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Abstract: The number of failures plays an important factor in the study of maintenance strategy of a
manufacturing system. In the real situation, this number is often affected by some uncertainties. Many
of the uncertainties fall into the possibilistic uncertainty, which are different from the probabilistic
uncertainty. This uncertainty is commonly modeled by applying the fuzzy theoretical framework.
This paper aims to compute the number of failures for a system which has Weibull failure distribution
with a fuzzy shape parameter. In this case two different approaches are used to calculate the number.
In the first approach, the fuzziness membership of the shape parameter propagates to the number of
failures so that they have exactly the same values of the membership. While in the second approach,
the membership is computed through the α-cut or α-level of the shape parameter approach in
the computation of the formula for the number of failures. Without loss of generality, we use the
Triangular Fuzzy Number (TFN) for the Weibull shape parameter. We show that both methods have
succeeded in computing the number of failures for the system under investigation. Both methods
show that when we consider the function of the number of failures as a function of time then the
uncertainty (the fuzziness) of the resulting number of failures becomes larger and larger as the time
increases. By using the first method, the resulting number of failures has a TFN form. Meanwhile,
the resulting number of failures from the second method does not necessarily have a TFN form, but a
TFN-like form. Some comparisons between these two methods are presented using the Generalized
Mean Value Defuzzification (GMVD) method. The results show that for certain weighting factor of
the GMVD, the cores of these fuzzy numbers of failures are identical.

Keywords: Weibull hazard function; number of failures; TFN; α-cut; defuzzification

1. Introduction

Uncertainty is present in almost all decision problems, including in the field of relia-
bility and maintenance. This is due to unknown future events and imprecision as well as
human subjectivity in a decision process [1]. There are some important factors that signifi-
cantly affect the decision-making in any field. In the field of reliability and maintenance,
the number of failures plays important roles in the study of maintenance strategy of a man-
ufacturing system. In the real situation, this number is often affected by some uncertainties.
Many of the uncertainties fall into the possibilistic uncertainty, which is different from the
probabilistic uncertainty. In many cases, at least one of the parameters or variables of the
decision function has fuzzy value, instead of crisp value. This uncertainty is commonly
modeled by applying fuzzy theoretical framework, e.g., the variable and parameter have
fuzzy values and the calculation is done using extension principle approach [2].

As an important factor, the number of failures is essential to obtain, and subsequently
is used as a base for further decision processes in reliability and maintenance analysis.
As an example, this “number” is used in the calculation to design optimal maintenance
strategies which are directed to minimize the number of failures while also minimizing
the costs of operation [3–5]. For this reason, the knowledge on how to compute or predict
the number of failures becomes vital. Considering the occurrence of uncertainty and
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imprecision—together with complexity of the system under investigation, failure data are
often difficult to obtain. In this case, the theory of fuzzy sets has been widely used to provide
a framework to deal with these uncertainty and imprecision [6]. Among the important
questions needed to be addressed related to the number of failures of a system having
a possibilistic uncertainty is, first, how to compute this number for a given possibility
distribution with fuzzy parameters. Nowadays, some calculator for fuzzy numbers are
readily available [2]. Second, it is also important to know how the degree of uncertainty of
the parameters propagates to the resulting failure numbers. This is commonly known as the
propagation of fuzziness, which is defined as “the way in which the amount of imprecision
in the model’s inputs affects the changes in the model’s output” [7], (p. 163). Technically
the propagation of uncertainty happens through mathematical operations involved in
the model and in the computation. Knowing the method to calculate the number and its
degree of uncertainty, will significantly improve the quality of the decision being sought
(see also [8,9] for similar cases in other area). In general, fuzziness propagation in complex
engineering systems may constitute a significant challenge [10].

The aims of the paper are two-fold, namely, to calculate the number of failures for
a system which has Weibull failure distribution with a fuzzy shape parameter and to
understand how the fuzziness of this shape parameter propagates to the resulting number
of failures. These two objectives constitute the importance and contributions of the work
presented in this paper. In addition, in this paper we look for the number of failures and
two different approaches are used to calculate this number. In the first approach, the
fuzziness membership of the shape parameter propagates to the number of failures so that
they have exactly the same values of the membership. While in the second approach, the
membership is computed through the α-cut or α-level of the shape parameter.

Literature Review

As it is explained earlier, the motivation of the paper is due the importance of finding
the number of failures in the field of maintenance strategy. Some examples of such impor-
tance can be seen in [11–16] from various perspectives. It is often found that most of the
problems in maintenance engineering are finding optimal strategies that minimize the cost
of operation to manipulate the system as well as minimize the number of failures of the
system (e.g., [17]). In many cases, the number of failures is represented in its distribution
function. Several type of distribution functions are commonly used to model the failures of
an industrial equipment, among others is the Weibull distribution function together with its
hazard function [18,19]. This distribution function could appear either in two-parameters
model or in three-parameters model [20,21]. Hence, the Weibull distribution function plays
vital roles in areas of research related to maintenance strategy in which understanding a
system, predicting the outcome of a system, and prescribing an optimal intervention to
obtain the best performance of a system are being sought. In fact, the spectrum of the area
applications of the Weibull distribution is quite broad from engineering, social sciences, to
biological and health problems.

