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Abstract: In this paper, we provide a mathematical and statistical methodology using heteroscedastic
estimation to achieve the aim of building a more precise mathematical model for complex financial
data. Considering a general regression model with explanatory variables (the expected value
model form) and the error term (including heteroscedasticity), the optimal expected value and
heteroscedastic model forms are investigated by linear, nonlinear, curvilinear, and composition
function forms, using the minimum mean-squared error criterion to show the precision of the
methodology. After combining the two optimal models, the fitted values of the financial data are
more precise than the linear regression model in the literature and also show the fitted model forms in
the example of Taiwan stock price index futures that has three cases: (1) before COVID-19, (2) during
COVID-19, and (3) the entire observation time period. The fitted mathematical models can apparently
show how COVID-19 affects the return rates of Taiwan stock price index futures. Furthermore, the
fitted heteroscedastic models also show how COVID-19 influences the fluctuations of the return rates
of Taiwan stock price index futures. This methodology will contribute to the probability of building
algorithms for computing and predicting financial data based on mathematical model form outcomes
and assist model comparisons after adding new data to a database.

Keywords: heteroscedasticity; model form selection; complex financial data

1. Introduction

Complex financial time-series data are difficult to fit using a simple model for the core
model in artificial intelligence. If we seek to build a more precise model, a simple model
form cannot achieve this aim; at the same time, imprecise errors can lead to uncontrollable
situations. Researchers have discussed numerous methodologies to solve the discordance
between the data regression and the biasedness of the estimation in the traditional regres-
sion analysis. For example, data are not independent and identically distributed from a
normal distribution. Models are not commonly in linear, quadratic, or cubic form, but in a
more complex form. Heteroscedasticity or serial correlation might exist in the data. Those
are the three main misspecifications in the regression analysis and the main reasons it is
difficult to find a precise model for the data.

The first misspecification that data are not i.i.d. from a normal distribution biases
the coefficient estimation in the maximum likelihood estimation (MLE). Golden et al. [1]
mentioned this misspecification and viewed it as a kind of model misspecification from
the wrong probability distribution. They considered the general and specific probability
function to formulate the likelihood function. However, a different conditional probabil-
ity distribution has its own parameter(s), which is estimated using the characteristic of
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Yt|Xt = f (Xt) = E(Yt|Xt), a regression model of the expected value. Without considering the
distribution assumption in the regression model of the expected value, the method of mo-
ments estimators (MME) and the generalized least-square (GLS) estimation are preferred
over the MLE method.

The second misspecification is the wrong model form of f (Xt), which is considered a
linear model in most of the literature. It should be noted that the residuals of the wrong
model form are biased from the errors. Some researchers have considered the cubic function
as the regression model and call it the curvilinear regression. Some academic researchers
considered the cubic function as the regression model and call it as the curvilinear re-
gression [2], or the quadratic form [3,4]. As researchers intend to generate a high-order
polynomial or curvilinear regression to build a more precise model form, an overfitting
problem occurs, especially in deep learning [5–8].

If we only consider the trend model, it is correct to focus on the overfitting problem.
If the reason for obtaining the precise model is to predict and to reduce the errors of the
model, then should we still follow the trend model up to power-to-three and avoid the
overfitting problem? We propose that the complex data pattern should be modeled by
using a mathematical model form. Mathematical models can be very complex, especially
when using the function composition. Such model can be complex for humans to calculate,
but it is a quick calculation for computers. By using computer calculation, we can aim to
find the precise mathematical model for complex data and are not limited by the linear
model form nor have to deal with the overfitting problems.

The third misspecification is heteroscedasticity and serial correlation. The latter is not
discussed in this paper, although the lagged period mainly determines the data prediction
and the reasonableness of the linear model assumption. As to the former, heteroscedasticity
is one of the main models of this paper and can reduce the errors in the data model. In the
literature, there is one common method using the series of the autoregressive (AR) model
to solve heteroscedasticity This method is applied to calculate the volatility of financial
data—time-series data [9]—such as the ARCH series model, the GARCH model [10–13],
and the EGARCH model [14,15].

To obtain the residuals, the above series of AR models depend on the linear regression
model form and normal distribution assumption, without considering whether or not the
data characteristics satisfy those assumptions. Even though the fitted linear regression
model and the prediction seem sound, addressing the second misspecification can solve
the problem that the residuals are biased from the errors. The correction of the error term
is for the precise fittings of the expected value model and the heteroscedastic model so that
we can find values of the dependent variables that contain a low error.

Data analysts face these three misspecifications simultaneously, so we attempt to find
the heteroscedastic model by following the approach of the expected value model and
combine them as a mathematical model, which will provide relative precision compared to
others. Because the errors are small enough in the mathematical model that we can find
out, the model is the optimal one for the complex financial data. A few pieces of literature
discuss this topic and the method for this kind of combination, but this is a very important
key for the core model in programming.

The example that we employed in this paper is Taiwan stock price index futures, which
is the financial derivate of the Taiwan stock price index and has the contract characteristic.
Another financial derivate is MSCI Morgan Taiwan index futures commonly invested by
Taiwan investors. The selected period includes the COVID-19 pandemic. The futures
characteristics lead to nonlinear and more complex function behavior in the closing prices
of Taiwan stock price futures. The example can show how the approach works to obtain
the mathematical model equations, which can be compared to other models and used to
find the change of Taiwan stock price index futures before and during COVID-19.

