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Abstract: Bayesian estimates involve the selection of hyper-parameters in the prior distribution. To
deal with this issue, the empirical Bayesian and E-Bayesian estimates may be used to overcome
this problem. The first one uses the maximum likelihood estimate (MLE) procedure to decide the
hyper-parameters; while the second one uses the expectation of the Bayesian estimate taken over the
joint prior distribution of the hyper-parameters. This study focuses on establishing the E-Bayesian
estimates for the Lomax distribution shape parameter functions by utilizing the Gamma prior of
the unknown shape parameter along with three distinctive joint priors of Gamma hyper-parameters
based on the square error as well as two asymmetric loss functions. These two asymmetric loss
functions include a general entropy and LINEX loss functions. To investigate the effect of the hyper-
parameters’ selections, mathematical propositions have been derived for the E-Bayesian estimates
of the three shape functions that comprise the identity, reliability and hazard rate functions. Monte
Carlo simulation has been performed to compare nine E-Bayesian, three empirical Bayesian and
Bayesian estimates and MLEs for any aforementioned functions. Additionally, one simulated and
two real data sets from industry life test and medical study are applied for the illustrative purpose.
Concluding notes are provided at the end.

Keywords: Bayesian estimate; E-Bayesian estimate; empirical Bayesian; Lomax distribution; maxi-
mum likelihood estimate; asymmetric loss function; simulation

1. Introduction

The distribution of lifetime random variable, X, is named as the two-parameter
Lomax distribution, Lomax(α, β), if its probability density function (PDF) and cumulative
distribution function (CDF) are respectively defined as

f (x; α, β) = αβ(1 + βx)−(α+1), x ≥ 0 (1)

and

F(x; α, β) = 1− (1 + βx)−α, x ≥ 0, (2)

where α > 0 and β > 0. The Lomax(α, β) was originally derived by Lomax [1] for
the model of business failure and is also called Pareto type-II distribution. Recently,
Lomax(α, β) has been proved to be useful in engineering, industry and medical science.
For example, Hassan and Al-Ghamdi [2] utilized Lomax(α, β) in the reliability inference,
Al-Zahrani and Al-Sobhi [3] applied Lomax(α, β) for the stress-strength analysis and
Burkhalter and Lio [4] developed Bootstrap control charts for Lomax(α, β) to maintain the
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quality of lifetime quantiles. The reliability, R(x), and hazard rate, h(x), of Lomax(α, β) are
respectively presented as

R(x) = (1 + βx)−α, x ≥ 0 (3)

and
h(x) =

αβ

(1 + βx)
, x ≥ 0, (4)

where R(x) illustrates the chance of an item surviving at least a specified time x and h(x)
illustrates the likelihood of an item surviving at time x given its survival time over time x.

Since the advanced manufacturing procedure has prolonged product lifetimes, collect-
ing life times of all items placed on life test takes longer time. Among numerous censoring
schemes developed to overcome this obstacle, type-I and type-II censoring schemes have
been extensively applied to the industry life test as well as medical survival analysis be-
cause of easy implementation. Given positive integers m and n with m ≤ n and τ > 0,
place n items on the failure test at the same initial time, labeled by τ0 = 0, and let Xi:n be
the lifetime of the ith failure, where i = 1, 2, 3, · · · . The type-I censoring scheme is executed
till τ units of time reached; while the type-II censoring scheme is performed until the mth
failure observed at Xm:n. The type-I censoring scheme is called time censoring scheme
and could result with less number of failure times and type-II censoring ensures a pre
fixed number, m, of failure times received; however, it could be a time-consuming process.
To improve the drawbacks of both schemes, Epstein [5] introduced the type-I hybrid
censoring scheme that must expire at time τ∗ = min{Xm:n, τ}; while Childs et al. [6] studied
the type-II hybrid censoring scheme, which must terminate at τ∗∗ = max{Xm:n, τ}. The
aforementioned censoring schemes do not allow items be removed at any other time before
the terminal time. In order to allow the items removed at other time points before the
terminal time to save time and cost, the progressive censoring schemes have been applied
to the life test. Let Ri, i = 1, 2, · · · , m be non-negative integers such that n = m + ∑m