Apart from the abundant usage of the Weibull distribution in many areas of research,
especially in maintenance strategy, most of the analysis only consider the crisp form of data,
i.e., ignoring the presence of possibilistic uncertainty which might be often found in many
real phenomena. For example, in maintenance engineering, most maintenance models in
literature mainly consider certain or crisp condition, e.g., [22,23]. However, as mentioned
earlier, these kinds of models do not seem to fit in the real condition. Readers may find
a brief review of the importance of the possibilistic uncertainty in [24]. In reliability and
maintenance problems, uncertainty may affect the models, the nonhomogeneous Poisson
process (NHPP), and the Weibull generalized renewal process parameters [25,26], and the
probability distribution parameters [8], and it is important to know how this uncertainty
propagates through the models which likely affect the insight and prediction from the
models [27].
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There are several approaches to model the possibilistic uncertainty, one of them is by
applying the fuzzy number theory, as suggested by Zadeh [28,29] and his followers. The
popularity of fuzzy number theory in reliability and maintenance literatures is now getting
higher [30] resulting in new modeling approach in many aspects, like maintenance risk-
based inspection interval optimization with fuzzy failure interaction for two-component
repairable system [31] and many others. The authors in [32] are among the few authors who
consider fuzzy Weibull distribution in their works. They consider the Weibull distribution
function as a fuzzy function and use it for analyzing the behavior of an industrial system
stochastically by utilizing vague, imprecise, and uncertain data, which in turn result in the
reliability indices (such as hazard function, maintainability, etc.) of time of time varying
failure rate instead of the constant failure rate for the system.

In general, the author in [33] (pp. 152–157) shows several methods on how to imple-
ment a fuzzy function in addressing problems with possibilistic uncertainty. The methods
can be classified into three different ways depending to which aspect of the crisp function
the fuzzy concept was applied, namely (i) crisp function with fuzzy constraint, (ii) crisp
function which propagates the fuzziness of independent variable to dependent variable,
and (iii) function that is itself fuzzy. However, in this paper we will only look for the
number of failures by using the first and the second approaches above. The fuzziness of
the shape parameter is assumed to propagate to the number of failures with the same form
of fuzzy number membership in the first approach, as found in [34,35]. While in the second
approach, the concept of α-cut or α-level of the fuzziness of the shape parameter is used in
the computation to calculate the number of failures, as found in [36]. An example of the
methodology on how to compare fuzzy numbers, such as those resulting from different
approaches of fuzzy function concepts above can be seen in [37].

In this paper we re-visit the model in [34,35] by giving some more detail analysis
and results discussed in those papers. The authors in [34] discussed the Weibull hazard
function by assuming a fuzzy shape parameter, which conceptually can be used to compute
the number of failures without actually showing the resulting number of failures (either in
crisp number form or fuzzy number form). They show how to compute the fuzzy number
of failures of Weibull hazard function in [35] by assuming a fuzzy shape parameter in
the Weibull hazard function via the second approach in [33], (p. 154), i.e., by considering
the Weibull function as a crisp function which propagates the fuzziness of independent
variable to dependent variable. In this paper we use different approaches by considering
the fuzziness of the shape parameter in the computation of the number of failures directly,
through the concept of α-cut or α-level [33] (p. 130) and [38], (pp. 7–16). Further we
discuss the generalized mean value defuzzification (GMVD) and use it to compare the
resulting fuzzy number of failures from different approaches of computation. The proposed
defuzzification method (GMVD) is able to find a crisp number which is close to the core of
the triangular fuzzy number (TFN).

We organize the presentation of the paper as follows. Section 2 presents briefly some
basic methods that are utilized in the preceding sections, namely, the Weibull distribution
function, fuzzy number and its membership function, α-cut of a fuzzy number, defuzzifica-
tion process with Generalized Mean Value Defuzzification (GMVD), and the number of
failures for Weibull hazard function with fuzzy parameter. Section 3 gives the main results
together with numerical examples to show the visual illustration of the main results. This
includes the comparisons from two different methods, i.e., the results from the method
considering propagation of the fuzziness of independent variable to dependent variable
and the results from the α-cut method. Section 4 presents the discussions of the results and
it is finally followed by concluding remarks and further direction of research in Section 5.

2. Materials and Methods

The object being investigated in this paper is the Weibull distribution function as a
mathematical model describing the deterioration of life cycle of an industrial system or
an equipment. This deterioration or failure data are commonly modeled by the Weibull
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distribution function such as found in [39]. The reason of popularity of the Weibull function
is its flexibility, so that it can be regarded as the generalization of exponential and Rayleigh
distribution functions, which are also commonly used in reliability and maintenance
studies [40]. The Weibull distribution is a continuous probability distribution function
having the form:

f (t) =


β
θ

( t
θ

)(β−1) exp
[
−
( t

θ

)β
]
, x > 0, θ > 0, β > 0,

0, otherwise.
(1)

where θ is the scale parameter and β is the shape parameter. The first mathematician who
described it in detail is Waloddi Weibull in 1951. The Weibull distribution has a flexibility
to model various lifetime data by changing the value of the shape parameter, e.g., if
β = 1 the Weibull distribution is reduced to an exponential distribution and if β = 2 the
Weibull distribution is identical to Rayleigh distribution [40]. Throughout the paper we will
assume the scale parameter θ = 1 for some reasons. For example, this choice is sufficient in
our context of maintenance modeling if we assume that the average of first failure of the
equipment/system under investigation happens within one unit of time—say one month
or one year, because of its warranty and good quality control. The authors in [41] give an
example with θ = 1 in their simulation.

