
mathematics

Article

Fuzzy Integral-Based Multi-Classifiers Ensemble for Android
Malware Classification

Altyeb Taha * , Omar Barukab and Sharaf Malebary

����������
�������

Citation: Taha, A.; Barukab, O.;

Malebary, S. Fuzzy Integral-Based

Multi-Classifiers Ensemble for

Android Malware Classification.

Mathematics 2021, 9, 2880. https://

doi.org/10.3390/math9222880

Academic Editor: Abeer Alsadoon

Received: 1 October 2021

Accepted: 9 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Technology, Faculty of Computing and Information Technology in Rabigh,
King Abdulaziz University, Jeddah, Saudi Arabia; obarukab@kau.edu.sa (O.B.); smalebary@kau.edu.sa (S.M.)
* Correspondence: aaataha@kau.edu.sa

Abstract: One of the most commonly used operating systems for smartphones is Android. The
open-source nature of the Android operating system and the ability to include third-party Android
apps from various markets has led to potential threats to user privacy. Malware developers use
sophisticated methods that are intentionally designed to bypass the security checks currently used in
smartphones. This makes effective detection of Android malware apps a difficult problem and im-
portant issue. This paper proposes a novel fuzzy integral-based multi-classifier ensemble to improve
the accuracy of Android malware classification. The proposed approach utilizes the Choquet fuzzy
integral as an aggregation function for the purpose of combining and integrating the classification
results of several classifiers such as XGBoost, Random Forest, Decision Tree, AdaBoost, and Light-
GBM. Moreover, the proposed approach utilizes an adaptive fuzzy measure to consider the dynamic
nature of the data in each classifier and the consistency and coalescence between each possible subset
of classifiers. This enables the proposed approach to aggregate the classification results from the
multiple classifiers. The experimental results using the dataset, consisting of 9476 Android goodware
apps and 5560 malware Android apps, show that the proposed approach for Android malware
classification based on the Choquet fuzzy integral technique outperforms the single classifiers and
achieves the highest accuracy of 95.08%.

Keywords: Android malware classification; ensemble learning; choquet fuzzy integral

1. Introduction

The use of smartphones is continuously increasing in many aspects of our daily lives.
Users are used to storing a considerable amount of their private information on their smart-
phones. Smartphones are equipped with many sensors that collect valuable information
about the user, such as gestures, locations, video, and audio data. The availability of this
important information in the smartphones motivates the malware developers and attackers
to penetrate the smartphones and steal the private information of the users. The number of
smartphone users has increased rapidly in the past few years. Currently, Android is the
most widely used smartphone operating system in the world, dominating 70.69% of the
market share as of April 2020. [1].

Recent studies suggest that the number of Android apps has increased in recent
years due to the open-source nature of Android and the popularity of Android-based
smartphones. Moreover, Android-based smartphones have become a widely used control
system for the Internet of Things (IoT) [1]. Based on studies by Statista [2], the number of
Android apps has grown rapidly since December 2009, and the current number of Android
apps existing on Google Play Store in 2020 has reached 2.96 million apps after exceeding 1
million apps in July 2013. This increase in the number of Android apps is due to the key
features of Android such as open source nature and ease of use. Privacy issues arose that
are of concern to both businesses and users. This is because malware developers intend to
deceive users with apps that appear to be useful but have unnoticed malicious intentions.

Mathematics 2021, 9, 2880. https://doi.org/10.3390/math9222880 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9086-3085
https://orcid.org/0000-0002-5725-9430
https://orcid.org/0000-0003-4339-3791
https://doi.org/10.3390/math9222880
https://doi.org/10.3390/math9222880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222880
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222880?type=check_update&version=2

Mathematics 2021, 9, 2880 2 of 18

According to GDATA [3], security experts found more than 4.18 million malicious apps in
2019 and the average number of new Android malware is 11,500 apps per day.

Because Android allows users to download and install programs from Google Play,
the official store for Android apps, as well as several third-party markets, it has become
the most targeted platform by malware software makers. Due to the lack of effective
authentication techniques, malware developers can upload their malicious APPs to Google
Play and other third-party stores [4], and evade smartphone users by employing various
techniques such as repackaging or encryption, dynamic execution, and code obfuscation [5].
Finance charges, changes to user settings, data theft, privilege escalation, and remote control
are all examples of damage caused by malicious Android apps. Currently, malware app
developers are employing sophisticated ways to create extremely complicated programs
that may easily escape detection by the most advanced anti-malware software [6].

Machine learning approaches have been applied successfully in the field of secu-
rity [7]. Researchers offer many techniques based on machine learning algorithms to
identify Android malware apps, which are divided into two categories: static and dynamic
analysis [8]. Static analysis can identify malware by extracting significant features from
the APK without executing it and using these features to differentiate between malware
and goodware applications. In [9–11], the authors used static analysis to obtain the app’s
key features, such as the required permissions. Compared with dynamic analysis, static
analysis can detect malware quickly and prevent it from being installed. The identification
of more complex Android malware apps that employ polymorphism, code obfuscation,
and repackage methods is a problem for static analysis. Dynamic analysis is based on
installing and executing Android applications in an environment and tracing their ex-
ecution or behavior [12]. DroidDolphin [13], Crowdroid [14], and DroidWard [15] use
dynamic analysis to screen runtime activities such as system calls and API calls and utilize
supervised learning algorithms to distinguish between malware and goodware apps.

Because the success of a single classifier is dependent to some extent on the Android
app’s unique characteristics, it has inherent individual uncertainty and limitations. When
compared with a single classifier, the combination of classifiers has the benefit of minimiz-
ing the variation of estimated error and improving classification performance. Ensemble
learning is a machine learning approach that uses many learning algorithms rather than
a single algorithm to generate a single optimal prediction model; it has shown to be an
effective solution in a variety of disciplines. Ensemble learning approaches have been
shown empirically and theoretically to outperform single weak methods, particularly
when dealing with complicated, high-dimensional prediction problems [16]. Bagging [17],
Boosting [18], and Stacking [19] are the most often used ensemble learning methods. Stack-
ing is a fusion approach that combines many machine learning algorithms (base models)
structured in at least one layer and then employs another machine learning algorithm (meta
model) to achieve higher classification performance than any of its basic algorithms [20].
In [21,22], the authors collected a large number of significant features and strings from
Android APK files and used these features to create multiple ensemble machine learning
techniques to identify Android malware apps.

