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Abstract: In this paper, we study the nonexistence of global weak solutions to higher-order time-
fractional evolution inequalities with subcritical degeneracy. Using the test function method and
some integral estimates, we establish sufficient conditions depending on the parameters of the
problems so that global weak solutions cannot exist globally.
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1. Introduction

We are first concerned with the study of the nonexistence of global weak solutions to
time-fractional evolution inequalities of the form:

∂αu
∂tα

(t, x)− |x|ν∆u(t, x) ≥ |u(t, x)|p, (t, x) ∈ (0, ∞)×RN , (1)

subject to the initial conditions:

∂iu
∂ti (0, x) = ui(x), i = 0, 1, · · · , k− 1, x ∈ RN , (2)

where N ≥ 1, k ≥ 1 is a natural number, k − 1 < α < k, ∂α

∂tα is the time-Caputo frac-
tional derivative of order α, p > 1, ν < min{2, N}, and ui|x|−ν ∈ L1

loc(R
N) for all

i = 0, 1, · · · , k− 1. Then, we consider the inhomogeneous problem:

∂αu
∂tα

(t, x)− |x|ν∆u(t, x) ≥ |u(t, x)|p + tσF(x), (t, x) ∈ (0, ∞)×RN , (3)

subject to the initial condition (2), where N, k ≥ 1, k− 1 < α < k, p > 1, ν < min{2, N},
F|x|−ν ∈ L1

loc(R
N), σ > −1, and ui|x|−ν ∈ L1

loc(R
N) for all i = 0, 1, · · · , k− 1.

In the limited case α ↓ k, (1) reduces to the differential inequality:

∂ku
∂tk (t, x)− |x|ν∆u(t, x) ≥ |u(t, x)|p. (4)

When k = 1, Mitidieri and Pohozaev [1] studied (2)–(4) in both cases ν = 2 (critical
degeneracy) and ν < 2 (subcritical degeneracy). In the case where ν = 2, it was shown that
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under suitable conditions on the initial value u0, if 1 < p ≤ 3, then (2)–(4) has no global
weak solutions. In the case ν < min{2, N}, it was shown that under suitable conditions on
the initial value u0, if 1 < p ≤ 1 + 2−ν

N−ν , then the same conclusion as above holds. Observe
that in the special case ν = 0, 1 + 2−ν

N−ν = 1 + 2
N , which is the Fujita critical exponent [2]

for the semilinear heat equation ∂u
∂t − ∆u = up. When k = 2, Mitidieri and Pohozaev [3]

obtained the following results for (2)–(4) under suitable conditions and the initial value
u1. In the case where ν = 2, it was shown that if one of the following assumptions is
satisfied: (a) N 6= 2 and 1 < p ≤ 3; and (b) N = 2 and p > 1, then (2)–(4) has no
nontrivial global weak solutions. In the case where ν < min{2, N}, it was shown that if
p(2(N − 1)− ν) ≤ 2(N + 1)− 3ν, then the same conclusion as above holds. Observe that in
the special case ν = 0, the above condition reduces to 1 < p ≤ p∗K(N), where p∗K(N) = N+1

N−1

(N ≥ 2) is the Kato exponent [4] for the hyperbolic inequality ∂2u
∂t2 − ∆u ≥ |u|p. In [5],

Caristi studied (2)–(4) in the general case where k ≥ 2. Namely, when ν = 2, it was shown
that under suitable conditions for the initial values, if one of the following assumptions
is satisfied: (a) N 6= 2 and 1 < p ≤ k + 1; and (b) N = 2 and p > 1, then (2)–(4) has no
global weak solutions. When ν < 2, it was shown that under suitable conditions on the
initial values, if p(k(N − 2) + 2− ν) ≤ Nk + 2− ν(k + 1), then the same conclusion as
above holds.

