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Abstract: The current study investigates thermophotovoltaic interactions using a new mathematical
model of thermoelasticity established on a modification of the Green–Naghdi model of type III
(GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–
Thompson (MGT) equation, are derived by adding a single delay factor to the GN-III model. The
impact of temperature and electrical elastic displacement of semiconductors throughout the excited
thermoelectric mechanism can be studied theoretically using this model. The proposed model was
used to investigate the interactions between the processes of thermoelastic plasma in a rotating
semiconductor solid sphere that was subjected to a thermal shock and crossed to an externally
applied magnetic field. The influence of rotation parameters on various photothermal characteristics
of silicon solid was presented and explored using the Laplace technique.

Keywords: thermophotovoltaic; semiconductors; GN-III model; carrier lifetime; rotation

1. Introduction

Several developments have been made in the field of ultrafast carrier dynamics in
semiconductor materials during the last five decades. The motives for the study include not
only basic scientific interests, but also the application of semiconductor optoelectronic and
electronic devices and the growing need for faster interaction and information processing.
To continuously improve microelectronic semiconductor devices, various dynamic pro-
cesses in semiconductors must be understood. As a result, the excitation of semiconductors
to the disequilibrium state, as well as the numerous relaxation processes that follow, must
be thoroughly investigated.

The photoacoustic (PA) signal can be detected on the front side of a material that has
been irradiated with a modulated optical beam or on the back side of a material that has
been irradiated with an unmodulated optical beam. The heat-transmission detection system
may be used for a variety of applications, including the assessment of heat propagation
mechanisms in solid materials [1]. When this approach is used for semiconductors, it is
possible to obtain additional information about carrier transport properties [2]. Because of
the periodic generation of excess carriers into semiconductors, the carrier thermalization
and recombination processes will produce thermal waves. The semiconductor materials
experience mechanical stress when electron-hole pairs occur.

The sound wave is formed when photo-induced free carriers induce periodic elastic
strain in the material [3]. The semiconductor coefficients are also influenced by the carrier
density, however, the effect is small [4]. Some materials, such as semiconductors, offer a
variety of physical features that might aid research. The concept of thermoelasticity only
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allows semiconductor materials to be classified as elastic materials. The significance of
semiconductors in technological advancement was recently highlighted when they were
utilized to create electrical energy of sunlight, even when being subjected to ultrasound [5].
Superconductors are nanoparticles utilized in electrical and electronic engineering, and
have a wide range of uses in contemporary industry, including transistors, displays, and
solar cells.

The concept of photovoltaic energy has only recently been introduced into semicon-
ductor media in order to generate alternative energy sources. To determine the relationship
between the photothermal equations and thermoelasticity, a number of theoretical models
have been examined. Gordon et al. [6] first used electronic displacements in a photo-
thermal spectroscopic. Photoacoustic spectroscopy [7] is a specific and sensitive method
that uses a laser source to determine the acoustic velocity of a type of semiconductor.

In photothermal processing techniques, wave propagation is used in many applica-
tions in today’s engineering industries during electro-deformations of elastic semiconductor
material [8]. Abouelregal [9] investigated the responses in a solid, rotating semiconductor
cylinder because of changing heat flow. Abouelregal et al. [10–12] studied the impact of
an additional carrier on a semiconducting spinning half-space exposed to a normal force
using the Green and Naghdi models.

Due to the more realistic predictions from the theory of uncoupled or coupled ther-
moelasticity, interest is growing these days in theories of extended thermoelasticity. The
phenomenon of the unlimited speed of heat transmission inherent in the classical coupled
thermoelasticity theory is being addressed by modified generalized theories [13–16] de-
veloped during the last five decades. Green and Naghdi [17–19] presented Green–Naghdi
models (type II and III) as alternative expanded models for thermoelasticity with or without
energy dissipation. The type II model does not allow for energy dissipation and is thus
regarded as a special case of type III, which does allow for energy dissipation.

Numerous scholarly publications devoted to the study and interpretation of the
MGT equation have emerged in recent years. The theory also focuses on third-order
governing equations, which are useful in many applications of fluid mechanics [20].
Quintanilla [21,22] is developing a new MGT heat conduction model. After adding the
relaxation parameter to the GN-III model, Abouelregal et al. [23–25] developed the sug-
gested modified heat equation and employed the energy equation. Since the MGT equation
was introduced, the number of papers on this idea has exploded [26–29]. Other results on
bodies with the microstructure can be found in the papers [30–33].

Several authors have used classical models to investigate the uncoupled and coupled
systems of photo-thermoelastic equations and the impacts on semiconductors. A survey of
the literature found that there is no study on the volatile evaluation of semiconductor mate-
rials subjected to heat and optical loading as well as the temperature-dependent properties
of materials. Among the many applications of surface waves in organic semiconductors
are nuclear sciences, manufacturing engineering, electric utilities, subsea constructions,
compressed gases, aircraft, chemical vessels, and metals, to name a few.

For the first time in this paper, the photothermal MGT heat conduction model
(MGTPT), which describes photo-excited carriers and acoustic waves in semiconductors,
are introduced. In temporal evolutions of a mainly hyperbolic nature, these equations are
of the third order. Due to the presence of the thermal relaxation coefficient in front of the
third-order time derivative, the MGTPT model allows for the limited rate of heat spread.
To the best of our knowledge, photothermal waves along the interface of semiconducting
materials have not been studied before using the MGTPT model.

The Moore–Gibson–Thompson (MGTPT) photothermal heat conduction equation is
used to investigate effects throughout photothermal processes in an isotropic, homoge-
neous, thermoelastic semiconductor solid sphere. The analytical solution is found using
numerical inversion methods, and the governing equations, including associated plasmas,
thermal processes, and elastic waves, are provided in the field of Laplace transforms. Phys-
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ical field variables and some analytic comparisons are shown and graphed analytically.
The findings were compared to the findings of the study conducted by the researchers.

2. Formulating Mathematical Modeling

Thermoelastic and electronic deformation processes provide the following motion
equations with an external force:

σij,j + Fi = $
..
ui. (1)

Relationships between constitutive and strain-displacement:

σij = Cijklekl −
(

βijθ + dnijN
)
.

eij =
1
2
(
ui,j + uj,i

)
.

(2)

If the medium rotates at an angular velocity
→
Ω = Ω

→
n uniformly,

→
n being the axis

direction of the rotation unit vector, the equation of motion (1) in the rotating reference

frame includes two further terms (forces). The centripetal acceleration force $
→
Ω× (

→
Ω×→u)

is an extra initial term, while the second term is related to time-varying motion and Corioli’s

acceleration 2$(
→
Ω×

→.
u). Then, in a rotating reference frame, the equation of motion may

be expressed as [25]:

σij,j + Fi = $
..
ui + $

→
Ω× (

→
Ω×→u)i + 2$(

→
Ω×

→.
u)i

= $
..
ui + 2ρ(

→
Ω×

→.
u)i + $[(

→
Ω·→u)

→
Ω−Ω2→u ]i.

