Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant
Abstract
:1. Introduction
State-of-the-Art Literature Survey
2. Overview of a Coal-Fired Thermal Power Plant
2.1. Boiler Water Wall Tube Leakage and Its Significance in a Thermal Power Plant
2.2. Turbine Motor Failure Analysis
3. The Proposed Methodology
3.1. Data Acquisition and Preprocessing
3.2. Optimal Sensor Selection
3.2.1. Correlation Analysis
3.2.2. mRMR Algorithm
3.2.3. Extra-Tree Classifier (ETC)
3.3. Machine-Learning Classifiers
4. Real-World Power Plant Scenarios—Computational Results
4.1. Case Scenario 1—Boiler Water Wall Tube Leakage
4.1.1. Acquisition of the Sensitive Sensors Data and Data Preprocessing
4.1.2. Optimal Sensor Selection Algorithms
- 1.
- Correlation analysis
- 2.
- mRMR algorithm
- 3.
- Extra-tree classifier
4.1.3. Machine-Learning Classification
4.2. Case Scenario—2: Steam Turbine Motor Failure
4.2.1. Acquisition of the Sensitive Sensors Data and Data Preprocessing
4.2.2. Optimal Sensor Selection
- 1.
- Correlation analysis
- 2.
- mRMR algorithm
- 3.
- Extra-tree classifier
4.2.3. Machine-Learning Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPP | thermal power plant |
PCA | principal component analysis |
SVM | support vector machine |
k-NN | k-nearest neighbors |
NB | naïve Bayes |
LDA | linear discriminant analysis |
SH I | Superheater I |
SH II | Superheater II |
SH III | Superheater III |
RH I | Reheater I |
RH II | Reheater II |
mRMR | maximum relevance minimum redundancy |
P&ID | piping and instrumentation diagram |
ANFI | adaptive neuro-fuzzy inference |
ANN | artificial neural network |
Appendix A
References
- Basu, S.; Debnath, A.K. Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-800940-6. [Google Scholar]
- Zhang, S.; Shen, G.; An, L. Leakage location on water-cooling wall in power plant boiler based on acoustic array and a spherical interpolation algorithm. Appl. Therm. Eng. 2019, 152, 551–558. [Google Scholar] [CrossRef]
- An, L.; Wang, P.; Sarti, A.; Antonacci, F.; Shi, J. Hyperbolic boiler tube leak location based on quaternary acoustic array. Appl. Therm. Eng. 2011, 31, 3428–3436. [Google Scholar] [CrossRef]
- Khalid, S.; Lim, W.; Kim, H.S.; Oh, Y.T.; Youn, B.D.; Kim, H.-S.; Bae, Y.-C. Intelligent Steam Power Plant Boiler Waterwall Tube Leakage Detection via Machine Learning-Based Optimal Sensor Selection. Sensors 2020, 20, 6356. [Google Scholar] [CrossRef]
- Singh, P.M.; Mahmood, J. Stress Assisted Corrosion of Waterwall Tubes in Recovery Boiler Tubes: Failure Analysis. J. Fail. Anal. Prev. 2007, 7, 361–370. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Liu, C. Failure analysis of the boiler water-wall tube. Case Stud. Eng. Fail. Anal. 2017, 9, 35–39. [Google Scholar] [CrossRef]
- Yang, P.; Liu, S.S. Fault Diagnosis for Boilers in Thermal Power Plant by Data Mining. In Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, Kunming, China, 6–9 December 2004; Volume 3, pp. 2176–2180. [Google Scholar]
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M.G. Soft Sensors for Monitoring and Control of Industrial Processes; Advances in Industrial Control; Springer: London, UK, 2007; ISBN 978-1-84628-479-3. [Google Scholar]
- Yu, J.; Yoo, J.; Jang, J.; Park, J.H.; Kim, S. A novel plugged tube detection and identification approach for final super heater in thermal power plant using principal component analysis. Energy 2017, 126, 404–418. [Google Scholar] [CrossRef]
- Indrawan, N.; Shadle, L.J.; Breault, R.W.; Panday, R.; Chitnis, U.K. Data analytics for leak detection in a subcritical boiler. Energy 2020, 220, 119667. [Google Scholar] [CrossRef]
- Swiercz, M.; Mroczkowska, H. Multiway PCA for Early Leak Detection in a Pipeline System of a Steam Boiler—Selected Case Studies. Sensors 2020, 20, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, M.S.; Rajkumar, N. Performance Enhancement in Coal Fired Thermal Power Plants. Part II: Steam Turbines. Int. J. Energy Res. 1999, 27, 489–515. [Google Scholar] [CrossRef]
- Dhini, A.; Kusumoputro, B.; Surjandari, I. Neural Network Based System for Detecting and Diagnosing Faults in Steam Turbine of Thermal Power Plant. In Proceedings of the 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taichung, China, 8–10 November 2017; pp. 149–154. [Google Scholar]