As our primary contribution, this paper provides an approach to heteroscedasticity
and model precision to solve the problem of misspecifications in the regression model.
This kind of approach can build a precise mathematical model of the data, which can
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be used in artificial intelligence algorithms to avoid the problems associated with the
criterion of accuracy indicators in order to visualize the mathematical form and further
compare the model forms while the new data are recorded in a database. The empirical
results of the example show that the COVID-19 pandemic affects the expected value model
and heteroscedastic model forms of Taiwan stock price index futures. The models of the
expected value and heteroscedasticity can be combined and reveal the highest precision
with the minimal mean-squared errors of the mathematical models.

The structure of this paper is as follows. Section 2 describes the methodology of
the models of the expected value and heteroscedasticity, and the nonlinear model forms
selection criteria and the optimal models for financial time-series data. Section 3 describes
the data source of observations including Taiwan stock price index futures, MSCI Morgan
Taiwan index futures, and Taiwan stock price index. Section 4 shows the results of the
estimation models of the expected value before and during COVID-19 and the results of
the heteroscedastic estimation models before and during COVID-19. Section 5 concludes
the paper.

2. Methodology

To address our research aim of finding the mathematical model of complex financial
data, we build the function f :{X}→ {Y}, where X = (X1,t, X2,t,· · · , Xp,t) ∈ < and Y = (Yt) ∈ <.
The estimated model is:

Yt = f
(
X1,t, X2,t, · · · , Xp,t

)
+ εt, (1)

where p = 1, 2, · · · , p, t = 1, 2,· · · , T and εt is the error term. The fitting correct form of
f (•) is difficult and induces the mistake of a wrong model form, which is labeled as δt.
Equation (1) becomes:

Yt = fw
(
X1,t, X2,t, · · · , Xp,t

)
+ δt + εt. (2)

Sometimes, the mistake from fitting the wrong model form might be a function of
X, that is δt = δ(X1,t, X2,t,· · · , Xp,t). In this situation, where the residuals include δt + εt
after the estimation, the biasness of the estimator always exists in heteroscedasticity, as
does the bias measure of the mean-squared error. We need to find the relatively precise
mathematical model of financial data to let δt be small enough so that fw(•) approximates
f (•), which achieves the aim of this paper.

2.1. Model of the Expected Value

We now illustrate the concept presented in this subsection in the context of the es-
timation of the expected value. In that case, we can confer the right interpretation to let
f w(•)→ f (•). The regression analysis always depends on the linear model form, which is
used to estimate the model of complex financial data as f w(•). More precisely, this is why
researchers always use the series of autoregressive models, such as the ARCH model or
GARCH model, to find the volatility of financial data. We can let f w(•) be linear, nonlinear,
or curvilinear model forms of the expected values of financial data. Suppose a nonlinear
model including the linear model is:

Yt =
p

∑
i=0

βiZi(Xi,t) + τt, (3)

where Zi(•) is a nonlinear model form from 37 mathematical functions (see Appendix A),
βi is the coefficients of Zi(•), and τt is the error term of (3), different from εt. τt follows a
specific probability distribution, P(τt), and satisfies E(τt) = E(Xi,t τt) = 0, i = 1, 2,· · · , p. The
optimal Zi(•) is determined by the maximum correlation coefficient after an explanatory
variable is transferred by 37 functions, that is max r(Yt, Z(Xi,t)). However, f (•) might be a
complex model form and cannot be formatted by a nonlinear model. We let τt approach εt,
implying the mistake of the model form for the expected value is as small as possible. The
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curvilinear regression is a good estimate for this paper. Because the curvilinear regression
is based on a Taylor expansion that expands from a point value of an explanatory variable,
the fitted values of (3) can be a new explanatory variable in the curvilinear regression
model and the average of the fitted values of (3) can be the average where the explanatory
variable is expanded. Therefore, (3) can be formed as:

Yt = H(Ŷt) + εt = f
(
V
(
Ŷt
))

+ εt. (4)

Let Ŷt be the fitted value of (3) at time t and H(•) is the general curvilinear regression
model form with higher power labelled by m. There are five model forms of V(•) used to
find the optimal curvilinear regression model form, and these are given as follows:

f
(
V
(
Ŷt
))

=
M

∑
m=0

βmV
(
Ŷt
)
=

M

∑
m=0

βm cosm(Ŷt π
)
, (5)

f
(
V
(
Ŷt
))

=
M

∑
m=0

βmV
(
Ŷt
)
=

M

∑
m=0

βm

(
1
Ŷt

)m
, (6)

f
(
V
(
Ŷt
))

=
M

∑
m=0

βmV
(
Ŷt
)
=

M

∑
m=0

βm
(
Ŷt
)m

, (7)

f
(
V
(
Ŷt
))

=
M

∑
m=0

βmV
(
Ŷt
)
=

M

∑
m=0

βm

(
Ŷt − Ŷt

)m

, (8)

f
(
V
(
Ŷt
))

=
M

∑
m=0

βmV
(
Ŷt
)
=

M

∑
m=0

βm
(
−Ŷt

)m

, (9)

where the optimal function form of V(•) is from the estimations of (5)–(9), where M is
determined by the maximum determination coefficient, R2. βm is the coefficient of V(•)
and m corresponds to the power from zero to M (up to 40). To determine the optimal value
of M, we record the mean-squared error after running one additional explanatory variable
with the power m + 1. The optimal M is determined by the minimal mean-squared error
from 40 mean-squared errors.

The approach for estimating the expected values is a type of two-stage generalized
least-square (GLS) estimation. The original two-stage least square estimation is based on
the instrument variables (IV) at the first stage and then uses the instrument variable as the
explanatory variable to run an OLS estimation. In this paper, we adapt a similar estimation
method but use the fitted values of (3) as the explanatory variable to run (4), instead of
building the instrument variable.