(3)

The corresponding plasma-thermal-elastic wave equation for the increase in carrier
density N is as follows [34–36]

(
DEijN,j

)
,i = $

∂N
∂t

+
1
τ

N + κθ + G, (4)

Vasilev and Sandomirskii [36] note that the coupled factor with thermal activation is
minimal at lower temperatures when working with a harmonic modification laser.

The conventional Fourier law predicts that propagation speeds will never be infinite.
A slight change in the beginning data may be demonstrated to influence the full solution
throughout the entire space using this structure. Cattaneo-Vernotte developed a broader
Fourier law in [37,38], by adding thermal relaxation τ0 to the heat flow vector

→
q as(

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ. (5)

The thermal relaxation parameter (single delay) τ0 is known as the material-dependent
constant, and it is an important element of this research. In terms of physics, the parameter
τ0 is the time it takes for a volume element to achieve constant heat conductivity after
being exposed to a temperature gradient. This time lag may be translated into a variety of
phenomena and contexts, such as when models are used to explore lithotripsy, thermal
therapy, ultrasonic cleaning, and high-frequency ultrasound sonochemistry (HFU).

Based on the GN-III type, the Fourier law may be written as [18]

→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ, (6)
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where ϑ represents a thermal displacement that fulfills
.
ϑ = θ, and K∗ij signify the rates of

the thermal conductivity. The equation of balance energy may be expressed as [39,40]

$CE
∂θ

∂t
+ T0

∂

∂t
(

βijeij
)
= −

→
∇·→q + Q. (7)

The energy Equation (7), when combined with the enhanced Fourier law presented
in (6), has the same flaw as Fourier’s normal model, anticipating that the heat waves
will spread quickly. After including the relaxation parameter into the GN-III model,
Quintanilla [21,22] and Abouelregal et al. [23–25] developed the suggested updated heat
equation. Fourier’s law was proposed to be [21,22](

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ. (8)

Consider the case when the semiconductor elastic medium is subjected to external
light beams, and the exciting free electrons produce a carrier-free charge density with
semiconductor gap energy Eg. A shift in electronic deformation and elastic vibrations
occurs as a result of the absorbed optical energy. The overall shape of the heat conductivity
equation will be affected by thermal-elastic-plasma waves in this case.

When the recombination of electron-hole pairs is taken into account, a portion of the
optical energy received is thermalized. For semiconductor materials having a plasma effect,
the modified Fourier law can be stated as follows:

When considering electron-hole pair recombination, the proportion of absorbed optical
energy must be taken into account as(

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ−

∫ Eg

τ
Nd
→
x . (9)

The influence of heat production by carrier volume and surface de-excitation in the
sample is represented by the last term in R.H.S. of Equation (9).

The result of differentiating the previous equation with respect to the position vector
→
x , is (

1 + τ0
∂

∂t

)
(
→
∇·→q ) = −

→
∇·(Kij

→
∇θ)−

→
∇·(K∗ij

→
∇ϑ)−

Eg

τ
N. (10)

Incorporating Equation (10) into Equation (7) yields the proposed heat transfer equa-
tion, which describes the interplay of thermal, plasma, and elastic waves(

1 + τ0
∂

∂t

)[
$CE

∂2θ

∂t2 + T0
∂2

∂t2

(
βijui,j

)
− $

∂Q
∂t

]
=
(

Kij
.
θ,j

)
,i
+
(

K∗ijθ,j

)
,i
+

Eg

τ

∂N
∂t

. (11)

We assumed that an initial magnetic field
→
H pervades the neighboring free space. This

generates an induced electro field
→
E and an induced magnetic field

→
h, both of which satisfy

Maxwell’s magnetic equations and are adequate for slow-moving media.

→
J = ∇×

→
h , ∇×

→
E = −µ0

∂
→
h

∂t
,
→
E = −µ0

∂
→
h

∂t
×
→
H

, ∇ ·
→
h = 0, (12)

τij = µ0
[
Hihj + Hjhi − Hkhkδij

]
(13)

where µ0 is the magnetic permeability,
→
J is the current density, and τij is the Maxwell

stress tensor.



Mathematics 2021, 9, 2902 5 of 20

3. Application Problem

In this section, we will present a theoretical application to clarify the model pro-
posed in the previous section. We investigate an isotropic, homogeneous, and perfect
electrically conductive solid sphere of the radius R with a traction-free outer surface and
time-dependent changing heat. Furthermore, we assume that the body is devoid of any
sources of heat. We use a spherical coordinate system (r, ϑ, φ) with the values 0 ≤ r ≤ R,
0 ≤ ϑ ≤ 2π, and 0 ≤ φ ≤ 2π. Due to symmetry, all of the functions investigated are con-
sidered to be dependent on the distance r and the time t. The following are the components
of the displacement vector in displacement-strain relationships:

uρ = u(r, t), uφ(r, t) = 0 = uϑ(r, t),
err =

u
r , eφφ = eϑϑ = ∂u

∂r .
(14)

The dilatation e may be calculated as follows:

e = err + eφφ + eϑϑ =
∂u
∂r

+
2u
r

=
1
r2

∂
(
r2u
)

∂r
(15)

The photothermal stresses (2) will be in the form

σrr = (λ + 2µ) ∂u
∂r + 2λ u

r − (3λ + 2µ)(αtθ + δnN),

σϑϑ = σφφ = λ ∂u
∂r + 2(µ + λ) u

r − (3λ + 2µ)(αtθ + δnN),
(16)

where αt is the linear thermal expansion coefficient, δn is the electronic deformation coeffi-
cient, and λ, µ are the Lame’s constants.

