− ∆kW)I{∆k L−∆kW>hθ

n ,∆k N≥2}
nhn

]
= oP(

1√
nhn

).

Therefore, I1 =
Zhn√
nhn

+ oP(
1√
nhn

).

(ii) Next, we show that I2 = oP(h1−αθ
n

√
log(

1
hn

)). Since bhn + ∆k M ≥ 0, we have

{∆kL− ∆kW > hθ
n} ⊆ {bhn + ∆k M + ∆kL− ∆kW > hθ

n}. Thus,

I2 =
1
c

[∑n
k=1(∆kL− ∆kW)

nhn
(I{bhn+∆k L−∆kW+∆k M>hθ

n} − I{∆k L−∆kW>hθ
n})
]

=
1
c

[∑n
k=1(∆kL− ∆kW)

nhn
I{bhn+∆k L−∆kW+∆k M>hθ

n ,∆k L−∆kW≤hθ
n}

]
. (21)

For small hn, {∆kL− ∆kW ≤ hθ
n} = {∆k N = 0} almost surely. As a result, we have:

I2 =
1
c

[∑n
k=1(−∆kW)

nhn
I{∆k M>hθ

n ,∆k L−∆kW≤hθ
n}

]
(1 + op(1)).

By Mancini [27], we obtain that:

1
c
[
∑n

k=1|∆kW|
nhn

I{∆k M>hθ
n}] = oP(h1−αθ

n

√
log(

1
hn

)).

(iii) Applying the central limit theorem, we obtain:

I3 =
1
c
[
∑n

k=1(bhn + ∆k M)

nhn
−
∫ 1

0
xν(dx)] ≡

Thn√
nhn

, (22)

where Thn
D−→ N (0,

σ2
M

c2 ).
(iv) Now, let us consider the last term of (17).

−I4 =
1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n}

=
1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n ,bhn+∆k M>2hθ
n}

+
1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n ,bhn+∆k M≤2hθ
n}

≡ B1 + B2. (23)

By (A.29)–(A.32) in You and Yin [32], we have

B1 =
1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n ,bhn+∆k M>2hθ
n} ≤ Op(nh1+(1−2θ)

n ). (24)
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Next, we show that the second term of (23) is of order O(r1−α
n ). In fact,

B2 =
1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k L−∆kW+∆k M≤hθ

n ,bhn+∆k M≤2hθ
n}

≤ 1
c

∑n
k=1(bhn + ∆k M)

nhn
I{bhn+∆k M≤2hθ

n}

=
1
c

∑n
k=1(

∫ tn
k

tn
k−1

∫ 2hθ
n

0 xµ(dx, dt))

nhn
I{bhn+∆k M≤2hθ

n}

≤ 1
c

∑n
k=1(

∫ tn
k

tn
k−1

∫ 2hθ
n

0 xµ(dx, dt))

nhn
. (25)

Using Assumption 2 and the law of large numbers, we establish that:

E[
1
c

∑n
k=1(

∫ tn
k

tn
k−1

∫ 2hθ
n

0 xµ(dx, dt))

nhn
] =

1
c

∫ 2hθ
n

0
xν(dx) ∼ hθ(1−α)

n

and:
B2 = O(hθ(1−α)

n ).

Thus, I4 = Op(nh1+(1−2θ)
n + hθ(1−α)

n ).

Finally, combining (i)–(iv) leads to ρ̂ − ρ =
1√
nhn

(Zhn + Thn) + Op(nh1+(1−2θ)
n +

hθ(1−α)
n ). Note that Zhn and Thn are independent. It follows that the result of the theo-

rem holds.

The convergence rate of Φ̂(u) depends on the choice of hn, mn, and Mn. The following
theorem establishes the convergence rate of the integrated squared error of Φ̂(u).

Theorem 2. Under Assumptions 1–3, as n→ ∞,

‖Φ̂(u)−Φ(u)‖2 = OP

(
max{nκ1+3κ2−1, nκ2−2κ1θ(1−α), n1−κ1(2−2θ)+κ2 ,

1
Mn
}
)

. (26)

Proof. By (13), we have:

‖Φ̂(u)−Φ(u)‖2 =
∫ ∞

0

∣∣∣∣ 1
2π

∫ Mn

mn
e−iusF̂Φ(s)ds +

1
2π

∫ −mn

−Mn
e−iusF̂Φ(s)ds−Φ(u)

∣∣∣∣2du. (27)

Using Parseval’s identity, we obtain that:

‖Φ̂(u)−Φ(u)‖2 .
1

2π

∫
mn<|s|<Mn

∣∣∣∣ c(1− ρ̂)

ψ̂Y(−s)
− c(1− ρ)

ψY(−s)

∣∣∣∣2ds

+
1

2π

∫
|s|≥Mn

|FΦ(s)|2ds +
1

2π

∫
|s|≤mn

|FΦ(s)|2ds

= q1 +q2 +q3. (28)
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Note that:

q1 =
1

2π

∫
mn<|s|<Mn

∣∣∣∣ (c− µ1)[ψ̂Y(−s)− ψY(−s)] + cψY(−s)[ρ̂− ρ]

ψ̂Y(−s)ψY(−s)

∣∣∣∣2ds

.
∫

mn<|s|<Mn

∣∣∣∣ (c− µ1)[ψ̂Y(−s)− ψY(−s)]
ψ̂Y(−s)ψY(−s)

∣∣∣∣2ds

+
∫

mn<|s|<Mn

∣∣∣∣ c[ρ̂− ρ]

ψ̂Y(−s)

∣∣∣∣2ds. (29)

Using the fact that |ψY(−s)| > s(c− µ1) and Theorem 4.1 in You and Cai [33], we
establish that:∫

mn<|s|<Mn

∣∣∣∣ (c− µ1)[ψ̂Y(−s)− ψY(−s)]
ψ̂Y(−s)ψY(−s)

∣∣∣∣2ds = OP(
1

nhn
m−3

n ) (30)

and: ∫
mn<|s|<Mn

∣∣∣∣ c[ρ̂− ρ]

ψ̂Y(−s)

∣∣∣∣2ds = OP(
1

nhn

1
mn

) + OP((nh2−2θ
n + h2θ(1−α)

n )
1

mn
). (31)

By Lemma 1 in Zhang and Yang [11], we have q2 = O(
1

Mn
) and q3 = O(mn). Then,

combining (30), (31), and Assumption 3 leads to:

‖Φ̂(u)−Φ(u)‖2 = OP

(
max{nκ1+3κ2−1, nκ2−2κ1θ(1−α), n1−κ1(2−2θ)+κ2 ,

1
Mn
}
)

.

5. Conclusions

In this paper, the threshold and Fourier transform (inversion) techniques were em-
ployed to construct a new estimator of ruin probability for the spectrally negative Lévy
process. The convergence rate of the integrated squared error (ISE) of the estimator was ob-
tained when the jump component was the tempered α-stable subordinator. This shows that
the ISE of the estimated ruin probability function is well controlled. Further work includes,
but is not limited to deriving the asymptotic distribution of the proposed estimator and
making statistical inference for ruin probability, under the framework that the risk model
is a spectrally negative Lévy process with dividend strategy and investment. Furthermore,
statistical inference for the Gerber–Shiu function and the dividend function are worthy
of study.
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