i=1 Ri.
The progressive type-II censoring scheme performs with n items on failure test at the same
time, τ0 = 0, and Ri items are randomly removed from remaining survival items at the ith
failure, Xi:n, for i = 1, 2, · · · , m. Balakrishnan and Aggarwala [7] and Balakrishnan and
Cramer [8] provided more information about censoring schemes and life tests. Merging the
progressive type-II and hybrid censoring schemes, the type-I progressive hybrid censoring
scheme that was studied by Kundu and Joarder [9] conducts the progressive type-II scheme
until time τ∗ = min{Xm:n, τ} and the type-II progressive hybrid censoring scheme, which
was discussed by Childs et al. [10], implements the progressive type-II scheme up to time
τ∗ = max{Xm:n, τ}. All survival items will be removed at the respective terminated random
time when the progressive hybrid censoring schemes are implemented.

Two new adaptive hybrid censoring schemes (HCSs), named as adaptive type-I pro-
gressive (AT-IP) HCS and adaptive type-II progressive (AT-IIP) HCS, have been developed
recently. The AT-IIP HCS, discussed by Ng et al. [11] and Balakrishnan and Kundu [12],
implements progressive type-II scheme until Xm:n and has no survival items removed after
the life test experiment passes τ(< Xm:n). The AT-IP HCS, which was shown to have a
higher efficiency in estimations by Lin and Huang [13], implements progressive type-II
scheme and must terminate at time τ. Let D be the number of failed items just right afore
τ. If the failure time Xm:n is obtained before τ, the life time experiment will continue to
observe failures without withdrawing survival items until τ. Hence, at time τ, all survival
items R∗D = n− D−∑D

i=1 Ri will be removed, where Rm = Rm+1 = · · · = RD = 0 when
m ≤ D; otherwise, the AT-IP HCS uses the progressive censoring scheme R1, R2, · · · , RD.

To deal with the selection of hyper-parameters in the Bayesian inference, Han [14,15]
investigated and compared the hierarchical Bayesian and E-Bayesian methods by utiliz-
ing the quadratic loss function with three different hyper-parameters’ priors. For the
E-Bayeisan estimation procedures under type-II censoring, Jaheen and Okasha [16] pro-
vided the estimates of the Burr type XII outer power parameter and reliability by means of
squared error loss (SEL) and LINEX loss functions; Okasha [17] worked on the estimates
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of the rate parameter, parallel and series systems reliabilities and failure rate of WEI(δ, γ);
and Okasha [18] investigated the estimates of Lomax distribution power parameter and
reliability by means of the balanced SEL function, which was used by Ahmadi et al. [19].
Recently, Okasha and Mustafa [20] investigated E-Bayesian estimate utilizing competing
risks sample from Weibull distributions under AT-IP HCS and Okasha et al. [21] extended
the work by Okasha [17] to progressive type-II censoring. The common remarks of the
works mentioned above indicate that the E-Bayesian estimation method outperforms over
the Bayesian one. The empirical Bayesian estimation method is an alternative procedure for
the hyper-parameters’ determination. Chiang et al. [22] proposed an empirical Bayesian
strategy for sampling plans under Burr XII distribution. Mohammed [23] introduced an
empirical E-Bayesian estimate of the Poisson distribution parameter based on random
sample. Jaheen [24] studied an empirical Bayesian estimate for the exponential parameter
by using Linex and quadratic loss functions based on record statistics.

Current research is an extension work by Okasha [18] for E-Bayesian estimation
methods under type-II censoring. Okasha [18] did not successfully finish the mathematical
proof of the comparison among the E-Bayesian estimates of Reliability under the balanced
SEL function even if he obtained similar integral presentations for the difference between
two E-Bayesian estimates of reliability as we did under SEL function. In our study, the
SEL function as well as two asymmetric loss functions, which contain the general entropy
(GE) from Calabria and Pulcini [25] and LINEX from Pandey et al. [26], will be utilized
to investigate Bayesian, E-Bayesian and empirical Bayesian estimates for any function
of the Lomax(α, β) shape parameter based on the adaptive type-I progressively hybrid
censored sample.

The rest of this paper is organized as follows. In Section 2, the likelihood model and
maximum likelihood estimates based on a given adaptive type-I progressively hybrid
censored sample will be presented. Section 3 will discuss and formulate the Bayesian
estimates of the Lomax shape functions and Section 4 will provide detail derivation of
the E-Bayesian estimates. Section 5 addresses empirical Bayesian estimation procedure.
The mathematical properties of all the E-Bayesian estimates are developed in Section 6.
In Section 7, an extensive Monte Carlo simulation will be performed to investigate the
performance of all estimates considered. Following that, one simulated data set and two
practical data sets will be utilized for the illustrative purpose. Some notes will be addressed
at the end.