Using this Weibull distribution function we can calculate some reliability indices, such
as hazard function, number of failures, mean time between failures, preventive maintenance
time, and replacement time. The standard methods on the calculation of these indices, both
for standard and complex systems, can be found among others in [42,43]. Details theory and
applications of the Weibull distribution function can be found in [44,45]. In the Section 2.1
we present some concepts of fuzzy theoretical framework which are used in the subsequent
method and analysis, namely, fuzzy number and its membership function, α-cut of a fuzzy
number, defuzzification process with Generalized Mean Value Defuzzification.

2.1. Fuzzy Number and Its Membership Function

As an introduction to the section that follows we define several concepts of fuzzy
number theory that will be used later on. A fuzzy number can be regarded as an extension
of a real number in the sense that it has a membership function other than binary to repre-
sent uncertainty. Binary membership gives a crips value for the membership, i.e., either
a member or not a member. Fuzzy number gives a wide spectrum of membership from
zero (definitely not a member of a set S) to one (definitely a member of a set S). Technically,
a fuzzy number Ã refers to a connected set of possible values, where each possible value
of Ã, say a, has its own membership value in the interval [0,1]. This value that measures
the degree of possibility for a to be a member of Ã is called the membership function,
usually written as µ : a ∈ A→ x ∈ [0, 1] . This fuzzy number is commonly written with
the symbol Ã = (A, µ(A)) or alternatively Ã =

{
(x, µÃ(x))|x ∈ X

}
representing the un-

derlying connected set A with the membership function µ(A). In this regards, the fuzzy
number is viewed as a pair of mathematical objects comprising of a set together with its
grade or membership function. The fuzzy number is purportedly designed to represent
the possibilistic uncertainty and to quantify the unclear and inaccuracies of the abundance
of information.

The membership of a fuzzy number can be determined by several functional ap-
proaches, which can be classified into the linear and the non-linear functional forms.
Among the most popular functional form of fuzzy number are the Triangular Fuzzy Num-
ber (TFN) which is often written as (a;b;c) and the Trapezoidal Fuzzy Number (TrFN) which
is often written as (a;b;c;d). The functional forms or the membership functions of these fuzzy
numbers are given in Equations (2) and (3), which are graphically shown in Figures 1 and 2.
Note that for the TrFN in Equation (3), the membership function within the intervals [a,b]
and [c,d] are given by increasing and decreasing linear curves respectively. This concept is
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generalized by the LR-Flat Fuzzy Number which is then used as a new method for solving
fuzzy transportation problems [2,46,47].
• The membership function of a triangular fuzzy number (TFN):

µÃ(x) =


0 , x ≤ a
x−a
b−a , a ≤ x ≤ b
x−c
b−c , b ≤ x ≤ c
0 , x ≥ c.

(2)

• The membership function of a trapezoidal fuzzy number (TrFN):

µÃ(x) =


0 , x ≤ a
x−a
b−a , a ≤ x ≤ b
1 , b ≤ x ≤ c
x−d
c−d , c ≤ x ≤ d
0 , x ≥ d.

(3)

Figure 1. Graphical representation of a triangular fuzzy number (a;b;c)—left figure, and a trapezoidal
fuzzy number (a;b;c;d)—right figure.

In Equation (2), a, b, and c are real numbers satisfying a < b < c which constitute the
TFN core and support components. In this case b is called the core of the fuzzy number
and the sets [a,b) and (b,c] are called the support of the fuzzy number. Similarly, for TrFN,
in Equation (3) the core of the fuzzy number is given by [b,c] and the support is given
by the set [a,b) and (c,d]. Other forms of fuzzy numbers are piecewise quadratic fuzzy
number [48], pentagonal fuzzy number [49], Bell shaped fuzzy number [50], parabolic
trapezoidal fuzzy number [51], new bell shaped fuzzy number [52], and many others. A
good reference on how some new methods and techniques are developed to advance fuzzy
numbers concepts for modern analytics can be found in [46]. However, for simplicity, to
emphasize the methodological aspect all examples in this paper assume the triangular
fuzzy numbers (TFN). In the next section we briefly describe the α-cut of a triangular fuzzy
numbers (α-cut, α-level cut, α-level set or sometimes simply is called a cut).