If the rotation is about the axial axis of the cylinder, i.e.,
→
Ω = (0, 0, Ω), the equation of

motion can be expressed in the following terms: the impact of the magnetic field Fr and the
force due to the rotation of the body $Ω2u. In this case, Equation (11) can be written as:

∂σrr

∂r
+

2
r
(σrr − σϑϑ) + Fr = $

∂2u
∂t2 − $Ω2u (17)

Assume the surface of the sphere is immersed in a magnetic field that acts in the

φ-direction of constant strength
→
H0 = (0, 0, H0). According to Equation (12), we obtain

→
E =

(
0, µ0H0

∂u
∂t

, 0
)

,
→
J =

(
0,

∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
, 0

)
,
→
h =

(
0, 0,

1
r2

∂
(
r2u
)

∂r

)
. (18)

The Lorentz force Fr can be expressed as

Fr = µ0

(→
J ×

→
H0

)
r

(19)

Thus, we have Fr and Maxwell’s stress τrr from Equations (18) and (19) as

Fr = µ0H2
0

∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
, τrr =

µ0H2
0

r2
∂
(
r2u
)

∂r
(20)

After plugging Equations (16) and (20) into Equation (17), we get

(
λ + 2µ + µ0H2

0

) ∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
− γ

∂θ

∂r
− dn

∂N
∂r

= $
∂2u
∂t2 − $Ω2u. (21)

where {γ, dn} = (3λ + 2µ){αt, δn}.
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Equation (21) can be rewritten as

(
λ + 2µ + µ0H2

0

)
∇2e− γ∇2θ − dn∇2N = $

∂2e
∂t2 − ρΩ2e. (22)

The modified photothermal MGTE heat Equation (11) is as follows in the absence of
any heat sources (Q = 0):(

1 + τ0
∂

∂t

)[
$CE

∂2θ

∂t2 + γT0
∂2e
∂t2

]
= K∇2

.
θ + K∗∇2θ +

Eg

τ

∂N
∂t

. (23)

where ∇2 = ∂2

∂r2 +
2
r

∂
∂r = 1

r2
∂
∂r

(
r2 ∂

∂r

)
.

The non-dimensional variables of the partial differential equation are easy to construct.
As a result, the following non-dimensional quantities are described:

{r′, u′} = v0η{r, u},
{

t′, τ′0, τ′
}
= v2

0η{t, τ0, τ}, {θ′, N′} = 1
ρv2

0
{γθ, dnn}, η = ρCE

K ,

Ω′ = Ω
c2

0η
,
{

σ′ij, τ′rr

}
= 1

ρv2
0

{
σij, τrr

}
, v2

0 = v2
1 + v2

a, v1 =
√

λ+2µ
$ , va =

√
µ0 H2

0
$

(24)

If the primes are omitted, the system of equations may be expressed by the
following formula:(

1 + τ0
∂

∂t

)[
∂2θ

∂t2 + ε1
∂2e
∂t2

]
=

(
∂

∂t
+ ω∗

)
∇2θ + ε2

∂N
∂t

, (25)

∇2e−∇2θ −∇2N =
∂2e
∂t2 −Ω2e, (26)

∇2N = g1
∂N
∂t

+ g2N + g3θ, (27)

σrr = β2 ∂u
∂r +

(
1− β2)e− θ − N,

σϑϑ = β2 u
r +

(
1− β2)e− θ − N,

(28)

where
β2 = 2µ

λ+2µ , ε1 = γ2T0
$2CEc2

0
, ω∗ = K∗

v2
0ηK

, ε2 =
γEgv2

0
τdnK ,

g1 = $
DEη , g2 = 1

DEητ1
, g3 = κdn

γη2DEc2
0
.

(29)

The initial conditions can be assumed to be

u(ρ, 0) = 0 = ∂u(r,0)
∂r , N(r, 0) = 0 = ∂N(r,0)

∂r ,
θ(r, 0) = 0 = ∂θ(r,0)

∂r .
(30)

We also assume that the following boundary conditions are hold:

θ(a, t) = θ0H(t), t > 0 (31)

σrr(R, t) = 0 (32)

DE
∂N
∂ρ

= svN at ρ = ρ0, (33)

where θ0 is a constant, sv is the surface recombination speed, and H(t) is the
Heaviside function.

4. Solution Using the Laplace Transform

When solving differential equations with constant coefficients, the Laplace transform
can be applied. For example, in the design of control mechanisms, the Laplace transform
method is essential. The properties of both the Laplace transform and the inverse Laplace
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transform are also used to evaluate the dynamic control scheme. The following equation
defines the Laplace transform of a function g(t), often known as L[g(t) ] or by g(s)

L[g(t) ] = g(s) =
∞∫

0

g(t)e−stdt, s > 0. (34)

We can derive the following findings by using the Laplace transform method to the
governing Equations (25)–(28):(

∇2 − ψ
)

θ = ψε1e− ε2sN, (35)(
∇2 − s2 + Ω2

)
e = ∇2θ +∇2N, (36)(

∇2 − g4

)
N = g3θ, (37)

σrr = β2 du
dr

+
(

1− β2
)

e− θ − N, (38)

σϑϑ = β2 u
r
+
(

1− β2
)

e− θ − N, (39)

where ψ = s2(1 + τ0 s)/(s + ω∗).
When we decouple Equations (35) and (37), we obtain(

∇6 − α2∇4 + α1∇2 − α0

){
θ, N, e

}
= 0, (40)

where α2, α1 and α0 are defined as follows:

α2 = s2 −Ω2 + g7 +
g6
g3

, α1 = g7

(
s2 −Ω2

)
+ g8 +

g6g5
g3

, α0 = g8

(
s2 −Ω2

)
,

g4 = sg1 + g2, g5 = g4 − g3, g6 = g3ψε1,

g7 = g4 + ψ, g8 = g4ψ + sg3ε2.

(41)

If the parameters λ2
1, λ2

2, and λ2
3 are the roots of the equation

λ6 − α2λ3 + α1λ2 − α0 = 0, (42)

then Equation (40) can be expressed as(
∇2 − λ2

1

)(
∇2 − λ2

2

)(
∇2 − λ2

3

){
e, θ, N

}
= 0, (43)

The roots of Equation (42) can be calculated as

λ2
1 = 1

3 [2β0 sin(γ0) + α2],

λ2
2 = − 1

3 β0

[
sin(γ0) +

√
3 cos(γ0)

]
+ 1

3 α2,

λ2
2 = 1

3 β0

[√
3 cos(γ0)− sin(γ0)

]
+ 1

3 α2,

(44)

with

β0 =
√

α22 − 3α1, γ0 =
1
3

sin−1

(
−

2α3
2 − 9α2α1 + 27α0

2β3
0

)
. (45)

Equation (43) has a general bounded solution that is can be expressed as

{
e, θ, N

}
=

1√
r ∑3

i=1{1, Li, Hi}Ai I1/2(λir). (46)
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In Equation (46), the second type of modified Bessel function of order n is indicated
by In( . ). Three integral parameters are dependent on s: Ai, (i = 1, 2, 3) are assumed.
Moreover, Ai is related to two different variables, Li and Mi, by plugging in Equation (46)
into Equations (35)–(40) to get