2. Maximum Likelihood Estimation

Let Φ =
{

xj:n, j = 1, 2, 3, · · · , D
}

be the adaptive type-I progressively hybrid censored
sample that was collected by using the progressive type-II censoring scheme,{

Rj, j = 1, 2, 3, · · · , D
}

, and τ. The likelihood model and maximum likelihood estimate
(MLE) of any function, η(α), of α, are addressed as follows.

2.1. Likelihood Model

Let Θ = (α, β) be the Lomax(α, β) parameter vector. If D = 0, then the likelihood func-
tion is L(Θ; Φ) = (1− F(τ; Θ))n; otherwise, the likelihood function of Φ is presented by

L(Θ; Φ) = CD

D

∏
j=1

f (xj:n; α, β)[1− F(xj:n; α, β)]Rj [1− F(τ; α, β)]R
∗
D , (5)

where CD = ∏D
i=1 γi, γi = ∑m

k=i(Rk + 1) = n − ∑i−1
k=1(Rk + 1), ∑0

k=1(Rk + 1) ≡ 0 and
R∗D = n− D − ∑D

j=1 Rj. When the sample is collected from Lomax(α, β), the likelihood

function of (5), based on (1) and (2), can be represented as L(α, β; Φ) = (1 + βτ)−αn for
D = 0; otherwise, the likelihood function of (5) can be represented as,

L(α, β; Φ) = CDαDb1(Φ; β)e−αT1 , (6)
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where

b1(Φ; β) = βD
D

∏
i=1

(1 + βxi:n)
−1

and

T1 =
D

∑
i=1

(Ri + 1) ln(1 + βxi:n) + R∗D ln(1 + βτ). (7)

It can be seen that the explicit forms of the MLE and Bayesian estimates for the rate
parameter, β, are not available. Moreover, it is very common to assume one parameter as
a known constant in the investigation of Bayesian and E-Bayesian estimates. For more
information, readers may refer to Han [14,15], Jaheen and Okasha [16], Okasha [17] and
Okasha et al. [21]. In this work, the rate parameter β is assumed to be a known constant.

2.2. Maximum Likelihood Estimator

In order to derive the MLE of any function η(α) based on Φ from Lomax(α, β), the
log-likelihood function is obtained as lL(α) = −αn ln(1 + βτ) for D = 0; otherwise, the
log-likelihood function is presented as follows,

lL(α) = ln(CD) + D ln(α) + D ln(β)−
D

∑
i=1

ln(1 + βxi:n)− αT1.

Therefore, if D = 0 then the MLE cannot be obtained; otherwise, the MLE of α can be
easily derived as

α̂ML =
D
T1

, (8)

where T1 is given by (7). The MLE of η(α) can be obtained by plug-in method and labeled
by η̂ML = η(α̂ML). Replacing α in (3) and (4) by (8), the MLEs of R(x) and h(x) at x can be
derived as R̂ML(x) = (1 + βx)−α̂ML and ĥML(x) = α̂ML β

(1+βx) , respectively.

3. Bayesian Estimation of the Reliability Performances (BE)

In this section, the SEL function as well as GE and LINEX loss functions will be used to
develop the Bayesian estimates of η(α) based on Φ from Lomax(α, β). To develop Bayesian
estimation methods, the framework that includes posterior distribution and loss function
is needed.

3.1. Posterior Distribution

Since α > 0, the flexible Gamma PDF of α, defined as

g(α) =
kc

Γ(c)
αc−1e−kα, α ≥ 0, (9)

where c > 0 and k > 0 are called hyper-parameters, will be used as a conjugate prior PDF
to develop the Bayesian estimates of η(α). Combining the likelihood of (6) and the prior
of (9), the posterior PDF for α, given Φ, can be obtained as

π(α|Φ) =
g(α)L(α; Φ)∫ ∞

0 g(α)L(α; Φ)dα
= B1(c, k)αD+c−1e−(k+T1)α, (10)

where

B1(c, k) =
(k + T1)