- Salahshoor, K.; Khoshro, M.S.; Kordestani, M. Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems. Simul. Model. Pr. Theory 2011, 19, 1280–1293. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Zhu, Y.; Yan, W. Fault Detection and Diagnosis for Steam Turbine Based on Kernel GDA. In Proceedings of the 2011 International Conference on Modelling, Identification and Control, Shanghai, China, 26–29 June 2011; pp. 58–62. [Google Scholar]
- Lin, T.-H.; Wu, S.-C. Sensor fault detection, isolation and reconstruction in nuclear power plants. Ann. Nucl. Energy 2018, 126, 398–409. [Google Scholar] [CrossRef]
- Han Kim, K.; Seok Lee, H.; Hwan Kim, J.; Park, J.H. Detection of Boiler Tube Leakage Fault in a Thermal Power Plant Using Machine Learning Based Data Mining Technique. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, 13–15 February 2019; pp. 1006–1010. [Google Scholar]
- Jing, C.; Hou, J. SVM and PCA based fault classification approaches for complicated industrial process. Neurocomputing 2015, 167, 636–642. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.; Wang, Q. Fault identification in PCA method during sensor condition monitoring in a nuclear power plant. Ann. Nucl. Energy 2018, 121, 135–145. [Google Scholar] [CrossRef]
- Young-Hun kim, J.K. Leakage Detection of a Boiler Tube Using a Genetic Algorithm-like Method and Support Vector Machines. In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), Porto, Portugal, 13–15 December 2018. [Google Scholar] [CrossRef]
- Tariq, R.; Hussain, Y.; Sheikh, N.; Afaq, K.; Ali, H.M. Regression-Based Empirical Modeling of Thermal Conductivity of CuO-Water Nanofluid using Data-Driven Techniques. Int. J. Thermophys. 2020, 41, 1–28. [Google Scholar] [CrossRef]
- Sugumaran, V.; Muralidharan, V.; Ramachandran, K. Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 2007, 21, 930–942. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Chen, L.-S.; Chen, M.-C.; Lee, C.-L. Using SVM based method for equipment fault detection in a thermal power plant. Comput. Ind. 2011, 62, 42–50. [Google Scholar] [CrossRef]
- Radovic, M.D.; Ghalwash, M.F.; Filipovic, N.; Obradovic, Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform. 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sharaff, A.; Gupta, H. Extra-Tree Classifier with Metaheuristics Approach for Email Classification. In Advances in Computer Communication and Computational Sciences; Bhatia, S.K., Tiwari, S., Mishra, K.K., Trivedi, M.C., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 924, pp. 189–197. ISBN 9789811368608. [Google Scholar]
- Sun, X.; Chen, A.T.; Marquez, H.J. Boiler Leak Detection Using a System Identification Technique. Ind. Eng. Chem. Res. 2002, 41, 5447–5454. [Google Scholar] [CrossRef]
- Afgan, N.; Coelho, P.; Carvalho, M.D.G. Boiler tube leakage detection expert system. Appl. Therm. Eng. 1998, 18, 317–326. [Google Scholar] [CrossRef]
- Sun, X.; Marquez, H.J.; Chen, T.; Riaz, M. An improved PCA method with application to boiler leak detection. ISA Trans. 2005, 44, 379–397. [Google Scholar] [CrossRef]
- Lang, F.D.; Rodgers, D.A.T.; Mayer, L.E. Detection of tube leaks and their location using input/loss methods. In Proceedings of the ASME Power Conference, Baltimore, MD, USA, 30 March–1 April 2004; Volume 41626, pp. 143–150. [Google Scholar]
- Nozari, H.A.; Shoorehdeli, M.A.; Simani, S.; Banadaki, H.D. Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques. Neurocomputing 2012, 91, 29–47. [Google Scholar] [CrossRef]
- Liu, Y.; Su, M. Nonlinear Model Based Diagnostic of Gas Turbine Faults: A Case Study. In Proceedings of the Volume 3: Controls, Diagnostics and Instrumentation; Education; Electric Power; Microturbines and Small Turbomachinery; Solar Brayton and Rankine Cycle (ASMEDC), Vancouver, BC, Canada, 1 January 2011; pp. 1–8. [Google Scholar]
- Ismail, F.B.; Singh, D.; Maisurah, N.; Musa, A.B.B. Early tube leak detection system for steam boiler at KEV power plant. MATEC Web Conf. 2016, 74, 6. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, M.S.; Jothibasu, S. Performance Enhancement in Coal Fired Thermal Power Plants. Part I: Boilers. Int. J. Energy Res. 1999, 23, 1239–1266. [Google Scholar] [CrossRef]