We have tried to solve the misspecification of the model for the expected value—to
reduce the effect of δt in the residuals as much as possible. Because the financial data
have complex time-series characteristics, the building model of the Taiwan futures index
and the explanatory variables should be investigated by the above estimations where the
determination of the optimal one should follow some criterions after the estimations of the
expected value.

2.2. Model of Heteroscedasticity

However, the residuals might/might not have heteroscedasticity and serial correlation
simultaneously. As we run the regression on the data, there is no information to know
if the data has heteroscedasticity and serial correlation. This is why, after the linear
regression model is estimated, heteroscedastic tests are used to test the residuals. The most
common residual setting is the squared errors as the dependent variable, such as the White
test [16], Goldfeld–Quandt test [17], Breusch–Pagan test [18], and Cook–Weisberg test [19].
Regarding the selection of explanatory variables in the heteroscedastic tests, there might be
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the original explanatory variables or other variables that do not occur in the linear model
of the expected value.

Different from the above tests, Glejser [20] chose the absolute values of the residu-
als as the dependent variable and then tested heteroscedasticity. The squared residuals
or the absolute values of the residuals can be used for the heteroscedastic tests because
heteroscedasticity is the conditional variances change with the values of the specific ex-
planatory variables, Var(Y|X) = [σ(X)]2 or Var(Y|X) = σ2 ψ(X). However, the absolute value
function is superior to the squared value function of the residuals in this paper. This is
because we cannot keep the root of the fitted values from the squared residual setting posi-
tive, building the combination of the models of the expected value and heteroscedasticity.
Thus, we consider the model of heteroscedasticity as:

|ε̂t| = G
(
X1,t, X2,t, · · · , Xp,t

)
+ ςt, (10)

where ε̂t is the residual at time t, ςt is the error term of (10) at time t, and G(•) is a regression
model that is the optimal one from the five mathematical functions after estimation (see
Equations (11)–(15)). Except for (11)–(15), G(•) also fitted the pure linear, nonlinear, and
curvilinear models in the forms of (5)–(9).

Equations (11) and (12) are the curvilinear regression expanded from the fitted values
of the linear and nonlinear regression, respectively. Equations (13) and (14) are types of
composite functions where the first step is to obtain the fitted values from the curvilinear
regression for each explanatory variable, and the second step is to run linear and nonlinear
regressions with the fitted values at the first step as the explanatory variable. The Wi,t of
Equation (13) is the estimated value of (13a). For the nonlinear regression of (14), Zi(•) or
Zj(•) are from 37 mathematical functions. Equation (15) is a benchmark model where there
is only one constant value: the average of the residuals. The optimal regression model is
selected by the criterion of the minimal mean-squared error.

G
(
X1,t, X2,t, · · · , Xp,t

)
=

M

∑
m=0

bmVm

(
p

∑
j=0

β jXj,t

)
, (11)

G
(
X1,t, X2,t, · · · , Xp,t

)
=

M

∑
m=0

bmVm

(
p

∑
j=0

β jZj
(
Xj,t
))

, (12)

G
(
X1,t, X2,t, · · · , Xp,t

)
=

p

∑
i=0

biWi,t, (13)

Wi = f (V(Xi,t)) =
M

∑
m=0

βmVm(Xi,t), (13a)

G
(
X1,t, X2,t, · · · , Xp,t

)
=

p

∑
i=0

biZi(Wi,t), (14)

G
(
X1,t, X2,t, · · · , Xp,t

)
= ε̂t. (15)

The advantage of (11) and (12) is that, at the first step, the model can display an
apparent trend and easily explain the effects of the explanatory variables in the multivariate
regression. The curvilinear regression at the second step can show slight fluctuations in the
heteroscedastic model. If Equation (11) or (12) were the optimal selection as the model form,
it means that the financial data first shows the main effect of the market power (a linear or
nonlinear form); meanwhile, data also shows the external effect as a cyclic fluctuation from
the market.

Equations (13) and (14) describe that the slight fluctuations are the main effect of the
data, so the curvilinear regression is applied at the first step. We regard the fitted values
calculated at the first step as the explanatory variable in the second step and then estimate
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a stable linear or nonlinear trend. The two equations imply that the data mainly exist as
adjusted effects of long-term cyclic policies or economic factors. The cyclic effect is involved
by repeatedly implementing short-term policies or interventions. Finally, the determination
of the optimal heteroscedastic model, (10), depends on the minimum mean-squared error
after the estimations of (11)–(15) and the pure linear, nonlinear, curvilinear models. Only
as we raise the precision of the model of the expected value will the residuals reveal more
explicit regularity to reduce the estimation errors.

The first advantage of adopting this kind of estimation methodology is that we do not
need to obey the normal distribution assumption of the regression model when the data’s
distribution is unknown. The assumptions of the regression model are always difficult to
satisfy with actual situations of the data; the data regularities are hard to estimate. The
second advantage is to reduce a great deal of information falling into the residuals. This is
caused by fitting a linear model onto the model of the expected value, which will be biased
from the error term and will induce the problem of representativeness. Thus, the complex
model forms are better than the linear model and suitable for fitting the relatively precise
model of (1) with the trend and the slight regularities; meanwhile, the residuals become
better represented than those from the linear estimation.

If we had only considered the model of the expected value, the maximal coefficient
of determination (R2) or the minimal mean-squared error would have been good criteria
for choosing the optimal model form. Now, however, we decompose the residuals as
a function of G(•) and try to build a more precise mathematical model of the data, (1),
combining Equations (4) and (5). The optimal model of (5) can reduce the unexplainable
part in the regression, so the criterion determining the most optimal model form is apparent
in order to use the minimal mean-squared error.