D+c

Γ(D + c)
,

and T1 is (7). Let η := η(α). By using transformation method on PDF of (10), the posterior
PDF of η can be obtained. Using R(x) and h(x) as examples, the respective transformation
procedures are addressed next.
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Let Rx := R(x). By utilizing transformation method with α = − ln Rx
ln(1+βt) and the PDF

of (10), the posterior PDF of Rx can be derived as

ψ(Rx|Φ) =
B1(c, k)

(ln(1 + βx))D+c R
k+T1

ln(1+βx)−1
x (− ln Rx)

D+c−1, 0 < Rx ≤ 1. (11)

Let hx := h(x). Again, by Transformation method with α = 1+βx
β hx and the PDF

of (10), the posterior PDF of hx can be presented as

ϕ(hx|Φ) = B1(c, k)
(

1 + βx
β

)D+c
hD+c−1

x e−
(k+T1)(1+βx)

β hx , hx ≥ 0. (12)

3.2. Loss Functions

When SEL function is used, the Bayesian estimate of η(α) is the posterior mean of η(α).
Therefore, we only address asymmetric loss functions in this section. Pandey et al. [26]
indicated that using asymmetric loss functions would be suitable in some applications
and proposed LINEX loss function. In this section, GE and LINEX loss functions will be
discussed briefly. Let θ :≡ η(α) and θ̂ be a Bayesian estimate of θ. For b 6= 0, the LINEX
loss function is given as

L1(θ̂, θ) =
(

eb(θ̂−θ) − b
(
θ̂ − θ

)
− 1
)

. (13)

From (13), it can be noted when b > 0, underestimation is less serious than overesti-
mation; while b < 0, the conclusion is opposite. When b approaches zero, the LINEX loss
will be approximated to the SEL. The posterior expectation of (13) can be derived as

Eθ

(
L1(θ̂, θ)|Φ

)
= ebθ̂Eθ

(
e−bθ |Φ

)
− bθ̂ + bEθ(θ|Φ)− 1, b 6= 0, (14)

where Eθ

(
e−bθ |Φ

)
is the posterior expectation taken over the posterior of θ. The Bayesian

estimate of θ, labeled by θ̂BL, is the minimizer of (14) and can be proved to be

θ̂BL =
−1
b

ln Eθ

(
e−bθ |Φ

)
, (15)

provided that Eθ

(
e−bθ |Φ

)
is finite.

In many practical situations, the loss in terms of the ratio θ̂/θ could be more realistic.
Under this situation, the GE loss of Calabria and Pulcini (1996) is a suitable one and
defined as

L2(θ̂, θ) ∝
(
θ̂/θ

)p − p log
(
θ̂/θ

)
− 1. (16)

When p = 1, the GE loss function is reduced to the Entropy loss function, which has
been utilized by numerous authors. More information, reader can refer to Soliman [27].
When p > 0, overestimate is more serious than underestimate. Similarly, the Bayesian
estimate, θ̂BG, of θ for the GE loss function is defined as the minimizer of the posterior
expectation, Eθ

(
L2(θ̂, θ)|Φ

)
, and can be proved as

θ̂BG =
(
Eθ

(
θ−p|Φ

))−1/p, (17)

provided that the posterior expectation, Eθ(θ
−p|Φ), is finite. In order to implement the

Bayesian estimation method on any function θ :≡ η(α), more detail structure of θ is needed.
Three special cases of θ will be used for the following:
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3.3. Bayesian Estimate under SEL Function

The Bayesian estimates of α, R(x) and h(x) under SEL function will be presented here.
The Bayesian estimate of α is the expectation of posterior distribution of (10) and given as

α̂BS = E(α|Φ) =
D + c
k + T1

. (18)

The Bayesian estimate of R(x) is the expectation of posterior distribution of (11) and
given as

R̂BS(x) =
[

1 +
ln(1 + βx)

k + T1

]−D−c
, (19)

and the Bayesian estimate of h(x) is the mean of posterior distribution of (12) and given as

ĥBS(x) =
(

β

1 + βx

)(
D + c
k + T1

)
. (20)

3.4. Bayesian Estimate under LINEX Loss Function

The Bayesian estimates of α, R(x) and h(x) under LINEX loss function will be provided
here. Using (10) and (15), the Bayesian estimate of α is obtained as

α̂BL =
−1
b

ln
(

Eα(e−bα|Φ)
)

=
−1
b

ln
(
(k + T1)

D+c

Γ(D + c)

∫ ∞

0
e−bααD+c−1e−(k+T1)αdα

)
(21)

=
D + c

b
ln
(

1 +
b

k + T1

)
.