2.2. The α-Cut of a Fuzzy Number

Each fuzzy number is associated with its α-cut. This α-cut sometimes is also called the
α-level set. It is technically defined as the set of objects in the associated fuzzy set which
have the membership with the values which are at least α. This actually can be seen as a
crisp set representation of a fuzzy number. Following this definition, it can be shown that
the α-cut of the triangular fuzzy number (1) is given by:

Ãα = [aα
1 , aα

2 ] = [(b− a)α + a, (b− c)α + c] (4)

for all α ∈ [0, 1].
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2.3. Generalized Mean Value Defuzzification

For some reasons, the information regarding the best representation of a crisp number
for a fuzzy number is needed. In this case, defuzzification of the fuzzy number is done. It
is a mathematical calculation which converts the fuzzy number into a single crisp value
with respect to a fuzzy set. Some defuzzification formulas are available in literature, such
as basic defuzzification distributions, center of area, center of gravity, fuzzy mean, last
of maxima, weighted fuzzy mean, etc., [53–55]. In this paper we will use the generalized
mean value defuzzification method (GMVD) which is defined as

N(Ã) =
a + nb + c

n + 2
, (5)

where Ã = (a; b; c) is a TFN and n can be regarded as the weight of the core of the fuzzy
number. The larger the weight of the core, the closer the resulting crisp number from the
GMVD to the core of the fuzzy number. The properties of this GMVD will be discussed
later on and used in the comparation of the resulting number of failures.

3. Results
3.1. Number of Failures for Weibull Hazard Function with Fuzzy Parameter

As explained in the previous section we consider the one-parameter Weibull distri-
bution function, since this choice is sufficient in our context of maintenance modeling if
we assume that the average of first failure of the equipment/system under investigation
happens within one unit of time—say one month or one year—because of its warranty
and good quality control. By considering this assumption (θ = 1) and fuzzy parameter
β̃ the number of failure is computed using the first method, in which the calculation of
the fuzzy number is done point-wise (will be defined later), and we only need the crisp
function for the computation. From Equation (1) we have the following one-parameter
Weibull cumulative distribution, g, and its hazard function, h:

g(t) = 1− e−tβ
, (6)

and
h(t) = βtβ−1, (7)

so that the number of failures is given by

N(t) = tβ. (8)

The parameter β̃ is the fuzzy number of the shape parameter of the Weibull function.
We will treat the fuzziness of the shape parameter in two different approaches: (i) Crisp
function which propagates the fuzziness of independent variable to dependent variable
and, in which the computation is done point-wise; (ii) crisp function with fuzzy constraint
through the level-set computation.

The First Method (Point-wise Method): Let β̃ be a TFN which is identified by three
crisp numbers a, b, and c, i.e., β̃ = (a; b; c) satisfying Equation (2). We compute the number
of failures point-wise, i.e., by substituting these crisp numbers one at a time to obtain the
crisp output, say a’, b’, and c’. By assuming the same fuzzy measure propagates to the
output, we will have µ(a’) = µ(a), µ(b’) = µ(b), and µ(c’) = µ(c), which give a TFN fuzzy
output (a’; b’; c’) for the function g(t), h(t), and N(t) [34].

The Second Method (α-Cut Method): In the second approach, the fuzzy number β̃ is
identified as an α-cut satisfying Equation (4). As it is explained in [34], the fuzzy number of
the shape parameter is approximated by a sequence of interval associated with the number
α in [0,1]. This sequence consists of crisp numbers in the interval indicating the support of
the fuzzy number for every α in [0, 1). If α is one then the supports converge to/become
the core of the fuzzy number. The calculation to determine the number of failures is done
at the end points of the interval. In this case, the stack of the end points of the intervals
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need not to be a TFN, which in many cases forms a TFN-like form (see numerical examples
for the details).

To facilitate comparison between the results from the two methods, we use the GMVD
defined in Equation (5). This GMVD has the properties as described in Theorem 1.

Theorem 1. Let a TFN is given by (a;b;c), then the generalized mean value defuzzification (GMVD)
defined by Equation (5) has the following properties:

1. For a symmetrical case, i.e., b− a = c− b = ∆ then N(Ã) = b
2. For an asymmetrical case, i.e., b− a = ∆a 6= c− b = ∆c then

a. N(Ã) > b if ∆a < ∆c

b. N(Ã) < b if ∆a > ∆c

3. If n→ ∞ then N(Ã) = b regardless the value of p and q.

Proof of Theorem 1:

1. Case 1: symmetrical TFN, i.e., b− a = c− b = ∆ then

N(Ã) = a+nb+c
n+2 = a+nb+(a+2∆)

n+2 = 2a+nb+2∆
n+2

= 2(a+∆)+nb
n+2 = 2b+nb

n+2 = (2+n)b
n+2 = b.

Hence, N(Ã) = b.
2. Case 2: non-symmetrical TFN, i.e., b− a = ∆a 6= c− b = ∆c then

a. if ∆a < ∆c then

N(Ã) = a+nb+c
n+2 = a+nb+(a+∆a+∆c)

n+2 > a+nb+(a+2∆a)
n+2 = 2a+nb+2∆a

n+2

Hence, N(Ã) > b.
b. if ∆a > ∆c then

N(Ã) = a+nb+c
n+2 = a+nb+(a+∆a+∆c)

n+2 < a+nb+(a+2∆a)
n+2 = 2a+nb+2∆a

n+2

Hence, N(Ã) < b.