2.3. Back to the Expected Value Model with Heteroscedasticity

The error term in (1) can be replaced by the fitted heteroscedastic model, estimated
|εt|, with a positive or negative sign that can be assessed by the original signs of the
residuals. Thus, the estimated model of (1) can be shown by the combination of the fitted
models of the expected value, (4), and heteroscedasticity, (10). If the original residual (ε̂t) at
time t has a positive sign, then the estimated financial data will be:

Ŷ∗t = Ŷt + Ĝ
(
X1,t, X2,t, · · · , Xp,t

)
, (16)

where Ŷ∗t is the fitted value of the financial data at time t after model combination, Ŷt is the
fitted value of (4) at time t, and Ĝ

(
X1,t, X2,t, · · · , Xp,t

)
is the fitted value of (10) at time t.

If the original residual (ε̂t) at time t has a negative sign, then the estimated financial data
will be:

Ŷ∗t = Ŷt − Ĝ
(
X1,t, X2,t, · · · , Xp,t

)
, (17)

The previous regression analysis views the error term as a disappearance after the
estimation that is Yt = Ŷt. The error term in this paper can be fitted by the heteroscedastic
model, so Yt = Ŷt becomes Yt = Ŷt + ε̂t to achieve the aim of building a precise model.

The sign of ε̂t determines that the Ĝ
(
X1,t, X2,t, · · · , Xp,t

)
will be added in or deducted

due to εt = Yt − Ŷt. Because Ĝ(•) is the estimator of |ε̂t|, Yt shows as Ŷt + ε̂t = Ŷt ± | ε̂t| =
Ŷt± Ĝ(•). A positive/negative ε̂t leads Ĝ(•) with a positive/negative sign to be Yt = Ŷt + ε̂t
= Ŷt + |ε̂t| = Ŷt + Ĝ(•)/Yt = Ŷt + ε̂t = Ŷt − |ε̂t| = Ŷt − Ĝ(•). Due to the estimation model
of the expected value, adding the variance heterogeneity estimation model, (16) and (17),
will obtain the fitted financial data, with moving up and down determined by the signs of
the residuals. This method has the advantage of providing the precision of the comparison
between the actual and fitted values. Further, the difference can be calculated from the previous
and later-fitted values to obtain volatility. This volatility calculation is not limited to the normal
distribution assumption.
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3. Samples

The financial dataset is collected from the Taiwan Economic Journal Database (TEJ),
including Taiwan stock price index futures (close price after hour), the MSCI Morgen
Taiwan index futures, and Taiwan stock price index, from 17 January 2019–29 October 2020.
Because the MSCI Morgan Taiwan index futures did not trade after 30 October 2020 (MSCI
Morgan Taiwan Index Futures had been indexed and traded in the Singapore Exchange.
After the end of the T session on 30 October 2020, MSCI Morgan Taiwan Index Futures
was suspended from trading and made dormant thereafter. (https://www.kgieworld.sg/
futures/msci-taiwan-index-futures-notice)), only data up to 29 October 2020 is available;
there are a total of 431 observations. The daily return rate follows the formula:

Rt = (ln(Xt) − ln(Xt−1)) × 100%, (18)

and we obtain 430 return rates for each variable. Label Yt is the daily return rate of Taiwan
stock price index futures, X2,t is the daily return rate of the MSCI Morgen Taiwan index
futures, and X3,t is the daily return rate of the Taiwan stock price index. X1,t = t is the time
variable from 1 to 430.

In the literature, Albulescu [21,22] included the COVID-19 pandemic data of the
World Health Organization in the analysis and discussed the volatility influence of the S&P
500 index in the US financial market. Bakas and Trantafyllou [23] discussed the volatility
impact of the COVID-19 pandemic on the rate of return on broad commodity indices, crude
oil, and gold prices, using a five-factor VAR model based on a linear regression model with
time lags and errors assumed from a normal distribution. However, they did not provide
the fitted model form for the data affected by COVID-19. We adopt the above-mentioned
methodology to estimate the observations of the three cases separately and try to establish
the precise fitted models. The advantage of the fitted models can be compared to see the
impact of COVID-19. Suppose that Case 1 is the whole research time period, Case 2 is the
case before COVID-19 from 17 January 2019–21 February 2020, in a total of 260 observations,
and Case 3 is the case during COVID-19 from 24 February 2020–29 October 2020, in a total
of 170 observations.

Table 1 displays the descriptive statistics of Case 1. The medians are larger than
the averages for the three variables. Because Taiwan stock price index futures and MSCI
Morgan Taiwan index futures are the financial derivatives of the Taiwan stock price index,
the standard deviations in the first two columns are larger than the Taiwan stock price
index. Regarding the skewness, a negative skewness occurs in the Taiwan stock price index
futures and Taiwan stock price index, but the MSCI Morgan Taiwan index futures have
positive skewness. The kurtosis coefficients of the three variables are more than three,
showing relatively more centralization around the averages.

Table 1. Descriptive statistics of Case 1.

Coefficient Taiwan Stock Index Futures MSCI Morgan Taiwan Index Futures Taiwan Stock Price Index

Average 0.066722075 0.084405493 0.065726545
Median 0.144205694 0.099364733 0.10587686

Standard deviation 1.239145472 1.221479848 1.080300601
Skewedness −0.929358359 0.147509146 −0.62699578

Kurtosis 18.45493871 8.963828953 11.04849585

4. Fitted Models of the Expected Value

Firstly, we estimate the linear regression model as the standard one whose model form
is as (19) for Case 1, with the mean-squared error = 0.096555.