Using (11) and (15), the Bayesian estimate of R(x) is given by

R̂BL(x) =
−1
b

ln
(

ERx

(
e−bRx |Φ

))
=
−1
b

ln

(
B1(c, k)

(ln(1 + βx))D+c

∫ 1

0
e−bRx R

k+T1
ln(1+βx)−1
x (− ln Rx)

(D+c−1)dRx

)
(22)

=
−1
b

ln

(
∞

∑
j=0

(−b)j

Γ(j + 1)

(
1 +

j ln(1 + βx)
k + T1

)−(D+c)
)

.

Using (12) and (15), the Bayesian estimate of h(x) is

ĥBL(x) =
−1
b

ln
(

Ehx

(
e−bhx |Φ

))
=
−1
b

ln
(∫ ∞

0
e−bhx ϕ(hx|Φ)dhx

)
=

D + c
b

ln
(

1 +
bβ

(k + T1)(1 + βx)

)
. (23)

3.5. Bayesian Estimate under GE Loss Function

The Bayesian estimates of α, R(x) and h(x) under GE loss function will be presented
as follows. Using (10) and (17), the Bayesian estimate of α is given as

α̂BG =
1

k + T1

[
Γ(D + c)

Γ(D + c− p)

]1/p
. (24)
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Using (11) and (17), the Bayesian estimate of R(x) is

R̂BG(x) =
[

1− p ln(1 + βx)
k + T1

] D+c
p

. (25)

Using (12) and (17), the Bayesian estimate of h(x) is

ĥBG(x) =
{

β

(k + T1)(1 + βx)

}(
Γ(D + c)

Γ(D + c− p)

)1/p
. (26)

4. E-Bayesian Estimation of the Reliability Performances

It can be noted that all Bayesian estimates mentioned above are functions of c and k,
given Φ from Lomax(α, β). Han [14] suggested the selection of hyper-parameters c and k
to ensure that the prior PDF g(α|c, k) of (9) decreases when α > 0 increases. The derivative
of g(α|c, k) with α is

dg(α)
dα

=
kc

Γ(c)
αc−2e−kα[(c− 1)− kα].

Then the prior PDF, g(α|c, k), is a decreasing function of α > 0, if 0 < c < 1 and k > 0.
It is very common to assume the independence of c and k random variables. Let c and k
have PDFs, π1(c) and π2(k), respectively. Therefore, the join bivariate PDF of c and k can
be represented by

π(c, k) = π1(c)π2(k),

and the expectation of the Bayesian estimate (E-Bayesian estimate) for η(α) can be ex-
pressed as

η̂EB ≡
∫ ∫

$
η̂BE(c, k)π(c, k)dcdk, (27)

where $ is the domain of c and k such that the prior PDF of (9) is decreasing in α and
η̂BE(c, k) is any Bayesian estimate of η(α). For more details about E-Bayesian, readers may
refer to References [15–18,20,21,28,29].

In order to investigate the E-Bayesian estimate of η(α), the structure of η(α) and the
joint prior distribution of hyper-parameters must be specified. For illustration, we use the
following three joint PDFs,

π1(c, k) = 1
ωB(r,s) cr−1(1− c)s−1, 0 ≤ c ≤ 1, 0 ≤ k ≤ ω,

π2(c, k) = 2
ω2B(r,s) (ω− k)cr−1(1− c)s−1, 0 ≤ c ≤ 1, 0 ≤ k ≤ ω,

π3(c, k) = 2k
ω2B(r,s) cr−1(1− c)s−1, 0 ≤ c ≤ 1, 0 ≤ k ≤ ω,

 (28)

where r > 0, s > 0 and B(r, s) is Beta function, as three different joint priors of hyper-
parameters and aforementioned three η(α) functions, α, R(x) and h(x).

4.1. E-Bayesian Estimates with SEL Function

Replacing η̂BE in (27) by (18), (19), or (20) and using three priors of (28), the E-Bayesian
estimates of α, R(x) and h(x) under SEL will be addressed as follows.