3. If n→ ∞ then lim
n→∞

N(Ã) = lim
n→∞

a+nb+c
n+2 = b. �

As shown by the theorem, the GMVD above has a special characteristic, i.e., it is able
to find a crisp number which is close to the core of the triangular fuzzy number (TFN).
As examples, first consider the symmetrical TFN in Figure 2(left), i.e.,β̃ = (p = 1.25;
q = 1.55; s = 1.85). It has GMVD = 1.55 for n = 1 and GMVD = 1.55 for n = 1000. Since it is
symmetrical, the values of GMVD are the same as the core of the TFN for all n. However,
for the non-symmetrical TFN, such as skewed left TFNβ̃ = (p = 2.50; q = 2.75; s = 2.80)
in Figure 2(right), it has GMVD = 2.6833 for n = 1 and GMVD = 2.74980 for n = 1000. In
this case, the larger is n the closer it is to the core of the TFN, i.e., 2.75. We will use this
method of defuzzification for comparing the fuzzy output from two different methods in
this paper.
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Figure 2. On the left figure is shown the relatively small shape parameter β̃ = (p = 1.25; q = 1.55;
s = 1.85) and on the right figure is shown the relatively large shape parameter β̃ = (p = 2.50;
q = 2.75; s := 2.80). The vertical axis is the fuzzy membership µ of the shape parameter’s TFN. The
first shape parameter is a symmetrical TFN and the second shape parameter is a nonsymmetrical
TFN. These TFNs are used to calculate their respective number of failures in the subsequent figures.

Next we look at the fuzzy number of failures generated by the Weibull distribution
via the α-cut method. Let us recall the α-cut of the triangular fuzzy number Ã = (a; b; c)
is given by Ãα = [aα

1 , aα
2 ] = [(b− a)α + a, (b− c)α + c] then the shape parameter, the

Weibull cumulative distribution, the Weibul hazard function, and the number of failures
are, respectively, given in the form of α-cut as follows. The shape parameter will have
the form

βα = [x1 + xα
3 , x2 − xα

3 ], (9)

for some x1, x2, x3 ∈ R.By considering the α-cut in Equation (9) and substituting it into
Equations (6) and (7) using the fuzzy arithmetic give rise to the cumulative distribution

g(t)α = [1− exp(−ty1+y3α), 1− exp(−ty2−y3α)], (10)

for some y1, y2, y3 ∈ R and the hazard function

h(t)α = [(z1 + z3α)tz4+z6α, (z2 − z3α)tz5−z6α], (11)

for some z1, z2, z3, z4, z5, z6 ∈ R. So that by integrating both sides of Equation (11) we
end up with the number of failures, which is given by

N(t)α = [tu1+u3α, tu2−u3α] (12)

for some u1, u2, u3 ∈ R.
The following theorem shows that as time goes, the GMVD of the number of failures

increases and the support of the number of failures becomes wider. This means that the
degree of uncertainty becomes larger.

Theorem 2. For ∆t > 0 let N(t)α and N(t + ∆t)α be the fuzzy number of failures at time t and
t + ∆t, respectively, then:

1. N(t)α = (tpα , tsα) and N(t + ∆t)α =
(
(t + ∆t)pα , (t + ∆t)sα

)
,

2. GMVD(N(t + ∆t)α) ≥ GMVD(N(t)α) for all t ∈ R+,
3.

(
(t + ∆t)pα − (t + ∆t)sα

)
− (tpα − tsα) ≥ 0 for all t ∈ Z+.

Proof of Theorem 2:

1. It is clear.
2. It can be proved by using Theorem 1.
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3. Note that for every α ∈ [0, 1], the interval in Equation (12) has the form (tpα , tsα) for
some pα, sα ∈ R. Without loss of generality, we will drop the index α, so that to
prove the theorem we need

(
(t + ∆t)p − (t + ∆t)s)− (tp − ts) ≥ 0.

Consider the following binomial rule,

(x + ∆x)n =
n
∑

k=0

n!
(n−k)!k! ∆xn−kxk. Then we have

(x + ∆x)n =
n−1
∑

k=0

(n−1)!
((n−1)−k)!k! ∆x(n−1)−kxk + n!

(n−k)!k! ∆xn−kxk

=
n−1
∑

k=0

(n−1)!
((n−1)−k)!k! ∆x(n−1)−kxk + xn.

Using this rule then for p, s ∈ Z+ we have

(t + ∆t)p =
p−1

∑
k=0

(p− 1)!
((p− 1)− k)!k!

∆t(p−1)−kyk + tp

(t + ∆t)s =
s−1

∑
k=0

(s− 1)!
((s− 1)− k)!k!

∆t(s−1)−kyk + ts

A little algebraic manipulation gives(
(t + ∆t)p − (t + ∆t)s)− (tp − ts) =

p−1
∑

k=0

(p−1)!
((p−1)−k)!k! ∆t(p−1)−ktk −

s−1
∑

k=0

(s−1)!
((s−1)−k)!k! ∆t(s−1)−ktk,

=
p−1
∑

k=s

(p−1)!
((p−1)−k)!k! ∆t(p−1)−ktk ≥ 0,

Which shows that
(
(t + ∆t)p − (t + ∆t)s)− (tp − ts) ≥ 0 for all t ∈ Z+. Note that the

theorem can be extended to any case of p, s ∈ R+. One can prove this using the Newton’s
generalized Binomial theorem [56,57] in the form of infinite series rather than an infinite
sum such as in the above case of t ∈ Z+. �

3.2. Numerical Examples

To obtain better insight regarding the results presented in the previous section we
illustrate the concept above by using two different values for the shape parameters, the
relatively small value β̃ = (p = 1.25; q = 1.55; s = 1.85) and the relatively large value
β̃ = (p = 2.50; q = 2.75; s := 2.80). Here p, q, and s are the TFN components which
constitute the TFN defined just the same as a, b, and c in Equation (2). The graphs of
these TFNs are shown in Figure 2. For the first method, the number of failures for the
shape parameters in Figure 2 at t = 10 is presented in Figure 3 while Figure 4 (top figures)
shows the number of failures for t in [0,100] with 10 steps size. Figure 4 (bottom figures)
shows the nonlinearity of the failure numbers as a function of t. Similarly, for the second
method, the number of failures for the shape parameters in Figure 2 at t = 10 is presented
in Figure 5 while Figure 6 shows the number of failures for t in [0,100] with all steps of
time. For the finer step size, i.e., 100 steps size, the graph of the number of failures from the
second method is presented in Figure 7. Clearly the number of failures in Figure 3 are in
triangular forms since the first method assumes that the fuzziness of the shape parameter
propagates to the number of failures with the same form of fuzzy number membership,
while the number of failures in Figure 5 does not have a triangular form since the fuzziness
uncertainty is considered and affects the functional calculation of the number of failures
through the α-cut arithmetic. Figure 8 gives the comparisons between these two relatively
different shapes. Further, if we plot the numbers of failures over time (see bottom figures
in Figure 4), then the curves are non-linear and seem to be “exponentially” increase as
expected in the theory. The bottom graphs in Figure 4 actually show the numbers of failures
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over time for the end points and core of the shape parameter TFNs. To be exact these
figures show the graphs of Weibull’s numbers of failures bands, which analytically is given
by Equation (8) and comparable to Equations (10) and (14) for the α-cat, hence it has a
power curve. This is consistent with the curve for Weibull’s number of failures with crisp
parameters [58]. This is also true for the second method (the α-cut approach), but we do
not show the graphs here.

Figure 3. The left figure is the number of failures for the shape parameter β̃ = (p = 1.25; q = 1.55; s = 1.85) at t = 10—see
left figure in Figure 1. The right figure is the number of failures for the shape parameter β̃ = (p = 2.50; q = 2.75; s = 2.80)
at t = 10—see right figure in Figure 2. Note that the vertical axis indicates the fuzzy membership µ.

Figure 4. The description is as in Figure 3 above but with t = 0 to t = 100 and step size of t is 10. The left axis is time, the
right axis is the number of failures, and the vertical axis is the fuzzy membership degree of the number of failures (above).
The figures in the bottom show the core (black), the lower bound (blue), and the upper bound (red) for the resulting number
of failures with small shape parameter (left) and large shape parameter (right).
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Figure 5. The left figure is the number of failures for the shape parameter β = (p = 1.25; q = 1.55; s = 1.85) at t = 10. The
right figure is the number of failures for the shape parameter β = (p = 2.50; q = 2.75; s = 2.80) at t = 10. Both figures are
generated by the second method with 20 levels of α, i.e., α0 = 0 as the base to α21 = 1 as the peak.

Figure 6. The description is as in Figure 5 above but with complete steps form t = 0 to t = 10. The left
axis is time, the right axis is the number of failures, and the vertical axis is the fuzzy membership
degree of the number of failures.

Figure 7. The plots of the number of failures for the shape parameter β = (p = 1.25; q = 1.55; s = 1.85)
and β = (p = 0.9; q = 1.0; s = 1.5) from the second method against time from t = 0 to t = 100 as in
Figure 6 but with a finer step size of t (other parameters are the same as in Figures 5 and 6).
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Figure 8. The top and bottom figures are plots of the number of failures for β = (p = 1.25; q = 1.55; s = 1.85)
and β = (p = 2.50; q = 2.75; s = 2.80), respectively, with the left hand side is for t = 10 and the right
hand side is for t = 100.

The figures show that for both values of fuzzy shape parameters β̃, the relatively small
value β̃ = (p = 1.25; q = 1.55; s = 1.85) and the relatively large value β̃ = (p = 2.50;
q = 2.75; s = 2.80), the length of the fuzziness of the resulting number of failures get
bigger as the time t increases. This means the increase of the possibilistic uncertainty of the
number of failures. This phenomenon also appears in the α-cut method as is shown in the
next section.

3.3. Results from the α-Cut Method

The following results are plotted from the calculation of the number of failures us-
ing the α-cut method. Recall the α-cut of the triangular fuzzy number Ã = (a; b; c) is
given by Ãα = [aα

1 , aα
2 ] = [(b− a)α + a, (b− c)α + c] hence for the fuzzy shape parameter

β̃ = (p = 1.25; q = 1.55; s = 1.85) we obtain its α-cut is

βα = [1.25 + 0.30α, 1.85− 0.30α], (13)

as the fuzzy number of the shape parameter. By considering the α-cut in Equation (7)
and substituting it into Equations (5) and (6) using the fuzzy arithmetic give rise to the
cumulative distribution

g(t)α = [1− exp(−t1.25+0.30α), 1− exp(−t1.85−0.30α)], (14)

and the hazard function

h(t)α = [(1.25 + 0.30α)t0.25+0.30α, (1.85− 0.30α)t0.85−0.30α], (15)
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So that by integrating both sides of Equation (9) we end up with the number of failures,
which is given by

N(t)α = [t1.25+0.30α, t1.85−0.30α]. (16)

When we use the α-cut method, we will have a triangular-like fuzzy number which is
comparable (not necessarily the same) to the triangular fuzzy number (p;q;r) defined by:

p = minN(t)α=0 = t5/4, (17)

q = N(t)α=1 = t31/20, (18)

r = minN(t)α=0 = t37/20, (19)

We enumerate the fuzzy number of failures in Table 1 based on the calculation of these
formulas for t = 0 to t = 10.