Hi =
g3
(
λ2

i − s2)
λ4

i − g5λ2
i

, Ln =

(
λ2

i − s2)(λ2
i − g4

)
λ4

i − g5λ2
i

, i = 1, 2, 3. (47)

The following well-known Bessel function can be used to get the displacement u:∫
x

3
2 I 1

2
(x)dx = x

3
2 I 3

2
(x) (48)

Then, we have

u =
1√
r ∑3

i=1
1
λi

Ai I3/2(λir). (49)

According to the following relationships, for each positive x, modified Bessel In meets
the following relatives:

I 1
2
(x) =

√
2

πx
sin h(x), I 3

2
(x) =

√
2

πx

(
cos h(x)− sin h(x)√

x

)
. (50)

If we insert relation (50) to Equations (46) and (49), then we get

{
e, θ, N

}
=

√
2

πr ∑3
i=1{1, Li, Hi}

Ai√
λir

sin h(λir) (51)

u =

√
2
π ∑2

i=1
Ai

rλi
3
2

(
cos h(λir)−

sin h(λir)
λir

)
(52)

This leads to a closed form of the final solutions for thermal stresses:

σrr =

√
2
π ∑3

i=1
Ai√

r(λir)
5/2

(
−2β2λircos h(λir) +

(
2β2 + Ωiλ

2
i r2
)

sin h(λir)
)

, (53)

σϑϑ =
√

2
π ∑3

i=1
Ai√

r(λir)
5/2

((
−2 + 3β2)λircos h(λir)

+
(
2 + Ωiλ

2
i r2 + β2(3 + λ2

i r2))sin h(λir)
) (54)

where Ωi = 1− Li − Hi.
When we consider the non-dimensional Maxwell’s stress τrr, we get the following:

τrr =
v2

a

v2
0

√
2

πr ∑3
i=1

Ai√
λir

sin h(λir) (55)

After applying the Laplace transform, the boundary conditions (31)–(33) take on the
following forms.

θ = θ0
s ,

σrr(R, s) = 0,
DE

∂N
∂r

∣∣∣
r=R

= s f N(R, s).
(56)

Equation (56) is replaced with Equations (46) and (53) to produce√
2

πR ∑3
i=1 Li

Ai√
λiR

sin h(λiR) =
θ0

s
, (57)
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∑3
i=1

Ai√
R(λiR)

5/2

((
2β2 + Ωiλ

2
i R2
)

sin h(λiR)− 2β2λiRcos h(λiR)
)
= 0, (58)

√
2
π ∑3

i=1
Ai√

R(λi R)
5/2

((
2 + λ2

i R2)sin h(λiR)− 2λiRcos h(λiR)
)

=
s f
DE

√
2

πR ∑3
i=1 Hi

Ai√
λi R

sin h(λiR).
(59)

To obtain the parameter values Ai, (i = 1, 2, 3), we solve the system (57)–(59). This
research used a numerical technique based on Fourier series expansion to invert Laplace
transforms [41,42]. The following approach may be used to invert any function in the
Laplace domain to the time domain:

Γ(ρ, t) =
ect

t

(
1
2

Γ(ρ, c) + Re ∑
N f
j=1 Γ

(
ρ, c +

ijπ
t

)
(−1)j

)
(60)

where N f stands for the number of terms, Re stands for the real part, and i is for the
imaginary number unit. Many previous studies and all numerical experiments have shown
that the parameter c in the previous relation can achieve the formula ∼= 4.7/t, allowing for
faster convergence of numerical results [43].

5. Numerical Results and Discussion

We present a numerical example in which we need to derive mathematical solu-
tions for several physical quantities whose behavior is largely influenced by the assump-
tions stated in the topic. Using Mathematica’s software, the influence of the Modified
Moore–Gibson–Thompson (MGTPT) heat equation on the physical fields under considera-
tion is now shown in the form of graphical presentations and tables. For the theoretical
study, isotropic silicon (Si) is utilized as the solid semiconductor material. The physical
parameters used are as follows [12]:

λ = 3.64× 1010 kg m−1s−2, µ = 5.46× 1010 kg m−1s−2, ρ = 2330 kg m−3,

K = 1.51 W m−1K−1, CE = 6.95× 102 J kg K−1, dn = −9× 10−31 m3,

T0 = 300 K Eg = 1.11 eV, DE = 2.5× 10−3 m2 s−1, s f = 2 m s−1, τ = 5× 10−5 s.

(61)

The numerical method given in (60) was used to compute the numerical distribution
of non-dimensional field variables along the radial direction of the cylinder. The numerical
results for t = 0.12 and R = 1 are obtained. It is possible to study the behavior of all field
variables in three different scenarios.

5.1. Comparison of Several Thermoelasticity Models

The Moore–Gibson–Thompson photothermal (MGTPT) model suggested in the pre-
sented work is a generality of numerous previous photothermal elasticity models (CPTE,
PLS, PGN-II, PGN-III, and MGTPT). The intent of presenting them as explained earlier
is not only to generalize but also to resolve some of the physical inconsistencies found in
some of the earlier models. In Sections 1 and 2, these discrepancies are discussed as well as
how to address them. In this section, a new photothermal model is compared to earlier
models in order to verify them. Before we make the comparisons, we will first explain
how to derive the previous models (CPTE, PLS, PGN-II, and PGN-III) from the modified
MGTPT model given in Equation (11) in some cases.

It is possible to get the coupling photo-thermoelasticity theory (CPTE) by ignoring the
thermal parameters (K∗ij = τ0 = 0). When the Green and Naghdi parameter K∗ij = 0, the
generalized and photothermal-elasticity model with a relaxation time (PLS) is produced.
The generalized photothermal model (PGN-III) without a relaxation parameter based on
Green and Naghdi theory II may be developed when τ0 = 0. It is possible to use the
photothermal Green and Naghdi model (PGN-II) if we remove the term that contains the
parameter Kij in the heat Equation (11). When the parameters K∗ij, τ0 > 0, the modified
Moore–Gibson–Thompson photothermal model (MGTPT) is applied.
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To clarify the study and compare the different models in more depth, as well as for
the practical purposes of researchers in this field, the numerical results will be presented in
Tables 1–6 and Figures 1–6. In this case, we take τ = 0.01, t = 0.15, and Ω = 5.