Yt = −0.008675− 1.654× 10−6X1 + 0.21622X2 + 0.87489X3. (19)

https://www.kgieworld.sg/futures/msci-taiwan-index-futures-notice
https://www.kgieworld.sg/futures/msci-taiwan-index-futures-notice
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Equation (19) shows a simple marginal effect between the Taiwan stock price index
futures and each explanatory variable. For the complex financial data, the associations will
not be so simple and have relatively large error values. From this study’s methodology,
because the expected value estimation has the two fitting stages, the fitted nonlinear models
of the expected value in Cases 1 to 3 at the first stage are shown as:

Yt = −0.008991− 1416082.025245X2
1,t sin(X1,t π)

+0.216882X2,t + 0.873813X3,t
(20)

YB
t = −0.004295− 4.255× 10−7X2

1,t cos(X1,t π)

+0.257638X2,t + 0.740951X3,t
(21)

YA
t = −0.151095 +

48.014736
X1,t

+ 0.205039X2,t + 0.924061X3,t, (22)

where Yt is the Taiwan stock price index futures in Case 1, YB
t is the Taiwan stock price

index futures before COVID-19 in Case 2, and YA
t is the Taiwan stock price index futures

during COVID-19 in Case 3. Comparing (20) and (21), we find that the time variable
changes the cycle periodic regularities from the cosine function in (21) to the sine function
in (20). All things being equal, the time variable reveals the change of the periodic effect
on the Taiwan stock price index futures when the time is from Case 2, pre-COVID-19, to
Case 1, where the period covers both pre-COVID-19 and during COVID-19.

Equation (22) shows the mathematical model of Taiwan stock price index futures
during COVID-19, and we can find that the COVID-19 event changes the main associations
of the time variable on the return rate of Taiwan stock price index futures, revealing a
reciprocal inverse effect on Taiwan stock price index futures during COVID-19. The MSCI
Morgan Taiwan index futures remain linear and show a similar marginal effect on the
return rate of Taiwan stock price index futures, but the Taiwan stock price index enlarges
the marginal effect on the return rate of Taiwan stock price index futures.

The fitted models at the second stage are the curvilinear regression models, and the
coefficients are shown in Table 2. The optimal M reached 16 for Cases 1 and 3, implying the
complex associations after the estimations of (20) and (22). The optimal M is 6 for Case 2,
implying that Taiwan stock price index futures before COVID-19 have relatively simple
associations. The mean-squared errors of Cases 1–3 have decreased to 0.05653, 0.03793, and
0.08693, respectively, compared to the mean-squared error of (19).

Table 2. The coefficients of curvilinear regression for the expected value.

Coefficient Case 1 Case 2 Case 3

b0 −0.0095243393 −0.013947581 −0.0151621483
b1 0.9220262313 0.966508445 0.8939896156
b2 0.0964754169 0.093763876 0.1466866583
b3 −0.0600179723 −0.012964907 −0.0332086645
b4 −0.1210265137 −0.041596003 −0.2067742506
b5 0.0483254986 0.00862922 0.0344001167
b6 0.0533656469 0.00262638 0.0906504681
b7 −0.0121403427 −0.0092034163
b8 −0.0098355368 −0.0165752281
b9 0.0013600897 0.0010003661
b10 0.0008835077 0.0014836382
b11 −0.0000730392 −0.0000471655
b12 −0.0000404681 −0.0000676725
b13 0.0000017853 0.0000008742
b14 0.0000008948 0.0000014865
b15 −0.0000000150 −0.0000000035
b16 −0.0000000074 −0.0000000122

MSE 0.0565296904 0.0379259300 0.0869349763
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This methodology can well estimate the expected value model. Figure 1 shows the
fitted values in red and the observations in blue at different horizontal axes displaying the
time variable, the MSCI Morgan Taiwan index, and Taiwan stock price index, respectively,
in columns 1–3. Each row of Cases 1–3 is displayed from top to bottom.
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Figure 1 shows the associations of different horizontal axes and Taiwan stock price
index futures. Figure 1a,d,g shows the trends of Taiwan stock price index futures in
Cases 1–3. Figure 1a is apparently a combination of Figure 1d,g and presents a relatively
narrow and stable belt shape trend before COVID-19; Figure 1d also displays a near-belt
shape trend. However, Figure 1g shows the converge of volatility for Taiwan stock price
index futures during COVID-19.

Another finding is that Taiwan stock price index futures are linearly related to the
MSCI Morgan Taiwan index futures in Figure 1b,e,g. Although the correlation coefficients
are 94.12%, 94.06%, and 94.50% from the view of the observations, the nonlinear model
forms indicate the marginal effects as 0.217, 0.258, and 0.205 (see (19)–(21)), respectively. In
fact, the MSCI Morgan Taiwan index futures are not enough to fit Taiwan stock price index
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futures by a simple linear model form if we intend to input more than one explanatory
variable into the model and try to estimate precisely. We also find that the extreme values
can be fitted in columns two and three of Figure 1. The graphs show that complex time
series financial data fitted by this methodology can simultaneously fit the extreme and
centralized observations and decrease the fitting errors.