There are intrinsic interactions between several basic classifiers; these interactions
might be positive synergy in nature, in which case the basic classifiers collaborate and
strengthen one another. The ensemble system may use the strengths of the different clas-
sifiers and overcome their weaknesses to attain a better level of accuracy than any single
classifier. The fuzzy integral has the advantages of characterizing the significance of basic
classifiers by fuzzy measure and modeling the coalitions and interactions among every
possible coalition (subset) of classifiers. This study presents a multi-classifier ensemble
based on fuzzy integrals to enhance the accuracy of Android malware classification. The
proposed method employs Choquet fuzzy integral as an aggregation function to fuse the
prediction results of multiple classifiers, including XGBoost, Random forest, Decision tree,
AdaBoost, and LightGBM, by taking into account both the significance of each classifier
as well as the consistency and coalition among each possible subset of classifiers based

Mathematics 2021, 9, 2880 3 of 18

on adaptive fuzzy measures. The proposed approach is able to aggregate more meaning-
ful prediction results from multiple classifiers using the adaptive fuzzy measures. The
following are the primary contributions of the suggested approach:

- Proposes a novel fuzzy integral based multi-classifiers ensemble for Android malware
classification. The proposed approach has the capability of aggregating the classifica-
tion results from multiple classifiers by taking into account both the significance of
each classifier as well as the consistency and coalition among each possible subset of
classifiers based on fuzzy measures.

- For successful detection of Android malware apps, the proposed approach presents
an adaptive fuzzy measure based on dynamic data in single classifiers and consistency
and coalition among each potential subset of classifiers.

- The proposed approach’s performance was evaluated through a series of experi-
ments, and the results indicate that it outperforms both individual classifiers and
other approaches.

The rest of the paper is organized as follows. Section 2 presents the related work on
Android malware detection. Section 3 presents the fuzzy measures and Choquet integral.
Section 4 explains the proposed approach for Android malware classification. Results and
discussion are illustrated in Section 5. Section 6 concludes this paper.

2. Related Work

With the number of Android malware apps growing fast, several researchers have pro-
posed approaches based on machine learning techniques for the classification of Android
malware apps.

Arp et al. [22] developed an app called “Drebin” for detecting Android malware
apps. They used the API calls, Android permissions, and network addresses as features
to differentiate between goodware and malware apps. Their experimental results were
based on a dataset consisting of 5560 malware apps and 123,453 goodware apps from
numerous app markets. Drebin achieved classification accuracy of 94% and a false positive
rate of 1%. Firdaus et al. [23] presented an approach for Android malware apps detection
based on features investigation. The features include Android permissions and directory
paths. They used three machine learning algorithms: voted perceptron (VP), radial basis
function network (RBFN), and multilayer perceptron (MLP) in the conducted experiments
based on Drebin and AndroZoo [24] datasets. Their proposed approach based on MLP
achieved detection accuracy of 90% and true positive rate of 87%. Hu et al. [25] presented
an approach using an ensemble learning classifier with the feature selection algorithm, a
sliding window is utilized inside the ensemble classifier. Zhang et al. [26] presented a new
approach using the Markov blanket for feature selection, SVM is employed for classification
of Android malware apps, and Drebin dataset is used in their experimental results.

Coronado-De-Alba et al. [27] suggested an ensemble-learning approach for Android
malware detection. They used a dataset consisting of 1531 malware and 1531 goodware
apps; the malware apps were selected from the Drebin dataset [22], and the goodware
samples were obtained from the Google Play Store. They used two features selection
algorithms, RELIEF and Chi-squared, and the Random Forest algorithm for the detection
of Android malware. Peiravian and Zhu [28] introduced a machine-learning-based model
for Android malware detection. They used Android app permission and API calls as main
features to distinguish between goodware and malware apps.

Wang et al. [29] utilized Decision Tree, Linear SVM, Logistic regression, and Random
forest for malware apps detection-based static analysis. They used the apps static features
for machine learning training. Based on the experimental results, their proposed approach
detects malware apps with false positive rate of 0.06% using the Logistic Regression
algorithm based on a dataset containing 217,619 goodware and 18,363 malware apps.
Talha et al. [30] suggested a classification approach based on permissions “APK Auditor”
to categorize the Android apps as goodware or malware which achieved 88% accuracy with

Mathematics 2021, 9, 2880 4 of 18

a specificity of 0.925. They used a dataset consisting of 8762 apps including 1853 goodware
apps and 6909 malware apps.

DroidDolphin [13] is a dynamic analysis approach that uses machine learning to
classify Android malware. It analyzes Android apps based on obtaining the apps details
from API calls and activities by running the apps on virtual environments and attained a
precision of 86.1% using the SVM algorithm. Milosevic et al. [31] proposed an Android
malware classifier based on the ensemble learning model. They used Android permissions
and source-code-based features. The ensemble classifier used contained linear regression,
Decision Trees, SVM, C.45, Random Tree, and Random Forests algorithms.

In our previous research [32], we proposed a hybrid approach for the classification
of Android malware by integrating the fuzzy C-means clustering (FCM) algorithm with
the light gradient boosting machine (LightGBM). FCM is used to cluster the Android
permissions, while LightGBM is utilized to classify the Android apps based on the app’s
permissions and their clusters resulting from FCM. Using a widely used dataset consisting
of benign and malware Android apps, the experimental results show that the suggested
approach attained an accuracy of 94.63%.

In our previous research [9], we suggested an evolving hybrid neuro-fuzzy classifier
(EHNFC) for Android malware classification using permission-based features. We adapted
the evolving clustering algorithm to incorporate an adaptive method for updating the radii
and centers of clustered permission-based features. The results show that the proposed
method classifies Android malware with an accuracy of 90%. In our previous research [10],
we introduced an approach for Android malware classification using the adaptive neuro
fuzzy inference systems (ANFIS), an information gain method utilized to choose the
important Android permissions. The proposed method attained an accuracy of 75%.

In our previous research [11], we introduced an adaptive neuro-fuzzy inference system
with fuzzy c-means clustering (FCM-ANFIS) for Android malware classification. The ex-
perimental results show that a classification accuracy of 91% was achieved by the proposed
method. Table 1 summarizes the discussed related works.

Table 1. Summary of the discussed related works.

Approach Description of Method Accuracy Limitations

Altaher [9] Android permissions and adaptive neuro
fuzzy inference systems (ANFIS) 75% Static analysis method and lacks the

dynamic real-time inspection

DroidDolphin [13]
API calls and activities by running the apps
on virtual environments and
SVM algorithm

86.1% Dynamic analysis consuming
resources and takes a long time

Arp et al. [22]
Used API calls, Android permissions and
network addresses as features and support
vector machine (SVM) algorithm

94% Exhibits the inherent limitations of
static analysis

Firdaus et al. [23]

Android permissions used as features, and
three machine learning algorithms: voted
perceptron (VP), radial basis function
net-work (RBFN), and multilayer
perceptron (MLP)

90% Static analysis method and lacks the
dynamic real-time inspection

Hu et al. [25]

Android permissions, application actions,
and API were utilized as features An
ensemble learning classifier was used
as classifier

96% Unable to detect new Android
malware apps

Talha et al. [30] Android permissions and machine
learning algorithms 88% Static analysis method and lacks the

dynamic real-time inspection

Mathematics 2021, 9, 2880 5 of 18

Table 1. Cont.