Table 1. The temperature variation θ under photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 0.000885559 0.00965849 0.0123413 −0.00237901 0.00799097
0.1 0.000885559 0.00965849 0.0123413 −0.00237901 0.00799097
0.2 0.00980154 0.00972534 0.0128494 0.0100603 0.00802299
0.3 0.0261554 0.00986904 0.013996 0.0322861 0.00808409
0.4 0.052378 0.0101984 0.0164853 0.0666103 0.00820664
0.5 0.0922729 0.0111082 0.0220436 0.116405 0.00853831
0.6 0.151465 0.014061 0.0349204 0.186215 0.00977179
0.7 0.238063 0.0245842 0.0656962 0.281885 0.0152332
0.8 0.363737 0.0639818 0.141114 0.410792 0.0412536
0.9 0.546908 0.216708 0.330943 0.583726 0.1702640
1 0.836897 0.836897 0.836897 0.836897 0.8368970

Table 2. The displacement variation u under photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 0.00023470 2.58 × 10−7 1.01 × 10−4 0.0005106 −8.58 × 10−8

0.1 0.0003347 2.88 × 10−7 1.02 × 10−4 0.00053064 −9.58 × 10−8

0.2 0.000735 1.96 × 10−6 2.44 × 10−4 0.00113011 1.70 × 10−7

0.3 0.00127527 8.89 × 10−6 4.82 × 10−4 0.00187018 2.09 × 10−6

0.4 0.0020486 3.47 × 10−6 0.000906 0.00282811 1.14 × 10−5

0.5 0.00317801 0.0001291 0.0016759 0.00408769 5.43605 × 10−5

0.6 0.00482652 0.000473 0.0030758 0.0057341 0.000249641
0.7 0.0071588 0.00169266 0.0055686 0.00779362 0.00110423
0.8 0.00970547 0.00547201 0.0093212 0.00957252 0.00434249
0.9 0.00377053 0.00996188 0.00667905 0.00210928 0.00978329
1 −0.1162520 −0.0897956 −0.1092720 −0.1194910 −0.08472120

Table 3. The carrier density variation N under photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 −0.00256381 −0.000144986 −0.000431833 −0.00403677 −5.1282 × 10−5

0.1 −0.00256381 −0.000144986 −0.000431833 −0.00403677 −5.12826 × 10−5

0.2 −0.00297915 −0.000243067 −0.000625476 −0.00446883 −0.000100656
0.3 −0.0037235 −0.00048108 −0.00104769 −0.00520596 −0.000233686
0.4 −0.00488043 −0.00103429 −0.00190478 −0.00627114 −0.000584929
0.5 −0.00657716 −0.00233155 −0.00363361 −0.00768978 −0.00153045
0.6 −0.00898314 −0.00541422 −0.00714027 −0.00946911 −0.00412116
0.7 −0.0121715 −0.0127064 −0.0141794 −0.0114332 −0.0112066
0.8 −0.0143739 −0.0284206 −0.0266344 −0.0114592 −0.0291648
0.9 0.00826869 −0.0417587 −0.0272681 0.0145790 −0.0549796
1 0.33663600 0.2232860 0.26749100 0.3449380 0.1716060

Table 4. The radial stress variation σrr under photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 −0.000656461 −0.00393592 −0.00191372 0.00018923 −0.00395531
0.1 −0.000756463 −0.00493594 −0.00391378 0.000389237 −0.00495535
0.2 −0.00442793 −0.0053169 −0.00514714 −0.00469574 −0.00517990
0.3 −0.0111599 −0.00615662 −0.00762273 −0.013776 −0.00569276
0.4 −0.0219495 −0.00790313 −0.0121283 −0.0277876 −0.00682064
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Table 4. Cont.

r CPTE PLS PGN-II PGN-III MGTPT

0.5 −0.0383551 −0.0115677 −0.0201443 −0.0480931 −0.00936626
0.6 −0.0626674 −0.0194178 −0.0343838 −0.0765139 −0.0152988
0.7 −0.0980382 −0.0364582 −0.0596874 −0.1152370 −0.0293835
0.8 −0.1472930 −0.0725051 −0.1033440 −0.1652930 −0.0619620
0.9 −0.1954270 −0.1312310 −0.1600040 −0.2086930 −0.1202020
1 0 0 0 0 0

Table 5. The hoop stress variation σϑϑ under photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 0.001082703 −0.00406557 −0.002083501 0.00302438 −0.003656021
0.1 0.00182730 −0.00465574 −0.00283581 0.00402431 −0.00465609
0.2 −0.00136573 −0.00486959 −0.0037108 −0.000561801 −0.00470202
0.3 −0.00723706 −0.00532409 −0.00546289 −0.00877838 −0.00478966
0.4 −0.0166821 −0.00623259 −0.00864235 −0.0215143 −0.00494770
0.5 −0.0311049 −0.00807528 −0.0142834 −0.0400714 −0.00525571
0.6 −0.0525984 −0.0119419 −0.0242999 −0.0662255 −0.00594862
0.7 −0.0843308 −0.0204470 −0.0423518 −0.1024190 −0.00784639
0.8 −0.1325300 −0.0412831 −0.0768912 −0.1534260 −0.0150706
0.9 −0.2258680 −0.1120510 −0.1633210 −0.2450880 −0.0599187
1 −0.6360190 −0.5511620 −0.5971990 −0.6420980 −0.4730900

Table 6. The Maxwell’s stress τrr under different photothermal models.

r CPTE PLS PGN-II PGN-III MGTPT

0 −0.00267372 −0.000424817 −0.00092268 −0.00328662 −0.000160729
0.1 −0.00367374 −0.000736172 −0.00140181 −0.00398662 −0.00032458
0.2 −0.00428631 −0.00127631 −0.00213414 −0.00447240 −0.000653511
0.3 −0.00497257 −0.00220043 −0.00323770 −0.00497870 −0.00130324
0.4 −0.00564912 −0.00372845 −0.00483778 −0.00540708 −0.00254364
0.5 −0.00599225 −0.00605572 −0.00692594 −0.00541727 −0.00474740
0.6 −0.00485913 −0.00885152 −0.00878874 −0.00385297 −0.00803334
0.7 0.00167694 −0.00919275 −0.00691823 0.00320529 −0.01037210
0.8 0.02701010 0.00613515 0.01233870 0.02906210 0.000327701
0.9 0.11679000 0.0881207 0.09823450 0.11898200 0.076368400
1 0.42678600 0.421700 0.42322500 0.42732300 0.420114000Mathematics 2021, 9, x FOR PEER REVIEW 12 of 20 
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First, we will review several key findings that apply to all distributions.

1. As seen in the graphs and tables, the thermal parameters τ0 and K* have a substantial
influence on all studied field variables.

2. The phenomenon of restricted heat transfer in the case of the enhanced generalized
thermoelastic theory (MGTPT) is clearly shown in all figures and tables. In other
words, thermal and mechanical waves propagate at finite speeds within the medium,
contrary to the classical theory.

3. For all physical domains, all curves for the different models converge within the
mean, where r tends to be zero to satisfy the regularity requirement.