In the limited case α ↓ k, when σ = 0, (3) reduces to the differential inequality:

∂ku
∂tk (t, x)− |x|ν∆u(t, x) ≥ |u(t, x)|p + F(x), (t, x) ∈ (0, ∞)×RN . (5)

In [5], Caristi proved that if
∫
RN F(x)|x|−ν dx > 0 and p(N − 2) < N − ν, then (2)–(5)

admits no global weak solutions. Observe that the exponent N−ν
N−2 , which appears in the

above condition, is the critical exponent for the elliptic inequality (see, e.g., [1]):

−∆u ≥ |x|−ν|u|p, x ∈ RN .

Due to the usefulness of fractional derivatives in modeling various phenomena from
science and engineering (as can be seen in, e.g., [6–9]), the study of fractional partial
differential equations (as well as fractional differential equations) becomes a subject of
increasing concern. The study of the nonexistence of global solutions to time-fractional
evolution equations and inequalities has been initiated by Kirane and their collaborators
(as can be seen in, e.g., [10–14]). In particular, in [13], Kirane et al. studied the nonexistence
of nontrivial global weak non-negative solutions to the fractional-in-time and in-space
evolution equation:

∂αu
∂tα

(t, x) + (−∆)
β
2 u(t, x) = h(t, x)|u(t, x)|p, (t, x) ∈ (0, ∞)×RN ,

where 0 < α < 1, 1 ≤ β ≤ 2, (−∆)
β
2 is the fractional Laplacian of order β

2 , p > 1, the
function h satisfies h(t, x) ≥ Ctρ|x|σ, and ρ, σ satisfy certain conditions. In [15], Zhang and
Sun investigated the time-fractional nonlinear diffusion equation:

∂αu
∂tα

(t, x)− ∆u(t, x) = |u(t, x)|p−1u(t, x), (t, x) ∈ (0, ∞)×RN , (6)

where 0 < α < 1 and p > 1. Namely, under suitable conditions on the initial value u0, it
was shown that if 1 < p < 1+ 2

N , then any nontrivial non-negative solution to (2)–(6) (with
k = 1) blows up in finite time, while if p ≥ 1 + 2

N and u0 is sufficiently small with respect
to a certain norm, then the problem admits global solutions. For other works related to
nonexistence results for fractional evolution equations and inequalities, as can be seen in,
e.g., [16–19] and the references therein.



Mathematics 2021, 9, 2765 3 of 10

Motivated by the above contributions, our aim in this paper was to obtain sufficient
conditions for which (1)–(2) and (3)–(2) have no global weak solutions in a sense which
will be subsequently specified.

The organization of the paper is as follows. In Section 2, we recall the notion of the
Caputo fractional derivative and provide some useful lemmas. In Section 3, we define the
global weak solutions to (1)–(2) and (3)–(2), and state our main results. In Section 4, we
prove Theorem 1. In Section 5, we prove Theorem 2.

2. Preliminaries

We refer the reader to [20] for the following definitions.
Let T > 0 be fixed. We denote by AC([0, T]) the space of all real valued functions

which are absolutely continuous on [0, T]. For a natural number n ≥ 0, let:

ACn+1([0, T]) =
{

ϑ : [0, T]→ R | ϑ ∈ Cn([0, T]),
dnϑ

dxn ∈ AC([0, T])
}

.

Clearly, we have AC1([0, T]) = AC([0, T]).
Given σ > 0 and ϑ ∈ L1([0, T]), the left-sided and right-sided Riemann–Liouville

fractional integrals of order σ of ϑ are defined, respectively, by

(Iσ
0 ϑ)(t) =

1
Γ(σ)

∫ t

0
(t− s)σ−1ϑ(s) ds and (Iσ

Tϑ)(t) =
1

Γ(σ)

∫ T

t
(s− t)σ−1ϑ(s) ds

for almost everywhere x ∈ [0, T], where Γ denotes the Gamma function.
Given a natural number k ≥ 1, k− 1 < α < k, and ϑ ∈ ACk([0, T]), the (left-sided)

Caputo fractional derivative of order α of ϑ is defined by

dαϑ

dtα
(t) = (Ik−α

0 ϑ)(t) =
1

Γ(k− α)

∫ t

0
(t− s)k−α−1 dkϑ

dtk (s) ds

for almost everywhere x ∈ [0, T].