Approach Description of Method Accuracy Limitations

Taha and Malebary [32]
Android permissions and fuzzy C-means
clustering (FCM) algorithm with the light
gradient boosting machine (LightGBM)

94.63% Exhibits the inherent limitations of
static analysis

Awan et al. [33]
Spatial attention and convolutional neural
network (SACNN) based on deep
learning framework

97.42%
Lack of exploration in the data
augmentation and the feature

engineering domains

Hemalatha et al. [34]

Visualization-based method, where
malware binaries are depicted as
two-dimensional images and classified by a
deep learning model

98.23% Consumes re-sources and takes
long time for training

Nisa et al. [35]

The features that are extracted from
malware images are then classified using
different variants of support vector
machine (SVM), k-nearest neighbor (KNN),
decision tree (DT), and other classifiers

99.3%
Used a pre-trained model and

cannot detect new Android
malware apps

3. Choquet Fuzzy Integral

The idea of the Choquet integral was initially presented in capacity theory [36]. It
is utilized as a fuzzy integral by considering a fuzzy measure [37]. Then, the Choquet
integral is rediscovered in [38,39] by Murofushi and Sugeno. Choquet integral aims to
integrate functions based on the fuzzy measures. For Android malware classification, the
fuzzy measures based on the Choquet integral were utilized to state a weight for each set
of classifiers. Since classifiers can be dependent, therefore, it is possible to enable modeling
of the interaction existing between classifiers. The description of the Choquet integral and
fuzzy measures is shown in [38] where: C = {c1, c2, . . . , cN} is a set of N machine learning
algorithms, and P(C) represents the performance of C or set of all subsets of C.

Definition 1. Suppose C is a finite set of machine learning algorithms, the discrete fuzzy measure
on C is the mapping:

P(C)→[0, 1], adhering to the requirements below:

(1) µ (Ø) = 0, l(C) = 1 (requirements limits).
(2) If A, B ∈ P(C) and A ⊂ Z then µ (A) ≤ µ (B) (monotonicity).

where µ (S) represents the score of the importance of classifier set S. Therefore, weights on
any classifiers combination are also considered as well as the standard weights of each classifier
taken independently.

Definition 2. Suppose µ is the fuzzy measure on C = 1; 2; . . . , n. The Choquet fuzzy integral of
the function mapping:

f: C→R with relation to µ is explained by:

CHµ(f) =
n

∑
i=1

f(i)
[
µ(A(i) − µ

(
A(i+1)

)]
, (1)

where (i) denotes a replacement on C thus

f(1) ≤ f(2) ≤ . . . ≤ f(n). Moreover A(i) = i, · · · , n, A(n + 1) = ∅.

Because the independency of one classifier from another is not necessary in the fuzzy
integral model, it can be utilized in many non-linear situations. The overall evaluation of
all possible solutions can be obtained by the fuzzy integral of f with respect to µ. In the

Mathematics 2021, 9, 2880 6 of 18

case of independent classifiers, the fuzzy measure is additive, and the Choquet integral
matches with the weighted arithmetic mean approach. Thus,

CHµ(f) =
n

∑
i=1

fiµ({i}) (2)

A Choquet integral is an approach of collection that takes into account both the
significance of a classifier and its relations with various classifiers [40]. Suppose G, M ⊂ X
and G⊂M = Ø, g are known as a λ-fuzzy measure when the following condition is satisfied:

g(G∪ S) = g(G) + g(M) + λg(G)g(M), λ ε (−1, ∞) (3)

For the relations between G and M, if λ > 0, then the multiplicative effect exists; if
λ < 0, then the substitutive effect exists. λ = 0 shows that G and M are unrelated [41].

Let gi represent the fuzzy density based on the Choquet fuzzy integral, g(Aj) is
attained by λ and gj as

g
(

Aj
)
= gj + g

(
Aj+1

)
+ λgjg

(
Aj+1

)
=

1
λ

[
∏

i=j···n
(1 + λgi)− 1

]
(4)

λ is computed by solving the following equation:

F(λ) =
n

∏
j=1

(
1 + λµj

)
− λ− 1 = 0 (5)

In [42], it was proved that for a fixed set of µj, 0 < µj < 1, there exists a unique root of
λ > −1, and λ 6= 0, using Equation (5). In addition, from Equation (5) it can also be seen
that if the values of µj are known, then λ can be calculated.

4. The Proposed Fuzzy Integral-Based Multi-Classifiers Ensemble for Android
Malware Classification

This research proposes a fuzzy integral-based multi-classifiers ensemble for Android
malware classification. The suggested method combines five different basic classifiers,
namely XGBoost, Random Forest, Decision Tree, AdaBoost, and LightGBM, with one fusion
module based on the Choquet fuzzy integral. The Android app permissions are used as
inputs to the five basic classifiers, and the prediction results from all basic classifiers are
combined using the Choquet fuzzy integral to determine the final classification results of
the Android app. Figure 1 illustrates the proposed approach.

4.1. Dataset and Features Selection

In this study, a dataset containing 9476 Android goodware apps and 5560 malware
Android apps was utilized [22]. The Android malware apps in the dataset are from 49
different malware families; examples for the malware families in the dataset included
FakeInstaller, DroidKungFu, Goldmaster, and GingerMaster. The dataset is preprocessed
and partitioned into training and testing datasets in preparation for evaluation. The dataset
includes Android permissions as distinguishing features between goodware and malware
applications. The important Android permissions are then carefully determined utilizing
the information gain approach to improve classification accuracy. Using essential fea-
tures that describe the unique dataset characteristics, feature selection algorithms can help
improve classification accuracy. As a result, feature selection approaches reduce dataset
dimensions by removing Android permissions that aren’t needed for the classification
process. Redundant or different characteristics can lead to a variety of issues, including a re-
duction in the efficacy of machine learning algorithms. To achieve an accurate identification
of Android malware apps, it is necessary to use an appropriate feature selection method.

Mathematics 2021, 9, 2880 7 of 18

Figure 1. The proposed approach for Android malware classification.

The information gain ratio (IGR) technique [43] is applied to select the essential
features for Android malware classification. The IGR technique depends on finding the
relationships between the features of an Android app and then calculating and scoring each
feature individually. The information gain is utilized to select the important Android apps’
permissions in the suggested approach because of its high efficiency and fast computing.
Based on the class (malware or goodware), it assesses the best Android permissions.
Figure 2 displays examples for the features employed in the proposed model and their
information gain ranks. The information gain ranks for the chosen permissions are reflected
in the horizontal axis.