Table 1. Number of failures comparisons for β = (p = 1.25; q = 1.55; s = 1.85). Note that for the α -cut method we use
α = 0 to obtain the support (a,c) and α = 1 to find the core b of the resulting fuzzy number so that we have an analogous TFN
(a;b;c).

Time t Crisp
Method

Fuzzy Propagation
Method Fuzzy α-Cut Method

TFN
(p;q;s)

Defuzzification
(p + 4q + s)/6

TFN-like
(p;q;s)

Defuzzification
(p + 4q + s)/6

0 0 0 0
p = 0
q = 0
s = 0

0

1 1 1 1
p = 1
q = 1
s = 1

1

2 2.949350275
p = 2.378414230
q = 2.928171392
s = 3.605001850

2.949350275
p = 2.378414230
q = 2.928171392
s = 3.605001850

2.949350275

3 5.589852442
p = 3.948222039
q = 5.489565165
s = 7.632631956

5.589852442
p = 3.948222039
q = 5.489565165
s = 7.632631956

5.589852442

4 8.824940564
p = 5.656854248
q = 8.574187700
s = 12.99603834

8.824940564
p = 5.656854248
q = 8.574187700
s = 12.99603834

8.824940564

5 12.59725950
p = 7.476743905
q = 12.11723434
s = 19.63787576

12.59725950
p = 7.476743905
q = 12.11723434
s = 19.63787576

12.59725950

6 16.86728508
p = 9.390507480
q = 16.07438767
s = 27.51565232

16.86728508
p = 9.390507480
q = 16.07438767
s = 27.51565232

16.86728508

7 21.60548840
p = 11.38603593
q = 20.41277093
s = 36.59581083

21.60548840
p = 11.38603593
q = 20.41277093
s = 36.59581083

21.60548840

8 26.78864158
p = 13.45434265
q = 25.10669114
s = 46.85074227

26.78864158
p = 13.45434265
q = 25.10669114
s = 46.85074227

26.78864158

9 32.39780510
p = 15.58845727
q = 30.13532570
s = 58.25707056

32.39780510
p = 15.58845727
q = 30.13532570
s = 58.25707056

32.39780510

10 38.41712138
p = 17.78279410
q = 35.48133892
s = 70.79457844

38.41712138
p = 17.78279410
q = 35.48133892
s = 70.79457844

38.41712138
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Table 1 also gives the counterpart of the fuzzy number of failure calculated by the first
method. Note that in Table 1, TFN is a triangle fuzzy number, while FN is not necessarily a
triangle fuzzy number. However, they both have the same core and the same support but
the shapes are different (see Figure 8).

Further, to compare the resulting fuzzy number of failures among the methods, we
defuzzified them using the generalized mean value defuzzification (GMVD) which is
defined by (4) with n = 4. The comparison shows that the defuzzified numbers both from
the first method and the second method are exactly the same to the results from the crisp
method. Table 2 shows that if n is getting larger, then, the defuzzified number gets closer
to the core of the fuzzy number, e.g., for t = 10, with n = 1,000,000 the defuzzified number
is 35.4813565346595 which approaches the core of its fuzzy number, i.e., q = 35.48133892.
This agrees with Theorem 1. We plot the resulting number of failures for t = 10 in Figure 5
and for t = 0 to t = 10 in Figure 6. The same procedure is done for the relatively large value
of the shape parameter β̃ = (p = 2.50; q = 2.75; s = 2.80) but the details are not presented
here. The plots are presented in the righthand side of Figures 5–7.

Table 2. The illustration of Theorem 1 of the GMVD for non-symmetrical fuzzy number in Figure 5
(left). The fuzzy number is (17.782794100; 35.481338920; 70.794578440).

n GMVD n GMVD

0 44,28868627 6 37,68317576
1 41,35290382 7 37,43852722
2 39,88501260 8 37,24280839
3 39,00427786 9 37,08267480
4 38,41712137 10 36,94923015
5 37,99772388 10,000,000 35,48135653

The time-series plots of the Cumulative Distribution Function, the Hazard Function,
and the Number of Failures are presented in Figure 9. The shape parameter on the upper-
left of Figure 9 is β = (p = 1.25; q = 1.55; s = 1.85) and on the upper-right of Figure 9 is
β = (p = 2.50; q = 2.75; s = 2.80). The figure shows the plots for a short period of time,
up to t = 1.5.

Figure 9. Cont.
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Figure 9. The time-series plots of the Cumulative Distribution Function, the Hazard Function, and the Number of Failures. The
shape parameter on left figure is β = (p = 1.25; q = 1.55; s = 1.85) and on the right figure is β = (p = 2.50; q = 2.75; s = 2.80).