Lemma 1 ([20]). Let τ > 0, a, b ≥ 1, and 1
a +

1
b ≤ 1 + τ (a 6= 1, b 6= 1, in the case 1

a +
1
b =

1 + τ). If (v, w) ∈ La([0, T])× Lb([0, T]), then:∫ T

0
(Iτ

0 v)(t)w(t) dt =
∫ T

0
v(t)(Iτ

Tw)(t) dt.

The following properties follow from standard calculations (as can be seen in, e.g., [18]).

Lemma 2. For sufficiently large λ, let:

aT(t) = T−λ(T − t)λ, t ∈ [0, T]. (7)

Let k ≥ 1 be a natural number and k− 1 < α < k. Then:(
Ik−α
T aT

)
(t) =

Γ(λ + 1)
Γ(k− α + λ + 1)

T−λ(T − t)λ+k−α,

di
(

Ik−α
T aT

)
dti (t) = (−1)i Γ(λ + 1)

Γ(λ + k− α− i + 1)
T−λ(T − t)λ+k−α−i, i = 1, 2, · · · , k.

3. Main Results

Let Ω = [0, ∞)×RN . For T > 0, let ΩT = [0, T]×RN and:

ΦT =
{

ϕ ∈ Ck,2
t,x (ΩT) : ϕ ≥ 0, ϕ is compactly supported with respect to x

}
.
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Using the integration by parts rule given by Lemma 1, we define global weak solutions
to (1)–(2) as follows.

Definition 1. We say that u is a global weak solution to (1) if the following conditions are satisfied:

(i) |u|p|x|−ν ∈ L1
loc(Ω), u|x|−ν ∈ L1

loc(Ω), u ∈ L1
loc(Ω);

(ii) For all T > 0 and ϕ ∈ ΦT :∫
ΩT

|u|p|x|−ν ϕ dx dt

≤
∫

ΩT

(−1)ku|x|−ν
∂k
(

Ik−α
T ϕ

)
∂tk dx dt−

∫
ΩT

u∆ϕ dx dt

+
k−1

∑
i=0

(−1)i+1
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx.

(8)

Similarly, we define global weak solutions to (3)–(2) as follows.

Definition 2. We say that u is a global weak solution to (3)–(2) if the following conditions
are satisfied:

(i) |u|p|x|−ν ∈ L1
loc(Ω), u|x|−ν ∈ L1

loc(Ω), u ∈ L1
loc(Ω);

(ii) For all T > 0 and ϕ ∈ ΦT :∫
ΩT

|u|p|x|−ν ϕ dx dt +
∫

ΩT

tσF(x)|x|−ν ϕ dx dt

≤
∫

ΩT

(−1)ku|x|−ν
∂k
(

Ik−α
T ϕ

)
∂tk dx dt−

∫
ΩT

u∆ϕ dx dt

+
k−1

∑
i=0

(−1)i+1
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx

(9)

For (1)–(2), we have the following nonexistence result.

Theorem 1. Let ui|x|−ν ∈ L1(RN) for all i = 0, 1, · · · , k− 1. If:∫
RN

uk−1(x)|x|−ν dx > 0 (10)

and:

p
(

α(N − 2) + (2− ν)(1 + α− k)
)
< α(N − 2) + (2− ν)(1 + 2α− k), (11)

then (1)–(2) has no global weak solutions.

Remark 1. Observe that, in the limit case where α ↓ k, (11) reduces to:

p
(

k(N − 2) + 2− ν

)
< kN + 2− ν(k + 1),

which is the condition obtained by Caristi [5] (with strict inequality) for which the limit prob-
lem (4)–(2) has no global weak solutions.

Then, we consider the inhomogeneous problem (3)–(2).
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Theorem 2. Let ui|x|−ν ∈ L1
loc(R

N) and ui ≥ 0, for all i = 0, 1, · · · , k − 1. Assume that
F|x|−ν ∈ L1(RN) and: ∫

RN
F(x)|x|−ν dx > 0.

If:

p
(

α(N − 2)− σ(2− ν)

)
< α(N − ν)− σ(2− ν), (12)

then (3)–(2) has no global weak solutions.

