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Abstract: We apply the polynomial least squares method to obtain approximate analytical solutions
for a very general class of nonlinear Fredholm and Volterra integro-differential equations. The
method is a relatively simple and straightforward one, but its precision for this type of equations is
very high, a fact that is illustrated by the numerical examples presented. The comparison with previ-
ous approximations computed for the included test problems emphasizes the method’s simplicity
and accuracy.

Keywords: Volterra and Fredholm nonlinear integro-differential equations; approximate analytic
polynomial solution; polynomial least squares method

1. Introduction

Integro-differential equations are important in both pure and applied mathematics,
with multiple applications in mechanics, engineering, physics, etc. The behavior and
evolution of many physical systems in many fields of science and engineering, including,
for example, visco-elasticity, evolutionary problems, fluid dynamics, the dynamics of
populations and many others, may be successfully modeled by using integro-differential
equations of the Fredholm or Volterra type.

The beginning of the theory of integral equations can be attributed to N. H. Abel
(1802–1829), who formulated an integral equation in 1812 by studying a problem of me-
chanics. Since then, many other great mathematicians, including T. Lalescu (who wrote the
world’s first dissertation of integral equations in 1911), A. Cauchy (1789–1857), J. Liouville
(1809–1882), V. Volterra (1860–1940), I. Fredholm (1866–1927), D. Hilbert (1862–1943), and
E. Picard (1856–1941) have contributed to the field of integral and integro-differential
equations. In the 20th century, the theory of integral equations presented a strong de-
velopment regarding both the perspective of its applications and the actual methods of
computation of the solutions. Among the main methods used in the study of integral
and integro-differential equations, we mention fixed point methods, variational methods,
iterative methods, numerical methods and approximate methods.

The class of equations studied in this paper has the following general expression:

n
∑

j=0
pj(x)× u(j)(x) = f (x) + λ1 ×

x∫
a

k1(x, s)× g1(s, u(s), u′(s)) ds

+ λ2 ×
b∫
a

k2(x, s)× g2(s, u(s), u′(s)) ds,
(1)
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and, depending on the problem, may have attached a set of boundary conditions of
the following type:

n−1

∑
j=0

[
αij × u(j)(a) + βij × u(j)(b)

]
= µi, i = 0, ..., n− 1. (2)

Here, a, b, λ1, λ2 are constants and we assume that the functions pj (j = 0, ..., n), f , k1,
k2, g1, g2 have suitable derivatives on [a, b] such that the problem consisting of Equation (1)
together with the set of conditions of (2) (if present) admits a solution.

We remark that this class of equations evidently includes both Fredholm- and Volterra-
type equations, linear and nonlinear equations and, also, both integro-differential and
integral equations, so it is a very general class of equations indeed.

While the qualitative properties of integro-differential equations are thoroughly stud-
ied ([1,2]), leaving aside a relatively small number of exceptions (mostly test problems,
such as the ones included as examples), the exact solution of a nonlinear integro-differential
equation of the type (1) cannot be found, and numerical solutions or approximate analytical
solutions must be computed. Of these two types of solutions, the approximate analytical
ones are usually more useful if any subsequent computation involving the solution must
be performed.

Of course, many approximation techniques have been proposed for the computation
of analytic approximations of integro-differential Fredholm and Volterra equations, such as,
for example, the following: Taylor expansion methods ([3,4]), Tau methods ([5,6]), the ho-
motopy perturbation method ([7]), the Bessel polynomials method ([8]), Legendre methods
([9]), the Bernoulli matrix method ([10]), the Haar wavelet method ([11–13]), collocation
methods ([14,15]), the Bernstein–Kantorovich operators method ([16]), Cattani’s method
([17]), the variational iteration method ([18]), the Bernstein polynomials-based projection
method ([19]), the block pulse functions method ([20–22]), the modified decomposition
method ([23]), and the differential transform method ([24]).