4. The introduction of the relaxation time into the thermal conductivity Equation (11)
in the Green and Naghdi model of the third type (PGN-III) reduced the propa-
gation speed of optical and mechanical thermal waves within the medium. This
important conclusion demonstrates the importance of the proposed model, in which
the problem of the physical inconsistency found in the CPTE and PGN-III models
has been solved. This is fully consistent with the claims of Quintanilla [21] and
Abouelregal et al. [23–26].

1. There is convergence of the results in the case of the LS and MGTE models, due to the
inclusion of the relaxation coefficient, which led to a slower decrease in temperature.
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2. On the surface of the semiconducting solid sphere, where the boundary conditions
manifest, the coupled photothermal model (CPTE) and modified and generalized
photothermal models (PLS, PGNII, PGNIII, and MGTPT) provide values that differ in
magnitude but behave similarly.

Now, we will study some observations for each of the studied field variables.
Table 1 and Figure 1 illustrate the temperature variance θ vs. r for all photo-thermo-

elasticity models across a wide range of 0 < r ≤ 1. As can be seen in this graph, the
magnitude of the temperature is larger for the PGN-III and CPTE models than for the
other models (PLS, GN-II, and MGTPT). It is worth noting that the rate of temperature
propagation is limited and corresponds to the physical behavior of photo-thermoelastic
materials. The temperature takes its largest value at the surface of the sphere, where the
thermal shock effect is present, and it gradually decreases as we head inside the body, in
contrast to the increasing radius.

The different models for the distribution of displacement u across radius r are com-
pared in Figure 2 and Table 2. The numerical data and graphs show that the displacement
u starts with negative values, then rapidly increases until it reaches its maximum positive
value, then gradually fades to zero. It can also be seen that the displacement curves con-
verge in the case of all the different models, despite the different values. Thus, it can be
concluded that the effect of thermal parameters is weak on the displacement distributions.

The five curves predicted by various photo-thermoelasticity models with and without
thermal parameters for the carrier density N against the radial distance r are shown in
Figure 3 and Table 3. Due to the recombination of charge carriers, the carrier density
peaks at the surface of the sphere r = 1 and progressively falls as the radial distance
increases until it approaches the steady state. The results in the case of the GN-III model
are characterized by a larger carrier density N than the MGTPT, with a similar behavior to
the PLS and PGN-II models.

The fluctuation of the radial stress σrr with respect to the distance for different models
is illustrated in Figure 4 and Table 4. It should be noted that the pressure always starts from
zero to respect the boundary requirements, and then gradually decreases until it reaches
the lower value at a certain position near the surface of the sphere, and then gradually
increases to zero. Figure 5 and Table 5 illustrate the fluctuation of hoop stress σϑϑ versus r
for several models of photo-thermoelasticity. In all cases, the hoop stress is initially negative
and progressively reduces until it reaches zero. The stresses emphasize the location of the
medium next to the spherical surface with time, which is consistent with the data in [44].
In addition, when the radial width increases, the value and amplitude of fields measured
at the surface increase. Because of this, ref. [45] provides reasons for this phenomenon.

Figure 6 and Table 6 demonstrate the Maxwell’s stress τrr fluctuation vs. r over a
wide range of 0 < r ≤ 1 for different models of photo-thermoelasticity. The speed of
propagation of electromagnetic waves is limited and corresponds to the physical behavior
of photo-thermal materials. We also note that the behavior of the curves is the same and
that there are small differences between the different models.

5.2. The Influence of Angular Velocity of Rotation

The analysis of the propagation of plane photo-thermoelastic waves in a spinning
solid appears to have received little attention. Because most large bodies have an angular
motion, such as the earth, moon, and other planets, studying the propagation of planar
thermoelastic or magneto-photo-thermoelastic waves in a rotating medium with thermal
relaxation appears to be more realistic.

Table 7 explains the variations of different photothermal fields with different rotation
parameter Ω under different photo-thermoelastic models (CPTE, PLS, PGN-II, PGN-III,
and MGTPT). The numerical results were calculated at a single value of the distance r,
which is r = 0.9. In the case of all the different models, it was found that the differences in
the magnitudes in all the studied fields decreased with the increase in the angular velocity,
except for the displacement. We note that the displacement distribution decreases with the
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angular velocity in the case of the PLS, PGN-II, and MGTPT models, while it increases in
the case of the CPTE and PGN-III models.

Table 7. The variation of different photothermal fields with different rotation parameter Ω.

r = 0.9. Ω θ u N σrr σzz τrr

CPTE
0 0.579961 0.00301477 0.002452210 −0.207303 −0.233091 0.1199820
5 0.504634 0.00357827 0.001947390 −0.181736 −0.202836 0.1086730
10 0.432417 0.00393590 0.000754857 −0.157142 −0.173095 0.0969131

PLS
0 0.380552 0.00839796 −0.03440070 −0.137101 −0.117767 0.1044720
5 0.329505 0.00822557 −0.02989960 −0.120069 −0.102062 0.0947231
10 0.280648 0.00789131 −0.02610120 −0.103682 −0.086496 0.0845178

PGN-II
0 0.439059 0.00712821 −0.02102290 −0.157300 −0.154178 0.1099490
5 0.380777 0.00714752 −0.01877670 −0.137766 −0.133374 0.0996657
10 0.324984 0.00699024 −0.01693120 −0.118985 −0.113127 0.0889246

PGN-III
0 0.621530 0.00156896 0.01446110 −0.222413 −0.261453 0.1222750
5 0.541439 0.00230369 0.01131410 −0.195131 −0.226684 0.1107220
10 0.464567 0.00282672 0.00831416 −0.168858 −0.193305 0.0987226

MGTPT
0 0.344723 0.00902147 −0.0437438 −0.124892 −0.094312 0.100625
5 0.298095 0.00874568 −0.0375427 −0.109368 −0.082045 0.0912424
10 0.253494 0.00831745 −0.0323135 −0.0944313 −0.069583 0.0814059

In this section, we explore the response of distinct photothermal fields as the rotation
parameter Ω changes only in the case of the generalized elastic photothermal model
(MGTPT). For comparative purposes, we will choose three numbers for the amount of
rotational speed Ω. The rotating example is chosen with Ω = 5, 10, while the nonrotating
case is chosen with Ω = 0. Figures 7–12 illustrate the distribution of the data for the various
fields studied.
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As seen in Figures 7, 8 and 12, the parameter Ω has a relatively little influence on
temperature θ, displacement u, and Maxwell’s stress τrr. This phenomenon is consistent
with the results reported in the references [44,45]. We can also see in Figures 7, 8 and 12 that
as the rotation parameter Ω increases, the field variables θ, u, and τrr decrease. Furthermore,
as shown in Figures 9–11, the rotational parameter Ω has a great influence on the carrier
density N and the thermal stresses σrr and σϑϑ.