- Kokkinos, A. Coal R&D Beyond 2020. DOE-NETL-EPRI Technical Exchange Meeting; EPRI: Pittsburgh, PA, USA, 2019. [Google Scholar]
- Yong, S.; Lin, M.; Robinson, W.; Fidge, C. Using Decision Trees in Economizer Repair Decision Making. In Proceedings of the 2010 Prognostics and System Health Management Conference, Macao, China, 12–14 January 2010; pp. 1–6. [Google Scholar]
- Liu, K.; Feng, X.; Ma, K.; Wang, L.; Xie, X.; Lu, Z. Investigation on the welding-induced multiple failures in boiler water wall tube. Eng. Fail. Anal. 2020, 121, 104988. [Google Scholar] [CrossRef]
- Yang, G.; Gou, Y.; Liu, X.; Zhang, X.; Zhang, T. Failure Analysis of the Corroded Water Wall Tube in a 50MW Thermal Power Plant. High Temp. Mater. Process. 2018, 37, 995–999. [Google Scholar] [CrossRef]
- Xue, S.; Guo, R.; Hu, F.; Ding, K.; Liu, L.; Zheng, L.; Yang, T. Analysis of the causes of leakages and preventive strategies of boiler water-wall tubes in a thermal power plant. Eng. Fail. Anal. 2020, 110, 104381. [Google Scholar] [CrossRef]
- Tanuma, T. Introduction to steam turbines for power plants. In Advances in Steam Turbines for Modern Power Plants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–9. ISBN 978-0-08-100314-5. [Google Scholar]
- Nagar, A.; Mehta, S. Steam Turbine Lube Oil System Protections Using SCADA & PLC. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 1376–1381. [Google Scholar]
- Dias, C.G.; Pereira, F.H. Broken Rotor Bars Detection in Induction Motors Running at Very Low Slip Using a Hall Effect Sensor. IEEE Sens. J. 2018, 18, 4602–4613. [Google Scholar] [CrossRef]
- Niu, J.; Lu, S.; Liu, Y.; Zhao, J.; Wang, Q. Intelligent Bearing Fault Diagnosis Based on Tacholess Order Tracking for a Variable-Speed AC Electric Machine. IEEE Sens. J. 2018, 19, 1850–1861. [Google Scholar] [CrossRef]
- Fu, Q.; Jing, B.; He, P.; Si, S.; Wang, Y. Fault Feature Selection and Diagnosis of Rolling Bearings Based on EEMD and Optimized Elman_AdaBoost Algorithm. IEEE Sens. J. 2018, 18, 5024–5034. [Google Scholar] [CrossRef]
- Rao, S.G.; Lohith, S.; Gowda, P.C.; Singh, A.; Rekha, S.N. Fault Analysis of Induction Motor. In Proceedings of the 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India, 11–13 April 2019; pp. 1–4. [Google Scholar]
- Moradi, M.; Chaibakhsh, A.; Ramezani, A. An intelligent hybrid technique for fault detection and condition monitoring of a thermal power plant. Appl. Math. Model. 2018, 60, 34–47. [Google Scholar] [CrossRef]
- Shaheryar, A.; Yin, X.-C.; Hao, H.-W.; Ali, H.; Iqbal, K. A Denoising Based Autoassociative Model for Robust Sensor Monitoring in Nuclear Power Plants. Sci. Technol. Nucl. Install. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, T.; Hirobayashi, S.; Misawa, T. Noise reduction for periodic signals using high-resolution frequency analysis. EURASIP J. Audio Speech Music. Process. 2011, 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Curling, L.; Gagnon, J.; Paidoussis, M. Noise removal from power spectral densities of multicomponent signals by the coherence method. Mech. Syst. Signal Process. 1992, 6, 17–27. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Rafsanjani, A.; Farshidianfar, A.; Irani, N. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech. Syst. Signal Process. 2007, 21, 2933–2945. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests. IEEE Sens. J. 2017, 17, 5581–5588. [Google Scholar] [CrossRef]
- Risqiwati, D.; Wibawa, A.D.; Pane, E.S.; Islamiyah, W.R.; Tyas, A.E.; Purnomo, M.H. Feature Selection for EEG-Based Fatigue Analysis Using Pearson Correlation. In Proceedings of the 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 22–23 July 2020; pp. 164–169. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. ISBN 978-3-642-00295-3. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Jia, M. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection. Knowl.-Based Syst. 2018, 163, 450–471. [Google Scholar] [CrossRef]
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2018, 133, 620–635. [Google Scholar] [CrossRef]
- Jack, L.; Nandi, A. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mech. Syst. Signal Process. 2002, 16, 373–390. [Google Scholar] [CrossRef]