2. The Polynomial Least Squares Method

We associate to the problem (1) and (2) the following operator:

D(u) =
n
∑

j=0
pj(x)× u(j)(x)− f (x)− λ1 ×

x∫
a

k1(x, s)× g1(s, u(s), u′(s))ds

−λ2 ×
b∫
a

k2(x, s)× g2(s, u(s), u′(s))ds.
(3)

Let uapp denote an approximate solution of (1). If we replace the exact solution u of
(1) with uapp, then the error corresponding to this replacement can be described by the
so-called remainder:

R(x, uapp) = D(uapp(x)), x ∈ [a, b]. (4)

We find approximate polynomial solutions uapp of (1) and (2) on [a, b] such that uapp
satisfies the following conditions:

|R(x, uapp)| < ε, (5)

n−1

∑
j=0

[
αij × u(j)

app(a) + βij × u(j)
app(b)

]
= µi, i = 0, ..., n− 1. (6)

Definition 1. An approximate polynomial solution uapp, which satisfies the relations (5) and (6),
is called a ε-approximate polynomial solution of the problem (1) and (2).
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Definition 2. An approximate polynomial solution uapp satisfying the relation
b∫
a

R2(x, uapp)dx ≤

δ together with the initial conditions (6), is called a weak δ-approximate polynomial solution of the
problem (1) and (2).

Definition 3. Let there be the sequence of polynomials Pm(x) = a0 + a1x + ... + amxm, ai ∈ R,
i = 0, 1, ..., m which satisfy the following conditions:

n−1

∑
j=0

[
αij × P(j)

m (a) + βij × P(j)
m (b)

]
= µi, i = 0, ..., n− 1.

The sequence of polynomials Pm(x) is called convergent to the solution of the problem
(1) and (2) if lim

m→∞
D(Pm(x)) = 0.

We can prove the following theorem regarding the convergence of the method.

Theorem 1. If Tm(x) denotes a weak ε-approximate polynomial solution of the problem (1) and (2),
then the necessary condition for the problem to admit a sequence of polynomials Pm(x) convergent

to its solution is as follows: lim
m→∞

b∫
a

R2(x, Tm)dx = 0.

Proof. We compute a weak ε-polynomial solution:

ũ(x) =
m

∑
k=0

ck × xk, m > n. (7)

The constants c0, c1, ..., cm are determined by performing the computations included
in the following steps:

• First, we replace the approximate solution (7) in the Equation (1), obtaining the
following expression:

R(x, c0, c1, ..., cm) = R(x, ũ) =
n

∑
j=0

pj(x)× ũ(j)(x)− f (x)

−λ1 ×
x∫
a

k1(x, s)× g1(s, ũ(s), ũ′(s)) ds− λ2 ×
b∫
a

k2(x, s)× g2(s, ũ(s), ũ′(s)) ds.

(8)

If we could find the constants c0
0, c0

1, ..., c0
m such that R(x, c0

0, c0
1, ..., c0

m) = 0 ∀x ∈ [a, b]
and if the corresponding expressions of (2) (if included in the problem)

n−1

∑
j=0

[
αij × ũ(j)(a) + βij × ũ(j)(b)

]
= µi, i = 0, ..., n− 1 (9)

are also satisfied, then by substituting c0
0, c0

1, ..., c0
m in (7), we find the exact solution of

(1) and (2).
• Next, we associate to (1) and (2) the following functional:

J(cn, cn+1, ..., cm) =

b∫
a

R2(x, c0, c1, ..., cm)dx (10)

where c0, c1, ..., cn−1 may be determined as functions of cn, cn+1, ..., cm by means of the
conditions (9) (if such conditions are included). If the conditions are not included,
then J is simply a function of c0, c1, ..., cm (as in the case of our last example).

• If the conditions are included, we compute c0
n, c0

n+1, ..., c0
m as the values correspond-

ing to the minimum of the functional (10) and c0
0, c0

1, ..., c0
n−1 again as functions of
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c0
n, c0

n+1, ..., c0
m by using the initial conditions. If the conditions are not included, then

c0
0, c0

1, ..., c0
m are the values that correspond to the minimum of the functional.

• Using c0
0, c0

1, ..., c0
m computed at the previous step, we construct the following polyno-

mial:

Tm(x) =
m

∑
k=0

c0
k xk. (11)

Considering the relations (8)–(11) and the way the coefficients of Tm(x) are computed,
it can be deduced that the following inequality holds:

0 ≤
b∫

a

R2(x, Tm(x))dx ≤
b∫

a

R2(x, Pm(x))dx, ∀m ∈ N.

Hence,

0 ≤ lim
m→∞

b∫
a

R2(x, Tm(x))dx ≤ lim
m→∞

b∫
a

R2(x, Pm(x))dx = 0.