4.2. Single Classifiers

Motivated by our previous research on Android malware classification [9,11,32], the
XGBoost, Random forest, Decision tree, AdaBoost, and LightGBM algorithms are employed
as single classifiers in this study for the classification of Android malware applications.
Then, the classification outputs resulting from these classifiers are combined using the
Choquet fuzzy integral.

4.2.1. The eXtreme Gradient Boosting (XGBoost)

The XGBoost algorithm suggested by Dr. Chen Tianqi [44] provides good learning via
additive training approaches which fuse all expectations of a set of “Ineffective” learners
to reduce the variance by adding regularization terms. It has the capabilities of high
accuracy, fast running speed, and low computational complexity regardless of whether the

Mathematics 2021, 9, 2880 8 of 18

data size is big or small. This method has been successfully applied in classification and
prediction approaches.

Figure 2. The selected features for Android malware classification.

4.2.2. Random Forest (RF)

Random Forest is an ensemble learning technique that has been very successful as a
regression and classification technique. Random forest builds several decision trees that
will be utilized by the majority vote to classify a new sample. Each decision tree node uses
a subset of features chosen randomly from the entire original set of features [45].

4.2.3. Decision Tree (DT)

DT is a widely employed approach for classification as it is similar to human reasoning
and it is simple to explain. Using the decision tree, a new sample can clearly be categorized
and the basic idea is to consistently match the corresponding characteristics and associated
conditions until a leaf node of the class label has been reached [46].

4.2.4. AdaBoost

Freund and Schapire [47] have proposed AdaBoost, which provides a majority vote
over many classifiers. AdaBoost has become one of the most important and powerful
classification algorithms in many applications due to its low implementation complexity,
high performance, and strong generalization capabilities.

4.2.5. LightGBM

LightGBM is a new GBDT (gradient boosting decision tree) algorithm, suggested by
Ke and colleagues in 2017, which has been successfully utilized in several types of data
mining operations, such as regression and classification [48]. The LightGBM algorithm
includes two novel methods: the gradient-based one-side sampling and the exclusive
feature bundling.

Mathematics 2021, 9, 2880 9 of 18

The performance of classifiers is influenced by used parameters directly. We utilized
the grid search to determine the ideal parameters for each classifier in order to obtain good
performance. Table 2 summarizes the used parameters for each classifier.

Table 2. The used parameters.

Classifier Parameters

LightGBM Objective = regression, metric = rmse, num_leaves = 80, learning_rate = 0.09, bagging_fraction = 0.7,
feature_fraction = 0.7, bagging_frequency = 5, bagging_seed = 2018, verbosity = 1

Random Forest n_estimators = 50 and random_state = 1
XGBoost random_state = 1 and learning_rate = 0.01
AdaBoost n_estimators = 100
Decision Tree max_depth = 5, min_samples_leaf = 4

4.3. Classifiers Fusion Based on Choquet Integral

Any single classifier has benefits and disadvantages. The performance of a single
classifier for Android malware classification is to some extent dependent on the sample’s
attributes, and there is uncertainty for each classifier. Choquet’s integral fusion may syn-
thesize the classification outputs of several classifiers and achieve the highest consistency
of the outputs between the varied and consistent outputs. Under uncertain conditions,
the Choquet integral fusion is an efficient reasoning strategy. There are several Android
permissions that might be exploited by both Android malware and goodware apps, making
it difficult to distinguish between the two. As a result, the classification result of several
classifiers fused using the Choquet integral is more accurate and suitable for Android
malware classification.

4.4. Adaptive Fuzzy Measure

As shown in Equation (1), the Choquet fuzzy integral works on the fuzzy measures
(g), which are computed based on the level of significance of each classifier or the level
of significance of a subset of classifiers. Let C = {c1, c2, . . . , cN} be the set of N classifiers,
T= {M,B} be the set of class-types of Android apps, where M denotes the malware apps
and B denotes the benign apps. P(ci) =

{
p
(
cM

i
)
, p
(
cB

i
)}

represents the output of classifier
ci where p

(
xM

i
)

represents the classification score assigned by classifier xi to the class-type
malware app and p

(
xB

i
)

represents the classification score assigned by classifier ci to the
class-type benign app. Generally, the importance of a classifier over a dataset is explained
using the confusion matrix as shown in Figure 3.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 19

to the class-type benign app. Generally, the importance of a classifier over a dataset is
explained using the confusion matrix as shown in Figure 3.

Figure 3. Confusion matrix for a two-class problem.

The confusion matrices are beneficial tools to check the errors that the classifiers are
making. Suppose 𝐶𝑀 is the confusion matrix of classifier c୩:

CM୩ = ⎣⎢⎢
⎡ nଵଵ୩ nଵଶ୩ ⋯nଶଵ୩ nଶଶ୩ ⋯⋯ ⋯ ⋯ nଵ୩nଶ୩⋯nଵ୩ nଶ୩ ⋯ n୩ ⎦⎥⎥

⎤
 (6)

where i = j, n୧୨୩ indicates the number of Android apps belonging to class type T and are
correctly classified by the classifier c୩ as class T. On the other hand, i ≠ j, n୧୨୩ denotes
the number of Android apps with class type T but are incorrectly classified as class T
by classifier c୩.

As the circumstances between the classification results and training cannot be very
consistent, the fuzzy measure must be adaptively adjusted to appropriately cope with the
classification situation. However, after the classifiers training stage, the generated confu-
sion matrix will be fixed. Consequently, if the Android malware classifier is constructed
based on the static prior fuzzy density, then the classification accuracy of the fusion clas-
sifier may be decreased. It is logical to fine tune the fuzzy measure based on the adaptive
details in the single classifier outputs.

To tune the fuzzy measure, two issues were considered: firstly, the confidence of
classification results for each classifier, and secondly, the consistency between the classi-
fications results for each classifier. For the confidence of each single classifier result, we
considered the confidence improvement factor that is represented by α, which reduces the
importance of the classifier when the confidence of the classifier results is less significant
[49]. For the consistency between the classifier results, we considered the consistency im-
provement factor, which is represented by β. It reduces the significance of the classifier
when the consistency of the classifier results is less important.

From the confusion matrix, a number of class-wise measures are obtained such as
accuracy, precision, recall, and F1-score. In this study, the performance, P, of classifier 𝑖
is evaluated by considering the two classes simultaneously using the accuracy measure:

For a given Android app, the classification performance by classifier i is P୧ = TP + TNTP + TN + FP + FN (7)

Let K ⊆ N denote a subset of classifiers with Pk being the performance of classifier
K for each I ϵ {1,2,…,n}. Then μ୧ is the mean performance of classifiers S ⊆ N with |S| = i μ୧ = ଵୈ ∑ Pୗୗ⊆,|ୗ|ୀ୧ (8)

Figure 3. Confusion matrix for a two-class problem.