- Guenther, N.; Schonlau, M. Support Vector Machines. Stata J. Promot. Commun. Stat. Stata 2016, 16, 917–937. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wang, C.; Zhou, Z. Study on refined control and prediction model of district heating station based on support vector machine. Energy 2019, 189, 116193. [Google Scholar] [CrossRef]
- Vernekar, K.; Kumar, H.; Gangadharan, K.V. Engine gearbox fault diagnosis using empirical mode decomposition method and Naïve Bayes algorithm. Sadhana 2017, 42, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5. [Google Scholar] [CrossRef]
Approach | Application | Year | Contribution | Limitation |
---|---|---|---|---|
Model-based approach | Boiler tube leakage detection [26] | 1997 | Developed the least-square method with forgetting factor derivation for leak detection |
|
Boiler tube leakage detection [29] | 2008 | Developed the input/output loss method by computing fuel chemistry, heating value, and fuel flow | ||
Turbine fault detection [30] | 2012 | Used the time-delay multilayer perceptron model for residual generation for fault detection in industrial turbine | ||
Turbine fault detection [31] | 2011 | A nonlinear dynamic model with a dynamic tracking filter was used to detect turbine fault | ||
Knowledge-based approach | Boiler tube leakage detection [27] | 1998 | Used radiation heat flux measurements for boiler tube leak detection |
|
Boiler tube leakage detection [32] | 2016 | Developed artificial neural network (ANN) models to detect tube leak | ||
Turbine fault detection [13] | 2017 | Developed artificial neural network (ANN) models to detect a fault in steam turbine | ||
Statistical analysis approach | Boiler tube leakage detection [11] | 2020 | Used multiway PCA model to detect boiler tube leakage |
|
Boiler tube leakage detection [9] | 2017 | Applied PCA to tube temperature data to detect boiler tube leakage | ||
Turbine fault detection [15] | 2011 | A generalized discriminant analysis approach is used for steam turbine fault detection | ||
Turbine fault detection [23] | 2011 | Proposed a support vector machine (SVM)-based model for fault detection in steam turbine |
# | Fault Type | Fault Classification |
---|---|---|
1 | TPP boiler water wall tube leakage |
|
2 | TPP turbine motor failure |
|
X6 (Steam temperature after SH I) | Highly correlated sensors (SH II metal temperature) | Correlation coefficient value |
X7 | 0.951 | |
X8 | 0.987 | |
X9 | 0.977 | |
X10 | 0.989 | |
X11 | 0.989 | |
X12 | 0.989 |
Case-1 | Raw data | 38 sensors |
Case-2 | Correlation analysis | 21 sensors |
Case-3 | mRMR algorithm | 21 sensors |
Case-4 | Extra-tree classifier | 21 sensors |
Fivefold Cross-Validation Accuracies (%) | Tenfold Cross-Validation Accuracies (%) | |||||
---|---|---|---|---|---|---|
SVM | k-NN | Naïve Bayes | SVM | k-NN | Naïve Bayes | |
Raw data | 92.1 | 94.7 | 86.8 | 93.4 | 94.7 | 88.1 |
Correlation analysis | 92.9 | 95.2 | 90.5 | 94.3 | 95.7 | 91.2 |
mRMR algorithm | 95.2 | 97.6 | 90.8 | 95.9 | 97.8 | 91.6 |
Extra-tree classifier | 95.2 | 95.2 | 90.8 | 95.9 | 95.7 | 91.6 |
Case-1 | Raw data | 136 sensors |
Case-2 | Correlation analysis | 61 sensors |
Case-3 | mRMR algorithm | 61 sensors |
Case-4 | Extra-tree classifier | 61 sensors |
Fivefold Cross-Validation Accuracies (%) | Tenfold Cross Validation Accuracies (%) | |||||
---|---|---|---|---|---|---|
SVM | k-NN | Naïve Bayes | SVM | k-NN | Naïve Bayes | |
Raw data | 81.2 | 82.4 | 87.5 | 83.8 | 83.5 | 88.6 |
Correlation analysis | 81.1 | 82.7 | 88.6 | 82.0 | 83.1 | 90.2 |
mRMR algorithm | 84.4 | 83.6 | 90.3 | 84.9 | 83.9 | 91.5 |
Extra-tree classifier | 87.7 | 86.0 | 92.6 | 88.1 | 86.8 | 93.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, S.; Hwang, H.; Kim, H.S. Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant. Mathematics 2021, 9, 2814. https://doi.org/10.3390/math9212814
Khalid S, Hwang H, Kim HS. Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant. Mathematics. 2021; 9(21):2814. https://doi.org/10.3390/math9212814
Chicago/Turabian StyleKhalid, Salman, Hyunho Hwang, and Heung Soo Kim. 2021. "Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant" Mathematics 9, no. 21: 2814. https://doi.org/10.3390/math9212814
APA StyleKhalid, S., Hwang, H., & Kim, H. S. (2021). Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant. Mathematics, 9(21), 2814. https://doi.org/10.3390/math9212814