Remark 2. Observe that in the limit case α ↓ k, when σ = 0, (12) reduces to:

p(N − 2) < N − ν,

which is the condition obtained by Caristi [5], for which the limit problem (5)–(2) has no global
weak solutions.

The proofs of Theorems 1 and 2 are based on the test function method (see, e.g., [1])
and some integral estimates.

4. Proof of Theorem 1

We denote by C a positive constant (independent on T) whose value may change from
line to line.

Suppose that u is a global weak solution to (1)–(2). By (8), for sufficiently large T, and
all ϕ ∈ ΦT :

∫
ΩT

|u|p|x|−ν ϕ dx dt ≤
∫

ΩT

|u||x|−ν

∣∣∣∣∣∣
∂k
(

Ik−α
T ϕ

)
∂tk

∣∣∣∣∣∣ dx dt +
∫

ΩT

|u||∆ϕ| dx dt

+
k−1

∑
i=0

(−1)i+1
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx. (13)

By Young’s inequality, we obtain:

∫
ΩT

|u||x|−ν

∣∣∣∣∣∣
∂k
(

Ik−α
T ϕ

)
∂tk

∣∣∣∣∣∣ dx dt ≤ 1
2

∫
ΩT

|u|p|x|−ν ϕ dx dt

+C
∫

ΩT

ϕ
−1
p−1

∣∣∣∣∣∣
∂k
(

Ik−α
T ϕ

)
∂tk

∣∣∣∣∣∣
p

p−1

|x|−ν dx dt. (14)

Similarly, we have:∫
ΩT

|u||∆ϕ| dx dt ≤ 1
2

∫
ΩT

|u|p|x|−ν ϕ dx dt + C
∫

ΩT

ϕ
−1
p−1 |∆ϕ|

p
p−1 |x|

ν
p−1 dx dt. (15)

It follows from (13)–(15) that:

k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx ≤ C(I1 + I2), (16)

where:

I1 =
∫

ΩT

ϕ
−1
p−1

∣∣∣∣∣∣
∂k
(

Ik−α
T ϕ

)
∂tk

∣∣∣∣∣∣
p

p−1

|x|−ν dx dt (17)
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and:
I2 =

∫
ΩT

ϕ
−1
p−1 |∆ϕ|

p
p−1 |x|

ν
p−1 dx dt. (18)

Then, let us consider a cut-off function ξ ∈ C∞
0 (R) satisfying:

0 ≤ ξ ≤ 1, ξ(s) =
{

1 if 0 ≤ s ≤ 1,
0 if s ≥ 2.

For sufficiently large λ and `, we take:

ϕ(t, x) = aT(t)b`T(x), (19)

where aT is given by (7), and:

bT(x) = ξ

(
|x|2
T2θ

)
.

Here, θ is a positive constant that will be chosen later. We rewrite I1 as

I1 =

∫ T

0
a
−1
p−1
T (t)

∣∣∣∣∣∣
dk
(

Ik−α
T aT

)
dtk

∣∣∣∣∣∣
p

p−1

dt

(∫RN
b`T(x)|x|−ν dx

)
, (20)

and I2 as

I2 =

(∫ T

0
aT(t) dt

)(∫
RN

b
−`

p−1
T |∆(b`T)|

p
p−1 |x|

ν
p−1 dx

)
. (21)

Through Lemma 2, we have:

∫ T

0
a
−1
p−1
T (t)

∣∣∣∣∣∣
dk
(

Ik−α
T aT

)
dtk

∣∣∣∣∣∣
p

p−1

dt = CT−λ
∫ T

0
(T − t)λ− αp

p−1 dt

= CT1− αp
p−1 . (22)

Taking in consideration the properties of the function ξ and using that ν < min{2, N},
we obtain: ∫

RN
b`T(x)|x|−ν dx =

∫
0<|x|<

√
2Tθ

ξ`
(
|x|2
T2θ

)
|x|−ν dx

≤ C
∫ √2Tθ

r=0
rN−1−ν dr

= CTθ(N−ν). (23)

From (20), (22) and (23), we deduce that:

I1 ≤ CT1− αp
p−1+θ(N−ν). (24)

Now, let us estimate the term I2. First, we have:∫ T

0
aT(t) dt = T−λ

∫ T

0
(T − t)λ dt

= CT. (25)

On the other hand, by the properties of the function ξ, we can easily obtain that:

|∆(b`)| ≤ CT−2θξ`−2
(
|x|2
T2θ

)
, Tθ < |x| <

√
2Tθ .