Mathematics 2021, 9, 2880 10 of 18

The confusion matrices are beneficial tools to check the errors that the classifiers are
making. Suppose CMk is the confusion matrix of classifier ck:

CMk =

nk

11 nk
12 · · ·

nk
21 nk

22 · · ·
· · · · · · · · ·

nk
1N

nk
2N
· · ·

nk
N1 nk

N2 · · · nk
NN

 (6)

where i = j, nk
ij indicates the number of Android apps belonging to class type TM and are

correctly classified by the classifier ck as class TM. On the other hand, i 6= j, nk
ij denotes the

number of Android apps with class type TM but are incorrectly classified as class TB by
classifier ck.

As the circumstances between the classification results and training cannot be very
consistent, the fuzzy measure must be adaptively adjusted to appropriately cope with the
classification situation. However, after the classifiers training stage, the generated confusion
matrix will be fixed. Consequently, if the Android malware classifier is constructed based
on the static prior fuzzy density, then the classification accuracy of the fusion classifier may
be decreased. It is logical to fine tune the fuzzy measure based on the adaptive details in
the single classifier outputs.

To tune the fuzzy measure, two issues were considered: firstly, the confidence of classi-
fication results for each classifier, and secondly, the consistency between the classifications
results for each classifier. For the confidence of each single classifier result, we considered
the confidence improvement factor that is represented by α, which reduces the importance
of the classifier when the confidence of the classifier results is less significant [49]. For the
consistency between the classifier results, we considered the consistency improvement
factor, which is represented by β. It reduces the significance of the classifier when the
consistency of the classifier results is less important.

From the confusion matrix, a number of class-wise measures are obtained such as
accuracy, precision, recall, and F1-score. In this study, the performance, P, of classifier i is
evaluated by considering the two classes simultaneously using the accuracy measure:

For a given Android app, the classification performance by classifier i is

Pi =
TP + TN

TP + TN + FP + FN
(7)

Let K ⊆ N denote a subset of classifiers with Pk being the performance of classifier K
for each I ε {1,2, . . . , n}. Then µi is the mean performance of classifiers S ⊆ N with |S| = i

µi =
1
D ∑

S⊆N,|S|=i
PS (8)

where D =
(

n
i

)
denotes the number of sets in the level i of measure and µ0 = 0. The

confidence improvement factor α and consistency improvement factor β of classifier ck for
the Android app ai are represented as follows:

For single classifiers, the confidence improvement factor is

αi = pi (9)

The confidence improvement factor and consistency improvement factor for a sub set
of classifiers are calculated using Equations (10) and (11), respectively, in order to consider
the diversity between classifiers:

αi =
1
n
+

tanh(100 ∗ (Pi − µi))

2n
(10)

Mathematics 2021, 9, 2880 11 of 18

βk
i =

k

∏
i=1

γki (11)

where the γki denote the consistency between the classification results from classifier k and
the classification result from classifier i. Assume classifier k divides the Android app ai as
malware app (X) while classifier i classifies the Android app ai as a goodware app (Y), then
the γki is calculated as follows:

γki =

{
1− (skX − SiX) X 6= Y
1 X = Y

(12)

The updated fuzzy measure is computed as follows:

gi = αi ∗ βk
i (13)

To classify the Android apps using the Choquet fuzzy integral, we used steps in
Figure 4.

Figure 4. Steps of the proposed approach for Android malware classification.

Mathematics 2021, 9, 2880 12 of 18

5. Results and Discussion

To investigate the efficiency of the proposed fuzzy Integral-based multi-classifier
ensemble for Android malware classification, in this section we conduct a performance
comparison between the proposed approach and the five state-of-the-art single classifiers,
i.e., Xgboost, Random Forest, Decision Tree, AdaBoost, and LightGBMM using a real-world
dataset. Moreover, we compared the performance of the proposed approach with the other
research in the literature for Android malware classification.

The Choquet integral is employed with the fuzzy measures obtained from the single
and all possible sets of classifiers to find the final classification of the Android app, either as
a malware or goodware app. For further illustration, the classification with the arithmetic
mean is considered to demonstrate that utilizing an appropriate fuzzy measure combined
with the Choquet integral can achieve classifications that are more accurate.

The results of the classification obtained by each of the classifiers (namely, XGBoost
(C1), Random Forest (C2), Decision Tree (C3), AdaBoost (C4), and LightGBM (C5), for
10 Android apps randomly selected from the used dataset are shown in Table 3. The true
labels for the Android apps are provided in column Y, while column ŷµ and ŷ C represent
the obtained output based on the Choquet fuzzy integral and arithmetic mean. Each
classification result denotes the probability of each Android app belonging to malware
class 1 (p(y = 1|x), or goodware class p(y = 0|x) = 1 − p(y = 1|x)).

Table 3. Classification of Android Apps using individual classifiers, the Choquet fuzzy integral, and arithmetic mean.

Android Apps XGBoost Random Forest Decision Tree AdaBoost Light-GBM Actual ^
yC

^
yµ

App1 0.1944 0.0033 0.0032 0.4870 0 0 0 0
App2 0.7831 0.9936 0.9930 0.5072 0.9920 1 1 1
App3 0.2605 0.1132 0.1135 0.4959 0.1135 0 0 0
App4 0 0.2605 0.4984 0.6121 1 1 1 0
App5 0.1944 0.0033 0.0032 0.4870 0.0034 0 0 0
App6 0.6965 0.8627 0.8628 0.5049 0.8606 1 1 1
App7 0.1944 0.0033 0.0032 0.4870 0 0 0 0
App8 0.7831 0.9858 0.9873 0.5133 0.9877 1 1 1
App9 0.7831 0.9858 0.9873 0.5133 0.9877 1 1 1

App10 0.6965 0.8627 0.8628 0.5049 0.8606 1 1 1

To build the fuzzy measures, we iterated through all the probable sets of classifiers
and calculated their performance. The performance of a set of classifiers is computed using
the arithmetic mean of the classification results for the classifiers in the set. Then, each
Android app is classified as malware or goodware app by selecting the class that belongs
to the greatest aggregated output. Lastly, the performance of the classifier(s) is provided by
comparing the classification results of the sub-ensemble with the actual results. Table 4
shows the performances of the single and all possible sets of classifiers.

Considering the data in Table 4 and Equation (12), we can construct the fuzzy measure
for the single classifiers and all the possible sets of classifiers as shown in Figure 5.