5. Fitted Heteroscedastic Models

The residuals of Case 1 are estimated, and the model form is (23) where W1 to W3 are es-
timated by the curvilinear regression. Their coefficients are shown in Table 3. Equation (23)
is the optimal model for (11)–(15), with a minimum mean-squared error of 0.02591, and it
has a stable and linear model form as the absolute values of the residuals are regressed on
each explanatory variable. There are stronger and more complex curvilinear associations
between each explanatory variable and the residuals.

|ε̂t| = −0.005304 + 0.767429 W1 + 0.702223 W2 + 0.152821 W3, (23)∣∣ε̂B
t
∣∣ = 0.021030 + 13.192801 W3

1 + 0.802563 W2 sin(W2π)

+2.371093 W2
3 cos2(W3π)

(24)

∣∣∣ε̂A
t

∣∣∣ = −0.270646 + 1.160561 W1 + 0.741973 W2 + 0.511723 W3. (25)

The same can be said for the estimations in Cases 2 and 3. Only considering the obser-
vations in Case 2, the fitted heteroscedastic model before COVID-19 is (24), where W1 is a
polynomial function expanded at 130.5 with the power to 12, W2 is a polynomial function
expanded at 0.08849 with the power to 7, and W3 is a cosine function with the power to 1.
After the Wi values are calculated, the absolute values of the residuals for Taiwan stock
price index futures before COVID-19 display a nonlinear model form, where W1 is a cubic
function but W2 and W3 are trigonometric functions. In Case 3, the fitted heteroscedastic
model during COVID-19 is (25), where the transferred explanatory variables, W1~W3, are
the polynomial functions with the powers to 6, 16, and 17, respectively. After the Wi values
are calculated, the absolute values of the residuals for Taiwan stock price index futures
show a linear model form.

The heteroscedastic model of Case 2 is different from the estimated models of Cases 1
and 3, where the fitted heteroscedastic models are (23) and (35), with all Wi showing the
polynomial function forms. However, Case 2 consists of the observations before COVID-19,
having simpler functions of all Wi than Cases 1 and 3, implying that the influence of
COVID-19 changes the associations from simplification to complication (see (23) and (24)).
We can find that the observations during COVID-19 dominate the fitted heteroscedastic
model as we compare it to the whole period observations. Moreover, the unexplainable
parts of Taiwan stock price index futures apparently decrease in Cases 1 to 3 after the
estimations of the heteroscedastic model. Table 3 shows the minimum mean-squared errors
of Cases 1 to 3 to be 0.02591, 0.0208, and 0.0311, respectively, and the mean-squared errors
of all cases in Table 3 are lower than those in Table 2.

This methodology can estimate heteroscedasticity and show the regularities for the
absolute values of the residuals. Each column of Figure 2 displays the graphs of the fitted
heteroscedastic values at different horizontal axes, labeled by the time variable, the return
rates of the MSCI Morgan Taiwan index, and the Taiwan stock price index, respectively.
Each row displays an individual case, with three cases in total.
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Table 3. Coefficients of curvilinear for each explanatory variable at each Case.

Case Number Case 1 Case 2 Case 3

MSE 0.0259105109 0.0208271585 0.0311253197

Coefficient W1 W2 W3 W1 W2 W3 W1 W2 W3

Expanded at 215.5 0.084405 0.0657265 130.5 0.08849 0 345.5 0.078155 0.057652
b0 0.069637798 0.165747 0.141328 0.142122 0.13489 0.1121555 0.233579541 0.221165 0.177171
b1 −0.001263688 0.029313 −0.064776 −0.004246 −0.03701 0.025229 0.000433452 0.054246 −0.076813
b2 4.34960 × 10−5 −0.205336 0.144959 7.30413 × 10−5 −0.05723 −0.000100503 −0.281749 0.317068
b3 1.68582 × 10−6 −0.180455 0.016789 2.95568 × 10−6 0.03178 −4.55255 × 10−7 −0.260616 0.002075
b4 −9.17324 × 10−9 0.283375 −0.305267 −6.08841 × 10−8 0.01834 4.18847 × 10−8 0.315452 −0.618345
b5 −4.33478 × 10−10 0.147512 0.030643 −7.42750 × 10−10 −0.00537 5.86164 × 10−11 0.191929 0.059820
b6 1.16185 × 10−12 −0.143238 0.189114 1.51596 × 10−11 −0.00134 −4.40728 × 10−12 −0.127721 0.388645
b7 4.62030 × 10−14 −0.047776 −0.011124 8.35094 × 10−14 0.13489 −0.054665 −0.016315
b8 −7.71214 × 10−17 0.034430 −0.049313 −1.68567 × 10−15 0.024942 −0.109146
b9 −2.47464 × 10−18 0.007677 −0.000133 −4.30206 × 10−18 0.007438 −0.003011
b10 2.61360 × 10−21 −0.004386 0.006284 8.73078 × 10−20 −0.002569 0.015248
b11 7.03698 × 10−23 −0.000668 0.000334 8.29552 × 10−23 −0.000515 0.001288
b12 −4.30991 × 10−26 0.000313 −0.000403 −1.71607 × 10−24 0.000142 −0.001054
b13 −1.01517 × 10−27 3.19248 × 10−5 −3.58753 × 10−5 1.74195 × 10−5 −0.000129
b14 2.74644 × 10−31 −1.24760 × 10−5 1.22146 × 10−5 −3.98733 × 10−6 3.36373 × 10−5

b15 5.84748 × 10−33 −7.85754 × 10−7 1.38415 × 10−6 −2.25894 × 10−7 4.94591 × 10−6

b16 2.58436 × 10−7 −1.34301 × 10−7 4.39147 × 10−8 −3.80661 × 10−7

b17 7.78816 × 10−9 −1.72832 × 10−8 −6.19654 × 10−8

b18 −2.14674 × 10−9
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The residuals from the estimation of all observations (Case 1) show that the estimated
trend in Figure 2a seems to a be a combination of Figure 2d,g at the time variable horizontal
axis. Figure 2d shows that the absolute values of the residuals are flatter as time goes
by, in particular, the return rates of Taiwan stock price index futures exceeded 0.2 from
24 June 2019–18 July 2019. Figure 2g shows that the absolute values of the residuals have
numerous extreme values, and the observations (in blue) are not centralized. The difference
between Figures 2a and 2g is because the data of Figure 2g are only the observations during
COVID-19.