Thus,

lim
m→∞

b∫
a

R2(x, Tm(x))dx = 0.

From the above limit, we deduce that ∀ε > 0, ∃m0 ∈ N such that ∀m ∈ N, m > m0, it
follows that Tm(x) is a weak ε-approximate polynomial solution of (1) and (2).

Remark 1. We observe that if ũapp is a ε-approximate polynomial solution of (1) and (2), then
ũapp is also a weak ε2 × (b− a)-approximate polynomial solution. However, the reciprocal property
is not always true. As a consequence, we deduce that the set of weak approximate solutions of (1)
and (2) contains also the approximate solutions of the problem.

As a consequence of the previous Remark, in order to compute ε-approximate polyno-
mial solutions of the problem (1) and (2) by the polynomial least squares method (from now
on denoted as PLSM), we first compute the weak approximate polynomial solutions, ũapp.
If |R(t, ũapp)| < ε, then ũapp is also a ε-approximate polynomial solution of the problem.

Remark 2. Regarding the practical implementation of the method, we wish to make the following
remarks:

• Regarding the choice of the degree of the polynomial approximation, in the computations, we
usually start with the lowest degree (i.e., first degree polynomial) and compute successively
higher degree approximations until the error (see next item) is considered low enough from a
practical point of view for the given problem (or, in the case of a test problem, until the error
is lower than the error corresponding to the solutions obtained by other methods). Of course,
in the case of a test problem when the known solution is a polynomial, one may start directly
with the corresponding degree, but this is just a shortcut and by no means necessary when
using the method.

• If the exact solutions of the problem are not known, as would be the case of a real-life problem,
and as a consequence, the error cannot be computed, then instead of the actual error, we can
consider as an estimation of the error the value of the remainder R (4) corresponding to the
computed approximation, as mentioned in the previous remark.

• If the problem has an (unknown) exact polynomial solution, it is easy to see if PLSM has found
it since the value of the minimum of the functional in this case is actually 0. In this situation,
if we keep increasing the degree (even though there is no point in that), from the computation,
we obtain that the coefficients of the higher degrees are actually zero.



Mathematics 2021, 9, 2692 5 of 13

• Regarding the choice of the optimization method used for the computation of the minimum of
the functional (9), if the solution of the problem is a known polynomial (such as in the case of
Application 1, Application 3, Application 5 and Application 6) we usually employ the critical
(stationary) points method, because in this way, by using PLSM, we can easily find the exact
solution. Such problems are relatively simple ones; the expression of the functional (9) is also
not very complicated; and indeed, the solutions can usually be computed even by hand (as in
the case of this application). In general, no concerns of conditioning or stability arise.
However, for a more complicated (real-life) problem, when the solution is not known (or even if
the exact solution is known but not polynomial), we would not use the critical points method.
In fact, we would not even use a iterative-type method, but rather a heuristic algorithm, such
as differential evolution or simulated annealing. In our experience, with this type of problem,
even a simple Nelder–Mead-type algorithm works well (as was the case for the following
Application 2, Application 4 and Application 7). In fact, Application 4 includes a small
comparison of several optimization methods.

• Finally, we remark that in the case when the solution of the problem is not analytic, the
convergence of the PLSM solutions will be slower; another basis of functions (wavelets, and
piecewise polynomials) should be used to control the approximation levels.

3. Numerical Examples

In this section, we apply PLSM to several well-known test problems, and we compare
the solutions obtained by using PLSM with solutions previously computed by means of
other methods.

The computations are performed using the Wolfram Mathematica software.

3.1. Application 1: First Order Nonlinear Fredholm Integro-Differential Equation

The first application is an an initial-value problem, including a first-order nonlinear
Fredholm integro-differential equation ([7]):

u′(x) = 1− e−1 +
1∫

0
e−u′(s)ds,

u(0) = 0.
(12)

The problem (12) has the exact solution ue = x. As the solution is a polynomial, we
expect PLSM to be able to compute this exact solution.

Choosing a first order polynomial, ũ(x) = c1 × x + c0, from the initial condition, it
follows that c0 = 0, so ũ(x) = c1 × x.