4. Discussions

The analytical results in Theorems 1 to 3 are illustrated by numerical examples to
gain visual understanding regarding the analytical finding above by using β̃ = (p = 1.25;
q = 1.55; s = 1.85) and β̃ = (p = 2.50; q = 2.75; s := 2.80) reflecting a relatively small
and a relatively large shape parameter, respectively. Here p, q, and s are the TFN components
which constitute the TFN defined just the same as a, b, and c in Equation (1). See Figure 2
for the graphs of these TFNs and Figure 3 for the resulting number of failures at t = 10
from the first method and Figure 5 (for the second method). While Figure 4 (top figures)
shows the number of failures for t in [0,100] for the first method and Figure 6 for the second
method with 10 steps size, (for the finer step size, i.e., 100 steps size see Figure 7). Clearly
the number of failures in Figure 3 are in triangular forms due to the assumption in the
first method in which the fuzziness of the shape parameter propagates with the same form
of fuzzy number membership to the number of failures, while the number of failures in
Figure 5 does not have a triangular form since the fuzziness uncertainty is considered and
affecting the functional calculation of the number of failures through the α-cut arithmetic.
Figure 8 gives the comparisons between these two relatively different shapes. The time-
series plots of the cumulative distribution function, the hazard function, and the number
of failures are presented in Figure 9. All curves are familiar in shape as it conform to
their crisp parameter of Weibull distribution, but here they form twisted-cumulative band,
-hazard band, and -number of failures band instead of single curve, respectively.

Furthermore, if we plot the numbers of failures over time (see bottom figures in
Figure 4), then the curves are non-linear and seem to “exponentially” increase as expected
in the theory. The bottom graphs in Figure 4 actually show the numbers of failures over
time for the end points and core of the shape parameter TFNs. To be exact these figures
show the graphs of Weibull’s numbers of failures bands, which analytically is given by
Equations (12) and (16), hence it has a power curve shape which conforms to the known
curve for Weibull’s number of failures with crisp parameters [58]. This is also true for the
second method (the α-cut approach), but we do not show the graphs here.
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When considering a Weibull distribution with fuzzy shape parameter to calculate
the fuzzy number of failures, usually in such imprecise situations, extension principle
approach is often used as one choice of calculation though it could lead to a complex form.
Here we have proposed a simple method (the first method) to calculate the number of
failures, by assuming that the fuzziness of the shape parameter propagates to the number of
failures with the same form of fuzzy number membership, and also proposed an alternative
method (the second method) which is the calculation done using the α-cut method. This
method could be extended to the Weibull distribution with more parameters to enlarge the
applicability to other area [59].

5. Conclusions

In this paper we have discussed the Weibull hazard function by assuming a fuzzy
shape parameter to calculate the fuzzy number of failures. Here we have proposed a
simple method (the first method) to calculate the number of failures, by assuming that
the fuzziness of the shape parameter propagates to the number of failures with the same
form of fuzzy number membership, and also proposed an alternative method (the second
method) which is the calculation done using the α-cut method.

We have shown that both methods have succeeded in computing the number of
failures for the system under investigation. Both methods show that when we consider the
function of the number of failures as a function of time then the uncertainty (the fuzziness)
of the resulting number of failures becomes larger and larger as the time increases. This
indicates the propagation of uncertainty in the shape parameter into the resulting number
of failures, in which for large values of t, a small value of uncertainty in the shape parameter
will produce a large support to the fuzzy number of failures. In practical implication, one
should be aware of these properties when using the resulting number of failures as a base
for the further process of decision-making.

In this paper we have used a TFN for the shape parameter and by using the first
method, the resulting number of failures has a TFN form. Meanwhile, the resulting number
of failures from the second method does not necessarily have a TFN form, but a TFN-like
form. Some comparisons between these two methods are presented using the Generalized
Mean Value Defuzzification (GMVD) method. The results show that for certain weighting
factor of the GMVD, the cores of these fuzzy numbers of failures are identical. We did
the comparation between the two methods after we use the GMVD which produces crisp
number of failures. This can be regarded as a shortcoming of the study since once we
defuzzify the resulting number of failures we lose the information of the uncertainty.
Further study can be done by considering the comparation with a method that preserves
the uncertainty.

The TFN form and value of the shape parameter used in the Weibull distribution
function was taken for granted. For the practical applications this would be not easy. The
true form of the fuzzy number should be correctly decided from the available real data and
the value should be estimated from the same data. These issues are among the limitations
of the methods presented here and could also lead to future direction of research. Other
concern is that here we only consider one parameter which has fuzzy value. In realty
all of the Weibull parameters could also have imprecise measure or uncertainty. This
also will lead to important future venue of research (currently four-parameter Weibull
distribution has already around in crisp value application ref). Here we only consider
one-parameter Weibull distribution by assuming the scale parameter is assumed to be one.
This is sufficient in our context of maintenance modeling if we assume that the average
of first failure of the equipment/system under investigation happens within one unit of
time. However, in general case this may not be true, so we need to extend the analysis
into Weibull distribution having arbitrary values of the scale parameters. Further studies
can also be done for different approaches with different forms of fuzzy numbers, different
uses of defuzzification methods, and explore the applications of the theory in different
related field, such as the number of failures in biological processes (e.g., failure in protecting
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healthy status (susceptibility) for people who are infected by COVID-19 disease), which
currently we are working on.
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