After constructing the fuzzy measure as shown in Figure 5, we can classify each
Android application as malware or goodware using the Choquet integral. For example, we
will consider the process of classifying the fourth Android app in Table 3. The probabilities
of App4 belonging to malware class given by each classifier are PC1 (y = 1|App4) = 0.0000,
PC2 (y = 1|App4) = 0.2605, PC3 (y = 1|App4) = 0.4984, PC4 (y = 1|App4) = 0.6121and PC5
(y = 1|App4) = 1.0000. Since PC3 (y = 1|App4) < PC1 (y = 1|App4) < PC2 (y = 1|App4)
< PC4 (y = 1|App4) < PC5 (y = 1|App4), and the coefficients of the fuzzy measures that
are significant for the classification of App4 are m({C1,C2, C3, C4,C5}), m({C1,C2, C3, C4}),
m({C4, C2, C5}), m({C2, C4}), and m({C2}) (see blue path in Figure 2). Thus, the aggregation
of scores for malware class is given by:

Cm(0.0000, 0.2605, 0.4984, 0.6121, 1.0000) = 0.0000 * m({ C1,C2, C3, C4,C5})+ (0.2605 −
0.0000)* m({ C1,C2, C3, C4}) + (0.4984- 0.2605)* m({C4, C2, C5}) + (0.612172 − 0.498429)*

Mathematics 2021, 9, 2880 13 of 18

m({C2, C4}) + 1.0000* m({C2}) = 0.0000 *(1) + (0.2605 − 0.0000) *(0.8624)+ (0.4984 −
0.2605)*(0.6698)+ (0.612172 − 0.498429) * (0.4268) + (1 − 0.612172) * (0.9495) = 0.8008.
Since 0.8008 > 0.5, the proposed approach classifies the fourth Android app as a malware
app. The fuzzy measures utilized in the classification of the fourth Android app are illus-
trated by the blue paths in Figure 5. However, if the arithmetic mean is considered for the
classification of the fourth Android app, the result would be (0 + 0.260513 + 0.498429 +
0.612172 + 1)/5 = 0.4742, and since 0.4742 < 0.5, the classification result would be goodware
app, which is an incorrect classification result. Noticing that the true class label for the
fourth Android app is 1, the proposed approach correctly classified the fourth Android
app, due to its ability to consider the interactions among classifiers.

Table 4. Classification performance of single classifier and all possible sets of classifiers.

Sub-Ensemble of Classifiers Performance Score Average Performance Score

Decision Tree 0.9477

0.9408
AdaBoost 0.9366

Random Forest 0.9495

XGBoost 0.9224

LightGBM 0.9482

Decision Tree, Random Forest 0.9503

0.9465

Decision Tree, XGBoost 0.9503

Decision Tree, AdaBoost 0.9238

Decision Tree, LightGBM C5 0.9491

Random Forest, Decision Tree 0.9482

Random Forest, AdaBoost 0.9493

Random Forest, LightGBM 0.9491

Decision Tree, AdaBoost 0.9480

Decision Tree, LightGBM 0.9484

AdaBoost, LightGBM 0.9491

Decision Tree, Random Forest, XGBoost 0.9503

0.9493

Decision Tree, Random Forest, AdaBoost 0.9503

Decision Tree, Random Forest, LightGBM 0.9491

Decision Tree, AdaBoost, LightGBM 0.9491

Random Forest, XGBoost, AdaBoost 0.9482

Random Forest, XGBoost, LightGBM 0.9488

Random Forest, AdaBoost, LightGBM 0.9491

XGBoost, Decision Tree, LightGBM 0.9486

XGBoost, Decision Tree, AdaBoost 0.9503

Decision Tree, Random Forest, Decision Tree, AdaBoost 0.9503
0.9495

Decision Tree, Random Forest, XGBoost, LightGBM 0.9488

Decision Tree, Random Forest, XGBoost, AdaBoost, LightGBM 0.9488 0.9488

Mathematics 2021, 9, 2880 14 of 18

Figure 5. The fuzzy measure values of single classifiers and all possible sets of classifiers. The fuzzy measures utilized in
the classification of the fourth Android app are illustrated by the blue paths.

Table 5 shows that the proposed Choquet integral-based ensemble of classifiers
achieved the highest accuracy of 95.08%, which outperform that of single classifiers and
arithmetic mean approach. Moreover, the proposed approach achieved the highest F1-score
of 0.9350. It can be seen that the capability of the proposed approach to synthesize various
classifiers classification outputs and take the benefits of each single classifier made it more
effective, enabling it to achieve better performance and outperform the single classifiers
and arithmetic mean approach. In addition to the basic measures listed above, the statis-
tical significance of the proposed approach and other methods was measured. Figure 6
presents the critical difference diagram, where the models with statistically similar values
of performance are connected to one another.

Table 5. Performance comparison between the proposed approach and other approaches.

Classifier Accuracy Precision Recall F1-Score

Random Forest 0.9495 0.8950 0.9680 0.9301
LGBM 0.9482 0.8921 0.9674 0.9282
Decision Tree 0.9480 0.8950 0.9639 0.9284
AdaBoost 0.9366 0.9251 0.9076 0.9163
XGBoost 0.9224 0.9192 0.8793 0.8988
Arithmetic Average 0.9486 0.9669 0.8940 0.92910
The proposed 0.9508 0.9240 0.9463 0.9350

Mathematics 2021, 9, 2880 15 of 18

Figure 6. Critical difference diagram for the Nemenyi test.

The AUC is an important and useful evaluation of the overall performance [50]. An
AUC with a high score indicates greater classification performance. As shown in Figure 7,
the proposed approach achieved the highest AUC value of 95.0%, which demonstrates
the ability of the proposed approach to differentiate between Android malware and good-
ware apps.

Figure 7. AUC curves for the proposed approach compared with other approaches.

In order to highlight the significance of our proposed approach, we compared its
results with other published approaches in terms of accuracy. The suggested approach
performs better than all the other approaches listed in Table 6, including our previous
research [9,11,32], due to its ability to leverage the advantages of ensemble learning and
adaptive fuzzy measures. Salah et al. [51] proposed the technique that attained the highest
accuracy of 99%; however, they employed Android malware app features that differed
from the features used in this study.

Mathematics 2021, 9, 2880 16 of 18

Table 6. Comparison between the proposed approach and other approaches.