The corresponding remainder (4) is as follows:

R(x, c1) = R(x, ũ(x)) = c1 − e−c1 +
1
e
− 1

and the corresponding functional (10) is as follows:

J(c1) =
1∫

0
R2(x, c1)dx = 2e−2c1−1 × (ec1 + 1)× (ec1 × (e× (c1 − 1) + 1)− e).

It is easy to show that the stationary point is c1 = 1, and this is indeed a minimum of
the functional.

We conclude that, as expected, PLSM can find the exact solution of (12).

3.2. Application 2: Second Order Fredholm Integro-Differential Equation

The second application is a problem including a linear second order Fredholm integro-
differential equation ([5]):

u′′(x) = u(x)− 4
π

π∫
0

u(s) cos(x− s) ds,

u(0) = 1, u′(π) = 0.
(13)
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The problem (13) has the exact solution ue(x) = cos(x).
Choosing a fifth degree polynomial of the following type,

ũ(x) = c0 + c1 × x + c2 × x2 + c3 × x3 + c4 × x4 + c5 × x5

from the initial conditions, it follows that c0 = 1 and c1 = −2πc2 − 3π2c3 − 4π3c4 − 5π4c5.
Replacing c0 and c1 in ũ(x) we compute the remainder (8) as follows:

R(x, c2, c3, c4, c5) = R(x, ũ(x)) =
1
π
(c2(−x2 + 2πx + 2)− x3(c3 − 20c5) + 3(2 + π2)c3x+

+π3x(4c4 + 5πc5)− c4x4 + 12c4x2 − c5x5 − 1)− 4 sin(x)((4 + π2)c2 + 6π(c3 − 20c5)+
+2π3(c3 + 2(5 + π2)c5) + 3(−16 + 4π2 + π4)c4 − 2) + 4 cos(x)(2π(c2 + 2(6 + π2)c4)+
+3(4 + π2)c3 + 5(−48 + 12π2 + π4)c3).

We minimize the corresponding functional J(c2, c3, c4, c5) (10) (whose expression is
too large to be presented), and the corresponding values of the constants are as follows:

c2 = −0.495256234419017, c3 = −0.014423630344293588,

c4 = 0.0570671588506153, c5 = −0.00726601260392728.

We compute c0 and c1 by using again the initial conditions obtaining the approximation:

ũ(x) = −0.007266012603927289× x5 + 0.0570671588506153× x4

−0.014423630344293588× x3 − 0.495256234419017× x2 − 0.000028778804548323933× x + 1.

Figure 1 shows the plot of the absolute error corresponding to the above approximation
(as the difference in absolute value between the exact solution and the approximation):

Figure 1. The absolute error of the 5th degree approximation by PLSM for problem (13).

In the same manner, we compute the polynomial approximate solutions of several
other degrees, including the following 7th and 9th degree approximations:

• The 7th degree polynomial approximation:

ũ(x) = 0.00018041589065861824× x7 − 0.0019837763283978385× x6

+0.0010565364433122195× x5 + 0.04064970121350719× x4

+0.0004810728874007701× x3 − 0.5000823975257741× x2

−2.0682771051383497× 10−9 × x + 1,
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• The 9th degree polynomial approximation:

ũ(x) = −2.562518981850636× 10−6 × x9 + 0.000036226759498841756× x8

−0.000029771048432999026× x7 − 0.0013411879139737842× x6

−0.00004669167457397479× x5 + 0.04169310448407386× x4

−7.6134363553432504× 10−6 × x3 − 0.49999919540973176× x2

−3.2152058793144533× 10−13 × x + 1.

Table 1 compares the absolute errors of the approximation obtained by using the
operational Tau method ([5]) and of the approximations obtained by using PLSM.

We remark that the solution presented in [5] is a piecewise constructed function
consisting of 7 polynomials of 5th degree.

As the comparison clearly shows, the PLSM solutions, even though they consist of a
single polynomial (and thus, are much easier to work with) offer much better accuracy.

Moreover, Table 1 illustrates the convergence of the method since the error decreases
quickly when the degree of the polynomial approximation increases.