Figure 10 illustrates that increasing the amount of N increases the carrier density
numerical values. Figure 10 shows the change in thermal stress σrr as a function of radius
r and parameter Ω. We can see that the rotational parameter Ω has a significant impact
on the radial stress profile σrr. As the parameter Ω is increased, the stress σrr increases.
Furthermore, the amplitude of the stress σϑϑ distribution increases as Ω increases.

6. Conclusions

A novel photo-thermoelastic model, including the Moore–Gibson–Thompson equa-
tion, is presented in this paper. The type III Green–Naghdi model, as well as the Lord and
Shulman equations, are all included in the improved photothermal model. The interplay
of heat, plasma, and elastic waves in semiconductor materials is explored in this expanded
model, which is significant. Furthermore, unlike traditional models, this model permits
heat-elastic optical waves to propagate at restricted speeds. So far, only a few articles on
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our topic have been written in the scientific literature. As special instances of the suggested
model, several thermoelastic and photothermal models may be constructed.

From the quantitative data, we may conclude that the thermal relaxation time reduces
the mechanical and thermo-optical waves along the axes. It is also noted that the behavior
of waves in different physical fields depends on the speed of rotation of the medium. The
new photo-thermoelasticity model allows heat to go through a medium at a finite velocity
rather than an infinity-speed wave as in the case of the CPTE model. Compared to the PGN-
III model, the extended MGTPT model more accurately describes the photo-thermoelastic
process. In contrast to previous generalized thermoelasticity models, the PGN-III model’s
results show convergence with the conventional elasticity model (CPTE), which does not
disappear quickly within the body.

Scientists working in fields, such as physics, material design, thermal efficiency,
and geophysics will benefit greatly from the information presented in this study. The
approach employed in this investigation can be used to address a variety of thermodynamic
challenges.
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Abbreviations

In the governing equations, σij is the stress tensor, $ is the density of the material, ui denotes the
components of the displacement vector, Fi indicates the body forces components and i, j, k = 1, 2, 3,
eij being the strain tensor, ekk = e dnij = dniδij are the difference in deformation potential of the con-
duction and valence bands, and Cijkl are the elastic constants, βij = βiδij are the stress-temperature
coefficients. Furthermore, θ = T − T0 represents the temperature change, T0 is the location tempera-
ture, N is the carrier density, DEij denotes the coefficients of the diffusion, κ is the thermal activation
coupling parameter, τ is the lifetime of photogenerated electron-hole pairs, and G symbolizes the
carrier source, Kij denotes the tensor of thermal conductivity, CE is the specific heat and Q is the
heat supply.

References
1. Adams, M.J.; Kirkbright, G.F. Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic effect.

Analyst 1977, 102, 678–682. [CrossRef]
2. Vargas, H.; Miranda, L.C.M. Photoacoustic and Re1ated Phototherma1 Technique. Phys. Rep. 1988, 161, 43–101. [CrossRef]
3. Ferreira, S.O.; Ying An, C.; Bandeira, I.N.; Miranda, L.C.M.; Vargas, H. Photoacoustic measurement of the thermal diffusivity

ofPb1−xSnxTe alloys. Phys. Rev. B 1989, 39, 7967–7970. [CrossRef] [PubMed]
4. Othman, M.I.A.; Eraki, E.E.M. Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag

model. Multidiscip. Modeling Mater. Struct. 2018, 14, 457–481. [CrossRef]
5. Stearns, R.G.; Kino, G.S. Effect of electronic strain on photoacoustic generation in silicon. Appl. Phys. Lett. 1985, 47,

1048–1050. [CrossRef]
6. Gordon, J.P.; Leite, R.C.C.; Moore, R.S.; Porto, S.P.S.; Whinnery, J.R. Long-Transient Effects in Lasers with Inserted Liquid Samples.

J. Appl. Phys. 1965, 36, 3–8. [CrossRef]
7. Todorovic, D.M.; Nikolic, P.M.; Bojicic, A.I. Photoacoustic frequency transmission technique: Electronic deformation mechanism

in semiconductors. J. Appl. Phys. 1999, 85, 7716. [CrossRef]

http://doi.org/10.1039/an9770200678
http://doi.org/10.1016/0370-1573(88)90100-7
http://doi.org/10.1103/PhysRevB.39.7967
http://www.ncbi.nlm.nih.gov/pubmed/9947481
http://doi.org/10.1108/MMMS-08-2017-0087
http://doi.org/10.1063/1.96374
http://doi.org/10.1063/1.1713919
http://doi.org/10.1063/1.370576


Mathematics 2021, 9, 2902 19 of 20

8. Song, Y.; Todorovic, D.M.; Cretin, B.; Vairac, P. Study on the generalized thermoelastic vibration of the optically excited
semiconducting microcantilevers. Int. J. Solids Struct. 2010, 47, 1871–1875. [CrossRef]

9. Abouelregal, A.E. Magnetophotothermal interaction in a rotating solid cylinder of semiconductor silicone material with time
dependent heat flow. Appl. Math. Mech. Engl. Ed. 2021, 42, 39–52. [CrossRef]

10. Abouelregal, A.E.; Sedighi, H.M.; Shirazi, A.H. The Effect of Excess Carrier on a Semiconducting Semi-Infinite Medium Subject to
a Normal Force by Means of Green and Naghdi Approach. Silicon 2021. Available online: https://link.springer.com/article/10.1
007/s12633-021-01289-9#citeas (accessed on 13 October 2021).

11. Abouelregal, A.E.; Ahmad, H.; Elagan, S.K.; Alshehri, N.A. Modified Moore–Gibson–Thompson photo-thermoelastic model for a
rotating semiconductor half-space subjected to a magnetic field. Int. J. Mod. Phys. C 2021. [CrossRef]

12. Hobiny, A.D.; Alzahrani, F.S.; Abbas, I.A. A study on photo-thermo-elastic wave in a semi-conductor material caused by
ramp-type heating. Alex. Eng. J. 2021, 60, 2033–2040. [CrossRef]

13. Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [CrossRef]
14. Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [CrossRef]
15. Tzou, D.Y. Experimental support for the lagging behaviour in heat propagation. J. Thermophys. Heat Transf. 1995, 9,

686–693. [CrossRef]
16. Tzou, D.Y. A unified approach for heat conduction from macro to microscale. J. Heat Transf. 1995, 117, 8–16. [CrossRef]
17. Green, A.E.; Naghdi, P.M. A Re-Examination of the Basic Postulates of Thermomechanics. Proc. R. Soc. A Math. Phys. Eng. Sci.