Reference Approach Accuracy

Altaher [9] 90%

Altaher and BaRukab [11] 91%

Abdulla and Altaher [10] 75%

Arp et al. [22] 94%

Firdaus et al. [23] 90%

Talha et al. [30] 88%

Taha and Malebary [32] 94.63%

Salah et al. [51] 99%

Yerima et al. [52] 93.1%

Sanz et al. [53] 85.8%

The proposed approach 95.08%

6. Conclusions

Android malware’s continual growth poses a significant threat to the security of
sensitive data and the privacy of smartphone users. It is critical to develop effective and fast
methods for distinguishing Android malicious applications from legitimate applications.
Android malware classification techniques based on multiple classifier fusion have been
a growing trend in this field. This paper proposed a multi-classifier ensemble based
on fuzzy integrals for detecting Android malware. The suggested technique combines
and integrates the classification results of several classifiers, including XGBoost, Random
Forest, Decision Tree, AdaBoost, and LightGBM, using the Choquet fuzzy integral as an
aggregation function. The suggested approach can inherit the advantages of basic classifiers
while avoiding their drawbacks. Additionally, the suggested technique is capable of taking
into account classifier interactions. The experimental results indicate that combining
several classifiers based on the Choquet fuzzy integers outperforms individual classifiers
and achieves the highest accuracy of 95.08%. The limitation of the proposed approach is its
inability to detect obfuscated Android malware apps. For future work, we aim to explore
more advanced Android malware apps’ features and techniques for integrating multiple
classifiers to classify the Android malware apps.

Author Contributions: Conceptualization, A.T.; methodology, A.T.; implementation, A.T.; writing—
original draft preparation, A.T.; writing—review and editing, O.B. and S.M. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
IFPHI-192-830-2020 and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Niu, W.; Cao, R.; Zhang, X.; Ding, K.; Zhang, K.; Li, T. OpCode-level function call graph based android malware classification

using deep learning. Sensors 2020, 20, 3645. [CrossRef] [PubMed]
2. Statista. 2019. Available online: https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-

play-store (accessed on 13 June 2021).

http://doi.org/10.3390/s20133645
http://www.ncbi.nlm.nih.gov/pubmed/32610606
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store

Mathematics 2021, 9, 2880 17 of 18

3. Gdata. 2019. Available online: https://www.gdata-software.com/news/g-data-mobile-malware-report-2019-new-high-for-
malicious-android-apps (accessed on 13 April 2020).

4. Feng, J.; Shen, L.; Chen, Z.; Wang, Y.; Li, H. A two-layer deep learning method for android malware detection using network
traffic. IEEE Access 2020, 8, 125786–125796. [CrossRef]

5. Conti, M.; Li, Q.Q.; Maragno, A.; Spolaor, R. The dark side (-channel) of mobile devices: A survey on network traffic analysis.
IEEE Commun. Surv. Tutor. 2018, 20, 2658–2713. [CrossRef]

6. Mehtab, A.; Shahid, W.B.; Yaqoob, T.; Amjad, M.F.; Abbas, H.; Afzal, H.; Saqib, M.N. AdDroid: Rule-based machine learning
framework for android malware analysis. Mob. Netw. Appl. 2020, 25, 180–192. [CrossRef]

7. Demontis, A.; Melis, M.; Biggio, B.; Maiorca, D.; Arp, D.; Rieck, K.; Corona, I.; Giacinto, G.; Roli, F. Yes, machine learning can be
more secure! a case study on android malware detection. IEEE Trans. Depend. Secure Comput. 2017, 16, 711–724. [CrossRef]

8. Papadopoulos, H.; Georgiou, N.; Eliades, C.; Konstantinidis, A. Android malware detection with unbiased confidence guarantees.
Neurocomputing 2018, 280, 3–12. [CrossRef]

9. Altaher, A. An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and
permission-based features. Neural Comput. Appl. 2016, 28, 4147–4157. [CrossRef]

10. Abdulla, S.; Altaher, A. Intelligent approach for android malware detection. KSII Trans. Internet Inf. Syst. 2015, 9, 2964–2983.
11. Altaher, A.; Barukab, O. Android malware classification based on ANFIS with fuzzy c-means clustering using significant

application permissions. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 2232–2242. [CrossRef]
12. Imtiaz, S.I.; Rehman, S.U.; Javed, A.R.; Jalil, Z.; Liu, X.; Alnumay, W.S. DeepAMD: Detection and identification of Android

malware using high-efficient Deep Artificial Neural Network. Futur. Gener. Comput. Syst. 2020, 115, 844–856. [CrossRef]
13. Wu, W.C.; Hung, S.H. DroidDolphin: A dynamic Android Malware Detection Framework using Big Data and Machine Learning.

In Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems, Towson, MD, USA, 5–8 October 2014;
pp. 247–252.

14. Burguera, I.; Zurutuza, U.; Nadjm-Tehrani, S. Crowdroid: Behavior-Based Malware Detection System for Android. In Proceedings
of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, Chicago, IL, USA, 15–19 November 2011;
pp. 15–26.

15. Yang, Y.; Wei, Z.; Xu, Y.; He, H.; Wang, W. Droidward: An effective dynamic analysis method for vetting android applications.
Cluster Comput. 2018, 21, 265–275. [CrossRef]

16. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2019, 14, 241–258. [CrossRef]
17. Breiman, L. Bagging predictors. Mach. Learn 1996, 24, 123–140. [CrossRef]
18. Schapire, R.E.; Singer, Y. Improved Boosting Algorithms Using Confidence-rated Predictions. Mach. Learn. 1999, 37, 297–336.

[CrossRef]
19. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
20. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
21. Wang, W.; Li, Y.; Wang, X.; Liu, J.; Zhang, X. Detecting Android malicious apps and categorizing benign apps with ensemble of

classifiers. Futur. Gener. Comput. Syst. 2018, 78, 987–994. [CrossRef]
22. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C.E.R.T. Drebin: Effective and explainable detection of

android malware in your pocket. Ndss 2014, 14, 23–26.
23. Firdaus, A.; Anuar, N.B.; Ab Razak, M.F.; Sangaiah, A.K. Bio-inspired computational paradigm for feature investigation and

malware detection: Interactive analytics. Multimed. Tools Appl. 2017, 77, 17519–17555. [CrossRef]
24. Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. Androzoo: Collecting Millions of Android Apps for the Research Community. In

Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR) 2016, Austin, TX, USA,
14–15 May 2016; pp. 468–471.

25. Hu, D.; Ma, Z.; Zhang, X.; Li, P.; Ye, D.; Ling, B. The concept drift problem in Android malware detection and its solution. Secur.
Commun. Netw. 2017, 1–13. [CrossRef]

26. Zhang, X.; Hu, D.; Fan, Y.; Yu, K. A Novel Android Malware Detection Method Based on Markov Blanket. In Proceedings of
the 2016 IEEE First International Conference on Data Science in Cyberspace (DSC) 2016, Changsha, China, 13–16 June 2016;
pp. 347–352.

27. Coronado-De-Alba, L.D.; Rodríguez-Mota, A.; Escamilla-Ambrosio, P.J. Feature Selection and Ensemble of Classifiers for Android
Malware Detection. In Proceedings of the 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellin,
Colombia, 15–17 November 2016; pp. 1–6.