Because Case 2 at row two and Case 3 at row three are the case before and during
COVID-19, respectively, let us observe Figure 2d–i. Figure 2d–f shows the main regularities
for the absolute values of the residuals before COVID-19.

As to the observations, the estimated value of
∣∣ε̂B

t
∣∣ is maximum and around 0.4946%,

shown by the highest red point in row 2 in Figure 2, while the return rate of the MSCI
Morgan Taiwan Index is around −2.5466% and the return rate of Taiwan stock price index
is around −0.3998% on June 28, 2019. The remaining red spots in Figure 2d are spread
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between 0.0615% and 0.190%. Figure 2e,f shows the main trend in red and some red spots
around the area higher than the main trend in red.

Nevertheless, Figure 2g–i distinctly shows that the absolute values of the residuals
during COVID-19 have more apparent fluctuations than the values in row 2, and those red
points that exceed 0.24%, compared with the upper quartile (Q3 of Ĝ(•)) = 0.2344%, are
not centralized in a specific time period. Thus, the results of Figure 2d,g prove that the
heteroscedastic regularities are also affected by the occurrence of COVID-19.

Fitted Models with the Expected Value and Heteroscedasticity

After adding the estimated heteroscedastic model to replace the error term in the
model of the expected value, the fitted values can almost be covered on the observations
(blue spots). Regarding row one in Figure 3, the precisely fitted model of Case 1 is as
(26) and (27). For instance, Figure 3a shows that the fitted values calculated by (26) and
(27) were evaluated more precisely than Figure 1a because the MSE decreases from 0.0565
to 0.0259.

Yt =
16
∑

m=0
bm

(
−0.008991− 1416082.025245X2

1,t sin(X1,t π) + 0.216882X2,t + 0.873813X3,t

)m

+(−0.005304 + 0.767429 W1 + 0.702223 W2 + 0.152821 W3)

(26)

if the original residual (ε̂t) at time t is a positive value, or

Yt =
16
∑

m=0
bm

(
−0.008991− 1416082.025245X2

1,t sin(X1,t π) + 0.216882X2,t + 0.873813X3,t

)m

−(−0.005304 + 0.767429 W1 + 0.702223 W2 + 0.152821 W3)

(27)

if the original residual (ε̂t) at time t is a negative value. As for row two in Figure 3, the
precisely fitted model form is as (28) and (29), showing the case before COVID-19.

YB
t =

6
∑

m=0
bm

(
−0.004295− 4.255× 10−7X2

1,t cos(X1,t π) + 0.257638X2,t + 0.740951X3,t

)m

+
(
0.021030 + 13.192801 W3

1 + 0.802563 W2 sin(W2π) + 2.371093 W2
3 cos2(W3π)

) (28)

if the original residual (ε̂t) at time t is a positive value, or

YB
t =

6
∑

m=0
bm

(
−0.004295− 4.255× 10−7X2

1,t cos(X1,t π) + 0.257638X2,t + 0.740951X3,t

)m

−
(
0.021030 + 13.192801 W3

1 + 0.802563 W2 sin(W2π) + 2.371093 W2
3 cos2(W3π)

) (29)

if the original residual (ε̂t) at time t is a negative value. As to row three in Figure 3, the
precisely fitted model of Case 3 is formatted as (30) and (31).

Yt =
16
∑

m=0
bm

(
−0.151095 + 48.014736

X1,t
+ 0.205039X2,t + 0.924061X3,t

)m

+(−0.270646 + 1.160561 W1 + 0.741973 W2 + 0.511723 W3)

(30)

if the original residual (ε̂t) at time t is a positive value, or

Yt =
16
∑

m=0
bm

(
−0.151095 + 48.014736

X1,t
+ 0.205039X2,t + 0.924061X3,t

)m

−(−0.270646 + 1.160561 W1 + 0.741973 W2 + 0.511723 W3)

(31)

if the original residual (ε̂t) at time t is a negative value. As for (26)–(31), the coefficients
of bm are shown in Table 2 and the Wi, i = 1, 2, 3, are shown in Table 3. The spread of
the observations before or during COVID-19 can be formed as a mathematical model
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and show the precision of the models—that the red spots cover the blue spots with very
small distances.
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Figure 3 displays the fitted values calculated by (26)–(31) in different cases. Figure 3b,e,h
in the second column shows the linear relationship between Taiwan stock price index
futures and the MSCI Taiwan index futures before and during COVID-19; however, the
linear relationship is an exceedingly oblate ellipsoid shape, representing the existing
possibility of extreme values. The linear relationship between Taiwan stock price index
futures and the Taiwan stock price index also shows an exceedingly flat shape of a similar
oblate ellipsoid, displayed as red points in Figure 3c,f,i.