Mathematics 2021, 9, 2765 7 of 10

Hence (again, due to the properties of the function ξ), there holds:

∫
RN

b
−`

p−1
T |∆(b`T)|

p
p−1 |x|

ν
p−1 dx =

∫
Tθ<|x|<

√
2Tθ

b
−`

p−1
T |∆(b`T)|

p
p−1 |x|

ν
p−1 dx

≤ CT
−2θp
p−1

∫
Tθ<|x|<

√
2Tθ

ξ
`− 2p

p−1

(
|x|2
T2θ

)
|x|

ν
p−1 dx

≤ CT
−2θp
p−1

∫
Tθ<|x|<

√
2Tθ
|x|

ν
p−1 dx

≤ CTθ
(

ν−2p
p−1 +N

)
. (26)

Therefore, it follows from (21), (25) and (26) that:

I2 ≤ CT1+θ
(

ν−2p
p−1 +N

)
. (27)

Combining (24) with (27), we obtain:

I1 + I2 ≤ C
(

T1− αp
p−1+θ(N−ν)

+ T1+θ
(

ν−2p
p−1 +N

))
.

Taking θ = α
2−ν (notice that ν < 2), the above estimate reduces to:

I1 + I2 ≤ CT1− αp
p−1+

α(N−ν)
2−ν . (28)

On the other hand, by Lemma 2 and the definition of the function ϕ, we have:

k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx

=
k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−νb`T(x)
di
(

Ik−α
T aT

)
dti (0) dx

= C
k−1

∑
i=0

Tk−α−i
∫
RN

uk−i−1(x)|x|−νξ`
(
|x|2
T2θ

)
dx

= C

(
Tk−α

∫
RN

uk−1(x)|x|−νξ`
(
|x|2
T2θ

)
dx +

k−1

∑
i=1

Tk−α−i
∫
RN

uk−i−1(x)|x|−νξ`
(
|x|2
T2θ

)
dx

)
.

(29)

Observe that since ui|x|−ν ∈ L1(RN) for all i = 0, 1, · · · , k− 1, and due to (10), by the
dominated convergence theorem we obtain:

lim
T→∞

∫
RN

uk−1(x)|x|−νξ`
(
|x|2
T2θ

)
dx =

∫
RN

uk−1(x)|x|−ν dx > 0

and:

lim
T→∞

∫
RN

uk−i−1(x)|x|−νξ`
(
|x|2
T2θ

)
dx =

∫
RN

uk−i−1(x)|x|−ν dx

for all i = 1, 2, · · · , k− 1. Hence, for a sufficiently large T, we deduce that:

k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx ≥ CTk−α

∫
RN

uk−1(x)|x|−ν dx

+
k−1

∑
i=1

Tk−α−iCi,
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where Ci ∈ R are constants. Then, there holds:

k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx ≥ CTk−α

∫
RN

uk−1(x)|x|−ν dx. (30)

Then, combining the estimates (16), (28) and (30), we deduce that:∫
RN

uk−1(x)|x|−ν dx ≤ CT1− αp
p−1+

α(N−ν)
2−ν +α−k.

Finally, letting T → ∞ in the above inequality and using (11), we obtain:∫
RN

uk−1(x)|x|−ν dx ≤ 0,

which contradicts (10). Thus, we deduce that (1)–(2) admits no global weak solutions. The
proof is completed. �

5. Proof of Theorem 2

Suppose that u is a global weak solution to (3)–(2). By (9), for a sufficiently large T,
and all ϕ ∈ ΦT : ∫

ΩT

|u|p|x|−ν ϕ dx dt +
∫

ΩT

tσF(x)|x|−ν ϕ dx dt

≤
∫

ΩT

|u||x|−ν

∣∣∣∣∣∣
∂k
(

Ik−α
T ϕ

)
∂tk

∣∣∣∣∣∣ dx dt +
∫

ΩT

|u||∆ϕ| dx dt

+
k−1

∑
i=0

(−1)i+1
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx.