Using (18), (27) and three priors of (28), the E-Bayesian estimates of α based on SEL
can be obtained as

α̂EBS1 =
∫ ∫

$
α̂BS(c, k)π1(c, k)dkdc

=
1

ωB(r, s)

∫ 1

0

∫ ω

0

(
D + c
k + T1

)
cr−1(1− c)s−1dkdc (29)

=
1
ω

(
D +

r
r + s

)
ln
(

1 +
ω

T1

)
,
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α̂EBS2 =
2

ω2

(
D +

r
r + s

)[
(T1 + ω) ln

(
1 +

ω

T1

)
−ω

]
(30)

and

α̂EBS3 =
2

ω2

(
D +

r
r + s

)[
T1 ln

(
T1

T1 + ω

)
+ ω

]
, (31)

respectively.
Using (19), (27) and three priors of (28), the E-Bayesian estimates of R(x) based on

SEL can be respectively derived as

R̂EBS1(x) =
∫ ∫

$ R̂BS(x)π1(c, k)dkdc

= 1
ωB(r,s)

∫ 1
0

∫ ω
0

[
1 + ln(1+βx)

k+T1

]−D−c
cr−1(1− c)s−1dkdc.

= 1
ωB(r,s)

∫ ω
0

[
1 + ln(1+βx)

k+T1

]−D
(∫ 1

0 e
−c ln

(
1+ ln(1+βx)

k+T1

)
cr−1(1− c)s−1dc

)
dk

= 1
ω

∫ ω
0

[
1 + ln(1+βx)

k+T1

]−D
F1:1

(
r; r + s; ln

(
k+T1

k+T1+ln(1+βx)

))
dk,

(32)

R̂EBS2(x) = 2
ω2

∫ ω
0 (ω− k)

[
1 + ln(1+βx)

k+T1

]−D

×F1:1

(
r; r + s; ln

(
k+T1

k+T1+ln(1+βx)

))
dk

(33)

and

R̂EBS3(x) =
2

ω2

∫ ω

0
k
[

1 +
ln(1 + βx)

k + T1

]−D
F1:1

(
r; r + s; ln

(
k + T1

k + T1 + ln(1 + βx)

))
dk, (34)

where F1:1(., .; .) is the generalized hypergeometric function. More information, reader may
refer to Gradshteyn and Ryzhik [30]. The above estimates cannot be computed analytically.
Therefore, it may be obtained numerically using the mathematical packages Matlab.

Using (20), (27) and three priors of (28), the E-Bayesian estimates of h(x) based on SEL
can be expressed as

ĥEBS1(x) =
∫ ∫

$ ĥBS(x)π1(c, k)dkdc

= 1
ωB(r,s)

∫ 1
0

∫ ω
0

(
β

1+βx

)(
D+c
k+T1

)
cr−1(1− c)s−1dkdc

=

(
β

1+βx

)
ωB(r,s)

∫ 1
0

∫ ω
0

(
D+c
k+T1

)
cr−1(1− c)s−1dkdc

= 1
ω

(
β

1+βx

)(
D + r

r+s
)

ln
(

1 + ω
T1

)
,

(35)

ĥEBS2(x) =
2

ω2

(
D +

r
r + s

)(
β

1 + βx

)[
(T1 + ω) ln

(
1 +

ω

T1

)
−ω

]
(36)

and

ĥEBS3(x) =
2

ω2

(
D +

r
r + s

)(
β

1 + βx

)[
T1 ln

(
T1

T1 + ω

)
+ ω

]
, (37)

respectively.

4.2. E-Bayesian Estimates with LINEX Loss Function

Replacing η̂BE in (27) by (21), (22), or (23) and using three priors of (28), the E-Bayesian
estimates of α, R(x) and h(x) using LINEX loss are addressed below.