28. Peiravian, N.; Zhu, X. Machine Learning for Android Malware Detection using Permission and Api Calls. In Proceedings of
the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, Washington, DC, USA, 4–6 November 2013;
pp. 300–305.

29. Wang, X.; Wang, W.; He, Y.; Liu, J.; Han, Z.; Zhang, X. Characterizing Android apps’ behavior for effective detection of malapps
at large scale. Futur. Gener. Comput. Syst. 2017, 75, 30–45. [CrossRef]

30. Talha, K.A.; Alper, D.I.; Aydin, C. APK Auditor: Permission-based Android malware detection system. Digit. Investig. 2015, 13,
1–14. [CrossRef]

31. Milosevic, N.; Dehghantanha, A.; Choo, K.-K.R. Machine learning aided Android malware classification. Comput. Electr. Eng.
2017, 61, 266–274. [CrossRef]

https://www.gdata-software.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdata-software.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
http://doi.org/10.1109/ACCESS.2020.3008081
http://doi.org/10.1109/COMST.2018.2843533
http://doi.org/10.1007/s11036-019-01248-0
http://doi.org/10.1109/TDSC.2017.2700270
http://doi.org/10.1016/j.neucom.2017.08.072
http://doi.org/10.1007/s00521-016-2708-7
http://doi.org/10.3906/elk-1602-107
http://doi.org/10.1016/j.future.2020.10.008
http://doi.org/10.1007/s10586-016-0703-5
http://doi.org/10.1007/s11704-019-8208-z
http://doi.org/10.1007/BF00058655
http://doi.org/10.1023/A:1007614523901
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.1002/widm.1249
http://doi.org/10.1016/j.future.2017.01.019
http://doi.org/10.1007/s11042-017-4586-0
http://doi.org/10.1155/2017/4956386
http://doi.org/10.1016/j.future.2017.04.041
http://doi.org/10.1016/j.diin.2015.01.001
http://doi.org/10.1016/j.compeleceng.2017.02.013

Mathematics 2021, 9, 2880 18 of 18

32. Taha, A.A.; Malebary, S.J. Hybrid classification of Android malware based on fuzzy clustering and the gradient boosting machine.
Neural Comput. Appl. 2020, 33, 6721–6732. [CrossRef]

33. Awan, M.J.; Masood, O.A.; Mohammed, M.A.; Yasin, A.; Zain, A.M.; Damaševičius, R.; Abdulkareem, K.H. Image-Based Malware
Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [CrossRef]

34. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damaševičius, R. An efficient DenseNet-based deep learning model for
malware detection. Entropy 2021, 23, 344. [CrossRef]

35. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid malware classification method
using segmentation-based fractal texture analysis and deep convolution neural network features. Appl. Sci. 2020, 10, 4966.
[CrossRef]

36. Choquet, G. Theory of Capacities. Ann. Inst. Fourier 1954, 5, 131–295. [CrossRef]
37. Höhle, U. Integration with Respect to Fuzzy Measures. In Proceedings of the IFAC Symposium on Theory and Applications of

Digital Control, New Delhi, India, 5–7 January 1982; pp. 35–37.
38. Murofushi, T.; Sugeno, M. A theory of fuzzy measures: Representations, the Choquet integral, and null sets. J. Math. Anal. Appl.

1991, 159, 532–549. [CrossRef]
39. Murofushi, T.; Sugeno, M. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy

measure. Fuzzy Sets Syst. 1989, 29, 201–227. [CrossRef]
40. Li, X.; Wang, F.; Chen, X. Support Vector Machine Ensemble Based on Choquet Integral for Financial Distress Prediction. Int. J.

Pattern Recognit. Artif. Intell. 2015, 29. [CrossRef]
41. Chiou, H.-K.; Tzeng, G.-H. Fuzzy Multiple-Criteria Decision-Making Approach for Industrial Green Engineering. Environ. Manag.

2002, 30, 816–830. [CrossRef]
42. Tahani, H.; Keller, J.M. Information fusion in computer vision using the fuzzy integral. IEEE Trans. Syst. Man Cyber. 1990, 733, 741.

[CrossRef]
43. Mori, T. Information Gain Ratio as Term Weight: The Case of Summarization of Ir Results. In Proceedings of the COLING 2002,

The 19th International Conference on Computational Linguistics, Taipei, Taiwan, 26–30 August 2002.
44. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM S International Conference on

Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794.
45. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
46. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017.
47. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
48. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.
49. Chibelushi, C.; Deravi, F.; Mason, J. Adaptive classifier integration for robust pattern recognition. IEEE Trans. Syst. Man Cybern.

Part B 1999, 29, 902–907. [CrossRef] [PubMed]
50. Dal Pozzolo, A.; Caelen, O.; Le Borgne, Y.-A.; Waterschoot, S.; Bontempi, G. Learned lessons in credit card fraud detection from a

practitioner perspective. Expert Syst. Appl. 2014, 41, 4915–4928. [CrossRef]
51. Salah, A.; Shalabi, E.; Khedr, W. A lightweight android malware classifier using novel feature selection methods. Symmetry 2020,

12, 858. [CrossRef]
52. Yerima, S.Y.; Sezer, S.; McWilliams, G. Analysis of Bayesian classification-based approaches for Android malware detection. IET

Inf. Secur. 2013, 8, 25–36. [CrossRef]
53. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Bringas, P.G.; Álvarez, G. Puma: Permission Usage to Detect Malware in

Android. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions; Springer: Berlin/Heidelberg, Germany,
2013; pp. 289–298.

http://doi.org/10.1007/s00521-020-05450-0
http://doi.org/10.3390/electronics10192444
http://doi.org/10.3390/e23030344
http://doi.org/10.3390/app10144966
http://doi.org/10.5802/aif.53
http://doi.org/10.1016/0022-247X(91)90213-J
http://doi.org/10.1016/0165-0114(89)90194-2
http://doi.org/10.1142/S0218001415500160
http://doi.org/10.1007/s00267-002-2673-z
http://doi.org/10.1109/21.57289
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1109/3477.809043
http://www.ncbi.nlm.nih.gov/pubmed/18252368
http://doi.org/10.1016/j.eswa.2014.02.026
http://doi.org/10.3390/sym12050858
http://doi.org/10.1049/iet-ifs.2013.0095

	Introduction
	Related Work
	Choquet Fuzzy Integral
	The Proposed Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
	Dataset and Features Selection
	Single Classifiers
	The eXtreme Gradient Boosting (XGBoost)
	Random Forest (RF)
	Decision Tree (DT)
	AdaBoost
	LightGBM

	Classifiers Fusion Based on Choquet Integral
	Adaptive Fuzzy Measure

	Results and Discussion
	Conclusions
	References