(31)

Using (31), the estimates (14) and (15), there holds:
k−1

∑
i=0

(−1)i
∫
RN

uk−i−1(x)|x|−ν
∂i
(

Ik−α
T ϕ

)
∂ti (0, x) dx +

∫
ΩT

tσF(x)|x|−ν ϕ dx dt ≤ C(I1 + I2), (32)

where I1 and I2 are given, respectively, by (17) and (18). Let ϕ be the test function given
by (19). Since ui ≥ 0 for all i = 0, 1, · · · , k− 1, by (29) and (32), we deduce that:∫

ΩT

tσF(x)|x|−ν ϕ dx dt ≤ C(I1 + I2). (33)

On the other hand, by the definition of the function ϕ, we have:∫
ΩT

tσF(x)|x|−ν ϕ dx dt =
(∫ T

0
tσaT(t) dt

)(∫
RN

F(x)|x|−νb`T(x) dx
)

. (34)

By the definition of the function aT , there holds:∫ T

0
tσaT(t) dt = T−λ

∫ T

0
tσ(T − t)λ dt

≥ T−λ
∫ T

2

0
tσ(T − t)λ dt

≥ C
σ + 1

Tσ+1. (35)
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Moreover, by the definitions of the functions bT and ξ, since F|x|−ν ∈ L1(RN), the
dominant convergence theorem yields:

lim
T→∞

∫
RN

F(x)|x|−νb`T(x) dx = lim
T→∞

∫
RN

F(x)|x|−νξ`
(
|x|2
T2θ

)
dx =

∫
RN

F(x)|x|−ν dx.

Since
∫
RN F(x)|x|−ν dx > 0, for sufficiently large T, we have:∫

RN
F(x)|x|−νb`T(x) dx ≥ C

∫
RN

F(x)|x|−ν dx. (36)

Thus, it follows from (34)–(36) that:∫
ΩT

tσF(x)|x|−ν ϕ dx dt ≥ CTσ+1
∫
RN

F(x)|x|−ν dx. (37)

Then, by (33) and (37), we deduce that:∫
RN

F(x)|x|−ν dx ≤ CT−σ−1(I1 + I2).

Taking θ = α
2−ν and using the estimate (28), we obtain:

∫
RN

F(x)|x|−ν dx ≤ CT−σ− αp
p−1+

α(N−ν)
2−ν .

Finally, using (12), and letting T → ∞ into the above inequality, we obtain∫
RN F(x)|x|−ν dx ≤ 0, which contradicts the condition

∫
RN F(x)|x|−ν dx > 0. The proof of

Theorem 2 is completed. �

6. Conclusions

In this paper, the nonexistence of global weak solutions to the fractional-in-time
evolution inequalities (1)–(2) and (3)–(2) was investigated. Using the test function method
and some integral estimates, sufficient conditions depending on the parameters of the
problems were obtained so that there were no global weak solutions. Namely, for (1)–(2),
under suitable conditions for the initial values, we proved that (see Theorem 1) if:

p
(

α(N − 2) + (2− ν)(1 + α− k)
)
< α(N − 2) + (2− ν)(1 + 2α− k),

then (1)–(2) has no global weak solutions. For (3)–(2), under suitable conditions for the
initial values and the inhomogeneous term F(x), we proved that (see Theorem 2) if:

p
(

α(N − 2)− σ(2− ν)

)
< α(N − ν)− σ(2− ν),

then (3)–(2) has no global weak solutions. In the limit case α ↓ k, we recovered some known
results from the literature.

This contribution only deals with time-fractional evolution inequalities with subcritical
degeneracy (ν < 2). It will also be interesting to study time-fractional evolution inequalities
with critical degeneracy. Namely, the problems (1)–(2) and (3)–(2) with ν = 2.
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