Table 1. Absolute errors of the approximations for problem (13).

x [5] PLSM 5th PLSM 7th PLSM 9th

0 0 0 0 0

0.3 1.070× 10−6 1.369× 10−4 4.933× 10−7 3.500× 10−9

0.7 5.452× 10−6 4.566× 10−6 1.478× 10−6 6.276× 10−9

0.99 3.847× 10−3 2.056× 10−4 6.660× 10−7 3.966× 10−9

1.19 4.273× 10−3 2.328× 10−4 1.932× 10−6 8.115× 10−9

1.49 4.591× 10−3 6.864× 10−4 7.601× 10−7 5.214× 10−9

1.97 7.285× 10−4 2.352× 10−4 1.881× 10−6 7.227× 10−9

2.27 6.066× 10−4 1.407× 10−4 4.163× 10−7 8.899× 10−9

2.66 1.771× 10−3 1.238× 10−4 8.749× 10−7 5.308× 10−9

3.06 3.173× 10−4 3.749× 10−6 3.332× 10−7 2.236× 10−9

3.3. Application 3: Voltera Integro-Differential Equation

We consider a Voltera integro-differential equation together with the initial condi-
tion [21]):

u(x) +
x∫

0
sin(x− s)u(s)u′(s) ds = 2x3 + x2 − 12x + 12 sin(x),

u(0) = 0.
(14)

The problem (14) has the exact solution ue(x) = x2.
Choosing the approximate solution as a second degree polynomial, ũ(x) = c2x2 +

c1x + c0 and following the steps described in the PLSM algorithm, the exact solution of
the problem is computed.

We remark that the numerical approximation ubp computed in [21] using block-pulse
and hybrid functions leads to errors between 10−4 and 10−6 .
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3.4. Application 4: Nonlinear Volterra Integral Equation

The next application is a nonlinear Volterra integral equation ([11]):

u(x) +
x∫

0

(u2(s) + u(s)) ds =
3
2
− 1

2
e−2x. (15)

The problem has the exact solution ue = e−x.
Employing the same PLSM steps used in the previous examples, we calculated several

approximate polynomial solutions. Regarding the computation of the minimum of the
functional J (10), we wish to make the following remark: As addressed in Remark 2.2,
the method of the computation of the minimum is not specified as a part of the PLSM
algorithm. In the previous applications, where the exact solutions were polynomial, it
seemed natural to use the critical/stationary points method since this way, it is easy to
find the exact solution. However, when the solution is not known (or known but not a
polynomial), it could be preferable to use other types of optimization algorithms, such as,
for example, heuristic algorithms. In the following, we present several approximations
obtained by using different optimization algorithms:

• The 7th degree polynomial approximation, using the stationary points method:

ũSP(x) = −0.00011345611365715616× x7 + 0.0012464556997988509× x6

−0.0082011259042975× x5 + 0.041596100222452324× x4

−0.16664543699098286× x3 + 0.4999966895170558× x2

−0.9999997806314149× x + 0.9999999964067919.

• The 7th degree polynomial approximation, using a differential evolution algorithm:

ũDE(x) = −0.00011316054070325334× x7 + 0.0012454011895116283× x6

−0.008199632407882492× x5 + 0.04159503453392284× x4

−0.16664503638050765× x3 + 0.49999661433923326× x2

−0.9999997747534194× x + 0.9999999962937947.

• The 7th degree polynomial approximation, using a simulated annealing algorithm:

ũSA(x) = −0.00011316266584759397× x7 + 0.0012454096786813414× x6

−0.008199645948810286× x5 + 0.04159504549729249× x4

−0.16664504110233055× x3 + 0.4999966153676161× x2

−0.9999997748484193× x + 0.999999996296008.

• The 7th degree polynomial approximation, using a Nelder–Mead algorithm:

ũNM(x) = −0.00011322093031151744× x7 + 0.0012456159806820094× x6

−0.008199935494443129× x5 + 0.041595249823780635× x4

−0.16664511685035832× x3 + 0.4999966293278488× x2

−0.9999997759134198× x + 0.9999999963157558.

In Table 2, we present the comparison of the absolute errors of these approximations.
Since in the case of this problem (and in fact, also in the case of the other test problems
studied), the functional J (10) does not have a particularly complicated expression, the
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influence of the optimization method is not very strong (but it could be significant if the
initial problem is a very difficult one).