6. Conclusions

Comparing Tables 2 and 3, the mathematical model forms show that Taiwan stock
price index futures before COVID-19 have a stable and relatively simple regularity with
the MSCI Morgan Taiwan index futures and the Taiwan stock price index. For the data
that includes the COVID-19 period—Cases 1 and 3—the regularities of Taiwan stock price
index futures become more complex and are fitted by the relatively high-order curvilinear
regression so as to obtain precise mathematical models with a minimal mean-squared error
value. Even though the mean-squared error values of Cases 1 and 3 are as low as possible,
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the effect from COVID-19 causes Taiwan stock price index futures to be relatively unstable;
however, this unstable regularity can still be driven by the data and is explained by the
time variable, the MSCI Morgan Taiwan index futures, and the Taiwan stock price index. It
is surprising that the time variable can capture the futures contract characteristic—that is
the due date of the cyclic recent month contract—and show the precision of the estimation
and the difference for return rates before and during COVID-19.

The different explanatory variables on the horizontal axis are scattered with the fitted
values, and the observations show the relationship of the explanatory variable and Taiwan
stock price index futures in Figures 1 and 3. Except for the time variable, the MSCI Morgan
Taiwan index futures and Taiwan stock price index are linearly related to Taiwan stock
price index futures. However, the positive linear relationship is misleading in that the one
explanatory variable shown cannot be adequately considered to build a linear regression
model. In the cases of this paper, we provide evidence that the highly linear-correlative
explanatory variables are good for the linear regression model; however, slight fluctuations
can also be fitted, even if the explanatory variable is highly linearly related to Taiwan stock
price index futures. The maturity characteristics of the futures contracts, which cause slight
fluctuations or volatilities, can also be fitted with the time variable for the expected value
estimation. The remaining residuals can be fitted with the explanatory variables following
the residual plot concept.

This paper indicates the importance of data for building mathematical models that
can further achieve the aim of building a precise mathematical model that can, for example,
be the core algorithm of an artificial intelligence system for computing complex financial
data. A mathematical model is standard for understanding the precision and accuracy of a
data model. Providing a data-driven methodology to find a mathematical model is vital
for artificial intelligence as new data are recorded into a database. The previous model
form can be compared with the model estimated with new data so as to accentuate the
change of the model form as a signal of event occurrences. Thus, this paper contributes
to providing a methodology to build a precise model for complex financial data—our
data-driven model is different from model settings recognized by researchers, which can
be considered. Moreover, the complex financial data can be formatted as a mathematical
model chosen from numerous models following the criterion of the minimal MSE. This
kind of model increases the precision in order to predict the next step, which was not the
aim of this work but could be a future research direction.

This paper shows the associations between Taiwan stock price index futures and
explanatory variables and also demonstrates apparent mathematical models to compare
COVID-19′s effect on Taiwan stock price index futures. However, this paper has some
limitations. For instance, the explanatory variables of the example were chosen by the
scenario in which we followed the concept of financial derivatives without considering
more variables, such as nonfinancial variables. Moreover, the data characteristics also
limited the analysis. Collecting more indicators or indices in a database could allow
for choosing explanatory variables via the correlation coefficients of all the explanatory
variables we can find. Our results could be utilized as a data-driven methodology to build
more precise mathematical models that do not consider autoregressive variables.
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Appendix A

The 37 nonlinear functions of the explanatory variable are summarized below, where
X is the explanatory variable and Y is the new explanatory variable after variable transfor-
mation by 37 nonlinear functions.

Table A1. List of 37 functions for the explanatory variable in nonlinear regression.

Y = b0 + b1 × X Y = b0 + b1 × X × Sin(X × pi)

Y = b0 + b1 × X2 Y = b0 + b1 × X × Cos(X × pi) × Cos(X × pi)

Y = b0 + b1 × X3 Y = b0 + b1 × X × Sin(X × pi) × Sin(X × pi)

Y = b0 + b1 × Cos(X × pi) Y = b0 + b1 × X × X × Cos(X × pi)

Y = b0 + b1 × Cos(2 × X × pi) Y = b0 + b1 × X × X × Sin(X × pi)

Y = b0 + b1 × Sin(X × pi) Y = b0 + b1 × X × X × Cos(X × pi) × Cos(X × pi)

Y = b0 + b1 × Sin(2 × X × pi) Y = b0 + b1 × X × X × Sin(X × pi) × Sin(X × pi)

Y = b0 + b1 × Cos(X × pi) × Sin(X × pi) Y = b0 + b1 × X × Cos(X × pi) × Sin(X × pi)

Y = b0 + b1 × Cos(X × pi) × Cos(X × pi) Y = b0 + b1 × X × X × Cos(X × pi) × Sin(X × pi)

Y = b0 + b1 × Sin(X × pi) × Sin(X × pi) Y = b0 + b1 × |X|

Y = b0 + b1 × exp(X) Y = b0 + b1 × |X|0.5

Y = b0 + b1 × exp(-X) Y = b0 + b1 × exp(X)/X

Y = b0 + b1 × log(X) Y = b0 + b1 × exp(-X)/X

Y = b0 + b1/X Y = b0 + b1 × exp(X) × log(X)

Y = b0 + b1 × X/(1-X) Y = b0 + b1 × exp(-X) × log(X)

Y = b0 + b1 × X × exp(X) Y = b0 + b1 × Cos(X)

Y = b0 + b1 × X × exp(-X) Y = b0 + b1 × Sin(X)

Y = b0 + b1 × X × Cos(X × pi) Y = b0 + b1 × Cos(X) × Cos(X)

Y = b0 + b1 × Sin(X) × Sin(X)
Source: Wang and Lee [24].

Appendix B

The fitted values of heteroscedasticity in Cases 1 to 3 are shown in Figure A1. Figure A1a
displays the time trend of the absolute values of the residuals with four peaks, where the
first peak occurred before COVID19, as detailed in Figure A1d, and the remaining three
peaks occurred during COVID-19, as detailed in Figure A1g.
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