1991, 432, 171–194.
18. Green, A.E.; Naghdi, P.M. On undamped heat waves in an elastic solid. J. Ther. Stresses 1992, 15, 253–264. [CrossRef]
19. Green, A.E.; Naghdi, P.M. Thermoelasticity without energy dissipation. J. Elast. 1993, 31, 189–208. [CrossRef]
20. Lasiecka, I.; Wang, X. Moore–Gibson–Thompson equation with memory, part II: General decay of energy. J. Diff. Equ. 2015, 259,

7610–7635. [CrossRef]
21. Quintanilla, R. Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 2019, 24, 4020–4031. [CrossRef]
22. Quintanilla, R. Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 2020, 1, 100006. [CrossRef]
23. Jangid, K.; Gupta, M.; Mukhopadhyay, S. On propagation of harmonic plane waves under the Moore–Gibson–Thompson

thermoelasticity theory. Waves Random Complex Media 2021. [CrossRef]
24. Abouelregal, A.E.; Ahmad, H.; Nofal, T.A.; Abu-Zinadah, H. Moore–Gibson–Thompson thermoelasticity model with temperature-

dependent properties for thermo-viscoelastic orthotropic solid cylinder of infinite length under a temperature pulse. Phys. Scr.
2021, 96, 105201. [CrossRef]

25. Aboueregal, A.E.; Sedighi, H.M. The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular
cylinder under the Moore Gibson Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235,
1004–1020. [CrossRef]

26. Florea, O.A.; Bobe, A. Moore–Gibson–Thompson thermoelasticity in the context of double porous materials. Contin. Mech.
Thermodyn. 2021, 33, 2243–2252. [CrossRef]

27. Abouelregal, A.E.; Ersoy, H.; Civalek, Ö. Solution of Moore–Gibson–Thompson equation of an unbounded medium with a
cylindrical hole. Mathematics 2021, 9, 1536. [CrossRef]

28. Kaltenbacher, B.; Lasiecka, I.; Marchand, R. Wellposedness and exponential decay rates for the Moore–Gibson–Thompson
equation arising in high intensity ultrasound. Control Cybern. 2011, 40, 971–988.

29. Bazarra, N.; Fernández, J.R.; Quintanilla, R. Analysis of a Moore-Gibson-Thompson thermoelastic problem. J. Comput. Appl. Math.
2021, 382, 113058. [CrossRef]

30. Marin, M. A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. Real World Appl. 2010, 11,
3446–3452. [CrossRef]

31. Marin, M.; Agarwal, R.P.; Mahmoud, S.R. Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal.
2013, 2013, 583464. [CrossRef]

32. Abbas, I.; Marin, M. Analytical Solutions of a Two-Dimensional Generalized Thermoelastic Diffusions Problem Due to Laser
Pulse. Iran. J. Sci. Technol. Trans. Mech. Eng. 2018, 42, 57–71. [CrossRef]

33. Marin, M.; Othman, M.I.A.; Seadawy, A.R.; Carstea, C. A domain of influence in the Moore–Gibson–Thompson theory of dipolar
bodies. J. Taibah Univ. Sci. 2020, 14, 653–660. [CrossRef]

34. Song, Y.Q.; Bai, J.T.; Ren, Z.Y. Study on the reflection of photothermal waves in a semiconducting medium under generalized
thermoelastic theory. Acta Mech. 2012, 223, 1545–1557. [CrossRef]

35. Todorovic, D.M. Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 2003, 74, 582. [CrossRef]
36. Vasilev, A.N.; Sandomirskii, V.B. Photoacoustic effects in finite semiconductors. Sov. Phys. Semicond. 1984, 18, 1095.
37. Cattaneo, C. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus

1958, 247, 431–433.
38. Vernotte, P. Some possible complications in the phenomena of thermal conduction. Compte Rendus 1961, 252, 2190–2191.
39. Abouelregal, A.E. A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscip.

Model. Mater. Struct. 2019, 16, 689–711. [CrossRef]
40. Kumar, H.; Mukhopadhyay, S. Thermoelastic damping analysis in microbeam resonators based on Moore–Gibson–Thompson

generalized thermoelasticity theory. Acta Mech. 2020, 231, 3003–3015. [CrossRef]

http://doi.org/10.1016/j.ijsolstr.2010.03.020
http://doi.org/10.1007/s10483-021-2682-6
https://link.springer.com/article/10.1007/s12633-021-01289-9#citeas
https://link.springer.com/article/10.1007/s12633-021-01289-9#citeas
http://doi.org/10.1142/S0129183121501631
http://doi.org/10.1016/j.aej.2020.12.002
http://doi.org/10.1016/0022-5096(67)90024-5
http://doi.org/10.1007/BF00045689
http://doi.org/10.2514/3.725
http://doi.org/10.1115/1.2822329
http://doi.org/10.1080/01495739208946136
http://doi.org/10.1007/BF00044969
http://doi.org/10.1016/j.jde.2015.08.052
http://doi.org/10.1177/1081286519862007
http://doi.org/10.1016/j.apples.2020.100006
http://doi.org/10.1080/17455030.2021.1949071
http://doi.org/10.1088/1402-4896/abfd63
http://doi.org/10.1177/1464420720985899
http://doi.org/10.1007/s00161-021-01025-z
http://doi.org/10.3390/math9131536
http://doi.org/10.1016/j.cam.2020.113058
http://doi.org/10.1016/j.nonrwa.2009.12.005
http://doi.org/10.1155/2013/583464
http://doi.org/10.1007/s40997-017-0077-1
http://doi.org/10.1080/16583655.2020.1763664
http://doi.org/10.1007/s00707-012-0677-1
http://doi.org/10.1063/1.1523133
http://doi.org/10.1108/MMMS-07-2019-0138
http://doi.org/10.1007/s00707-020-02688-6


Mathematics 2021, 9, 2902 20 of 20

41. Roychoudhuri, S.K. On a thermoelastic three-phase-lag model. J. Therm. Stress. 2007, 30, 231–238. [CrossRef]
42. Honig, G.; Hirdes, U. A method for the numerical inversion of Laplace transform. J. Comp. Appl. Math. 1984, 10,

113–132. [CrossRef]
43. Tzou, D.Y. Macro-To Micro-Scale Heat Transfer: The Lagging Behavior; Taylor & Francis: Abingdon, UK, 1997.
44. Singh, B.; Mukhopadhyay, S. Galerkin-type solution for the Moore–Gibson–Thompson thermoelasticity theory. Acta Mech. 2021,

232, 1273–1283. [CrossRef]
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