Table 2. Absolute errors of the 7th degree approximations for problem (15) corresponding to different
optimization methods.

x Stationary
Points

Differential
Evolution

Simulated
Annealing Nelder–Mead

0 3.59× 10−9 3.71× 10−9 3.70× 10−9 3.68× 10−9

0.1 5.99× 10−10 6.31× 10−10 6.29× 10−10 6.24× 10−10

0.2 9.92× 10−10 1.02× 10−9 1.02× 10−9 1.01× 10−9

0.3 3.23× 10−10 3.16× 10−10 3.17× 10−10 3.17× 10−10

0.4 7.06× 10−10 7.32× 10−10 7.32× 10−10 7.26× 10−10

0.5 2.92× 10−10 2.86× 10−10 2.86× 10−10 2.86× 10−10

0.6 5.99× 10−10 6.22× 10−10 6.22× 10−10 6.17× 10−10

0.7 2.49× 10−10 2.43× 10−10 2.43× 10−10 2.44× 10−10

0.8 4.62× 10−10 4.86× 10−10 4.86× 10−10 4.80× 10−10

0.9 4.83× 10−10 4.96× 10−10 4.97× 10−10 4.93× 10−10

Using PLSM with the Nelder–Mead algorithm, we compute approximations of differ-
ent degrees. In the comparison, we use the following approximate solutions:

• The 4th degree polynomial approximation:

ũ(x) = 0.025564089018833714× x4 − 0.1536250257345637× x3

+0.49533159454597286× x2 − 0.9993502611714822× x + 0.9999785976907262,

• The 5th degree polynomial approximation:

ũ(x) = −0.005103615073120197× x5 + 0.03831931089978327× x4

−0.1649623295804923× x3 + 0.49958537488677296× x2

−0.9999592285676391× x + 0.9999990375530758,

• The 6th degree polynomial approximation:

ũ(x) = 0.0008493990830576847× x6 − 0.007651380196990966× x5

+0.041214310857115605× x4 − 0.16650657021254095× x3

+0.49997167809885856× x2 − 0.9999979253765494× x + 0.99999996317233,

• The 7th degree polynomial approximation:

ũ(x) = −0.00011322093031151744× x7 + 0.0012456159806820094× x6

−0.008199935494443129× x5 + 0.041595249823780635× x4

−0.16664511685035832× x3 + 0.4999966293278488× x2

−0.9999997759134198× x + 0.9999999963157558.

Equation (15) was previously solved by employing the hybrid Taylor block-pulse
functions method ([20]) and by employing a combination of the Newton–Kantorovich and
Haar wavelet methods ([11]).
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Table 3 presents the comparison of the best absolute errors corresponding to these
methods and to the above approximations computed by PLSM. In Figure 2, we present the
absolute errors corresponding to several of the above PLSM approximations.

Table 3. Absolute errors of the approximations for problem (15).

x [20] [11] PLSM 4th PLSM 5th PLSM 6th PLSM 7th

0 0 7.90× 10−3 2.14× 10−5 9.62× 10−7 3.68× 10−8 3.68× 10−9

0.1 8.33× 10−4 2.33× 10−4 2.14× 10−5 3.68× 10−7 8.57× 10−9 6.24× 10−10

0.2 3.75× 10−4 1.28× 10−5 2.95× 10−6 1.67× 10−7 1.16× 10−8 1.01× 10−9

0.3 1.11× 10−3 4.25× 10−4 5.66× 10−6 2.66× 10−7 7.86× 10−10 3.17× 10−10

0.4 3.51× 10−4 3.46× 10−7 6.05× 10−5 8.43× 10−8 1.03× 10−8 7.26× 10−10

0.5 5.80× 10−4 1.19× 10−4 3.33× 10−7 2.85× 10−7 3.22× 10−10 2.86× 10−10

0.6 1.32× 10−4 7.97× 10−6 6.27× 10−6 6.16× 10−8 1.02× 10−8 6.17× 10−10

0.7 1.95× 10−4 2.41× 10−4 5.14× 10−6 2.69× 10−7 1.77× 10−10 2.44× 10−10

0.8 1.73× 10−4 2.74× 10−5 3.31× 10−6 1.45× 10−7 1.11× 10−8 4.80× 10−10

0.9 3.68× 10−4 2.56× 10−4 7.75× 10−6 3.53× 10−7 8.47× 10−9 4.93× 10−10

Figure 2. The absolute errors of the 5th, 6th and 7th degree PLSM approximations for problem (15).