Using (21), (27) and three priors of (28), the E-Bayesian estimates of α based on LINEX
loss function can be obtained as
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α̂EBL1 =
∫ ∫

$ α̂BL(c, k)π1(c, k)dkdc

= 1
ωB(r,s)

∫ 1
0

∫ ω
0

(
D+c

b

)
ln
(

1 + b
k+T1

)
cr−1(1− c)s−1dkdc

= 1
ωb
(

D + r
r+s
)[

ω ln
(

1 + b
ω+T1

)
+ (T1 + b) ln

(
1 + ω

T1+b

)
−T1 ln

(
1 + ω

T1

)]
,

(38)

α̂EBL2 =
(

D + r
r+s
)[ 1

b ln
(

1 + b
T1

)
− (T1+ω)2

ω2b ln
(

1 + ω
T1

)
+ (T1+b+ω)2

ω2b

× ln
(

1 + ω
T1+b

)
− 1

ω

] (39)

and

α̂EBL3 =
(

D + r
r+s
)[ 1

b ln
(

1 + b
ω+T1

)
+

T2
1

ω2b ln
(

1 + ω
T1

)
− (T1+b)2

ω2b

× ln
(

1 + ω
T1+b

)
+ 1

ω

]
,

(40)

respectively.
Using (22), (27) and three priors of (28), the E-Bayesian estimates of the reliability

based on LINE loss function can be derived as

R̂EBLi(x) =
∫ ∫

$
R̂BL(x)πi(c, k)dkdc, (41)

for i = 1, 2, 3, respectively. The integral results in (41) are very complicated and the explicit
forms are difficult to obtain. Computations with a software can be applied to evaluate the
E-Bayesian estimates of reliability.

Using (23), (27) and three priors of (28), the E-Bayesian estimates of the hazard rate
based on LINEX loss function can be respectively expressed as

ĥEBL1(x) =
∫ ∫

$ ĥBL(c, k)π1(c, k)dkdc

= 1
ωB(r,s)

∫ 1
0

∫ ω
0

(
D+c

b

)
ln
[
1 + bβ

(k+T1)(1+βx)

]
cr−1(1− c)s−1dkdc

= 1
ωb
(

D + r
r+s
)[

z(x, b, β) ln
(

1 + ω
T1+z(x,b,β)

)
+ (T1 + ω)

× ln
(

1 + z(x,b,β)
T1+ω

)
− T1 ln

(
1 + z(x,b,β)

T1

)]
,

(42)

ĥEBL2(x) = 1
b
(

D + r
r+s
)[(

1 + T1+z(x,b,β)
ω

)2
ln
(

1 + ω
T1+z(x,b,β)

)
−
(

1 + T1
ω

)2(
1 + ln

(
ω
T1

))
+ ln

(
1 + z(x,b,β)

T1

)
− z(x,b,β)

ω

] (43)

and

ĥEBL3(x) = 1
b
(

D + r
r+s
)[( T1

ω

)2
ln
(

1 + ω
T1

)
−
(

T1+z(x,b,β)
ω

)2

× ln
(

1 + ω
T1+z(x,b,β)

)
+ ln

(
1 + z(x,b,β)

T1+ω

)
+ z(x,b,β)

ω

]
,

(44)

where z(x, b, β) = b
(

β
1+βx

)
.

4.3. E-Bayesian Estimates with GE Loss Function

Replacing η̂BE in (27) by (24), (25), or (26) and using three priors of (28), the E-Bayesian
estimates of α, R(x) and h(x) using GE loss will be described as follows.

Using (24), (27) and three priori of (28), the E-Bayesian estimates of α based on GE loss
can be respectively obtained as
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α̂EBGE1 =
∫ ∫

$ α̂GE(c, k)π1(c, k)dkdc

= 1
ωB(r,s)

∫ 1
0

∫ ω
0

1
k+T1

[
Γ(D+c)

Γ(D+c−p)

]1/p
cr−1(1− c)s−1dkdc

= I1(D,p)
ωB(r,s) ln

(
1 + ω

T
)
,

(45)

α̂EBGE2 =
2I1(D, p)
ω2B(r, s)

(
(T + ω) ln

(
1 +

ω

T

)
−ω

)
(46)

and

α̂EBGE3 =
2I1(D, p)
ω2B(r, s)

(
ω− T log

(
1 +

ω

T

))
, (47)

where

I1(D, p) =
∫ 1

0

[
Γ(D + c)

Γ(D + c− p)

]1/p
cr−1(1− c)s−1dc. (48)

Using (25), (27) and three priors of (28), the E-Bayesian estimates of R(x) based on GE
loss can be respectively expressed as

R̂EBGE1(x) =
∫ ∫

$
R̂GE(x)πi(c, k)dkdc

=
1

ωB(r, s)

∫ 1

0

∫ ω

0

[
1− p ln(1 + βx)

k + T1

] D+c
p

cr−1(1− c)s−1dkdc (49)

=
Γ(r + s)

ω

∫ ω

0
ψ(k, x)dk,

R̂EBGE2(x) =
2Γ(r + s)

ω2

∫ ω

0
(ω− k)ψ(k, x)dk

(50)

and

R̂EBGE3(x) =
2Γ(r + s)

ω2

∫ ω

0
kψ(k, x)dk, (51)

where

ψ(k, x) =
[

1− p ln(1 + βx)
k + T1

] D
p

F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
k + T1

))
.