Again, the comparison in Table 3 clearly shows the precision of our method and,
together with Figure 2, at the same time illustrates its quick convergence.
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3.5. Application 5: Volterra–Fredholm Integro-Differential Equation

The next example is the Volterra–Fredholm integro-differential equation together with
the corresponding condition ([22]):

u′(x)− 5× exp(x− 1) + 2× exp(x) + x2 × sin(2x)− 2x + 2× sin(x)− 2× sin(2x)

+2x× cos(2x)−
1∫

0
exp(x− s)× u(s) ds−

x∫
0

cos(x + s)× u(s) ds = 0,

x(0) = 0.

(16)

While the errors of the approximation computed in ([22]) are of the order of 10−3, by
using PLSM, we can find the exact solution of (16), ue = x2.

3.6. Application 6: Fourth Order Nonlinear Volterra–Fredholm Integro-Differential Equation

The next example is the nonlinear Volterra–Fredholm integro-differential equation
together with the corresponding conditions ([24]):

x4 × u(4)(x)− u′′(x) + u′(x) +
x6

30
+

x4

6
+

x2

2
− 14x

3
+

1
2

−
x∫

0
(x− s)× u2(s) ds + 2×

1∫
0
(x + s)× u(s) ds = 0,

x(0) = 1, x′(0) = 0, x′′(0) = 2, x′′′(0) = 0.

(17)

Using PLSM, we can find again the exact solution, ue = x2 + 1.

3.7. Application 7: Eighth Order Volterra–Fredholm Integro-Differential Equation

The last example is the Volterra–Fredholm integro-differential equation together with
the corresponding conditions ([18,19]):

u(8)(x)− u(x) + 8× ex − x2 −
1∫

0
x2 × u′(s) ds = 0,

x(0) = 1, x′(0) = 0, x′′(0) = −1, x′′′(0) = −2,
x(4)(0) = −3, x(5)(0) = −4, x(6)(0) = −5, x(7)(0) = −6.

(18)

The problem has the exact solution ue = (1− x)× ex.
Table 4 shows the comparison between our solutions and the solutions computed

in [18] by using the variational iteration method (15th degree polynomial) and in [19] by
using a projection method based on generalized Bernstein polynomials (15 terms).

Table 4. Absolute errors of the approximations for problem (18).

x [18] 15th [19] n = 15 PLSM 13th PLSM 14th PLSM 15th

0.2 1.1× 10−16 1.6× 10−12 6.7× 10−16 1.1× 10−16 1.1× 10−16

0.4 1.2× 10−14 1.7× 10−12 6.3× 10−14 1.1× 10−15 1.0× 10−16

0.6 6.6× 10−13 1.4× 10−12 4.5× 10−13 4.2× 10−15 1.1× 10−16

0.8 1.2× 10−11 6.3× 10−13 1.2× 10−12 5.4× 10−15 5.6× 10−17

1.0 1.1× 10−10 8.0× 10−12 1.9× 10−12 5.3× 10−15 1.7× 10−17

4. Conclusions

The paper presents the polynomial least squares method as a simple and straightfor-
ward but efficient and accurate method to calculate approximate polynomial solutions for
nonlinear integro-differential equations of the Fredholm and Volterra type.

The main advantages of PLSM are as follows:
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• The simplicity of the method—the computations involved in PLSM are as straightforward
as possible (in fact, in the case of a lower degree polynomial, the computations can be
easily carried out by hand; see Application 1).

• The accuracy of the method—this is well illustrated by the applications presented since
by using PLSM, we could compute approximations more precisely than the ones
computed in previous papers. We remark that, even though we only included a
handful of (significant) test problems, we actually tested the method on most of the
usual test problems for this type of equation. In all the cases when the solution was a
polynomial (which is a frequent case), we could find the exact solution, while in the
cases when the solution was not polynomial, most of the time we were able to find
approximations that were at least as good (if not better) than the ones computed by
other methods.

• The simplicity of the approximation—since the approximations are polynomial, they also
have the simplest possible form and thus, any subsequent computation involving the
solution can be performed with ease. While it is true that for some approximation
methods which work with polynomial approximations the convergence may be very
slow, this is not the case here (see, for example, Application 2, Application 4 and
Application 7, which are representative for the performance of the method).

We remark that the class of equations presented here is a very general one, including
most of the usual integro-differential Fredholm and Volterra problems. However, we also
wish to remark that since the method itself is not really dependent on a certain expression of
the equation, it could be easily adapted to solve other different types of difficult problems.
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