The respective explicit forms of (49)–(51) cannot be obtained. It may be obtained numeri-
cally using the mathematical packages Matlab.

Using (26), (27) and three priors of (28), the E-Bayesian estimates of h(x) based on GE
loss can be respectively expressed as

ĥEBGE1(x) =
∫ ∫

$
α̂BL(c, k)π1(c, k)dkdc

=
1

ωB(r, s)

∫ 1

0

∫ ω

0

{
β

(k + T1)(1 + βx)

}(
Γ(D + c)

Γ(D + c− p)

)1/p
(52)

×cr−1(1− c)s−1dkdc

=
I1(D, p)
ωB(r, s)

(
β

1 + βx

)
ln
(
(1 +

ω

T1

)
,
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ĥEBGE2(x) =
2I1(D, p)
ω2B(r, s)

(
β

1 + βx

)(
(ω + T1) ln

(
(1 +

ω

T1

)
−ω

)
(53)

and

ĥEBGE3(x) =
2I1(D, p)
ω2B(r, s)

(
β

1 + βx

)
(ω− T1) ln

(
1 +

ω

T1

)
, (54)

where I1(D, p) had been defined in (48). The explicit forms of (52)–(54) cannot be derived.
It may be obtained numerically using the mathematical packages Matlab.

5. Empirical Bayesian Estimates of the Reliability Performances

We will develop an alternative technique that is called empirical Bayesian estimation
method to tackle the unknown hyper-parameters in this section.

5.1. Estimation Method for Hyper-Parameters

The MLE has been known usually more accurate than any other estimate (for example,
moment estimate). Based on this fact, Yan and Gendai [31] proposed the MLEs of hyper-
parameters to analyze the Bayesian reliability indexes. The current study, the Gamma prior
of (9) has the hyper-parameters c and k. The maximum likelihood method will be applied
to estimate the hyper-parameters, c and k, based on Φ.

Using (1) and the prior PDF (9) of α, the margin PDF of X can be derived as follows,

f (x) =
∫ ∞

0
f (x; α, β)g(α)dα =

ckcβ

(1 + βx)(k + ln(1 + βx))c+1

and

1− F(x) =
∫ ∞

x
f (t)dt =

(
k

k + ln(1 + βx)

)c
.

Replacing f (x; α, β) by f (x) and F(x; α, β) by F(x), the likelihood function of (5) can
be represented as

L2(c, k; Φ) = CDcDb2(Φ; β)e−cT2 , (55)

where

b2(Φ; β) =
βD

∏D
i=1((1 + βXi:n)(k + ln(1 + βXi:n)))

and

T2(k) =
D

∑
i=1

(Ri + 1) ln(k + ln(1 + βXi:n)) + R∗D ln(k + ln(1 + βτ))− n ln k.

The log-likelihood function using (55) can be addressed as

lL2(c, k; Φ) = ln(CD) + D ln(c) + D ln(β)−∑D
i=1 ln(1 + βXi:n)−∑D

i=1 ln(k + ln(1 + βXi:n)

−cT2(k).
(56)

Setting the partial derivatives of (56) with respect to c and k equal to 0, respectively,
the normal equations are derived to be

c =
D

T2(k)
(57)
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and

cn
k

=
D

∑
i=1

c(Ri + 1) + 1
k + ln(1 + βXi:n)

+
R∗D

k + ln(1 + βτ)
, (58)

where T2(k) is given by (56). The solutions, ĉ and k̂, of c and k from (57) and (58), simulta-
neously, are the MLEs of c and k, respectively. Therefore, the empirical Bayesian estimate
of η(α) will be obtained via replacing c and k in η̂BE(c, k) with ĉ and k̂. In this section, the
empirical Bayesian estimates for all Bayesian estimates mentioned before will be presented
as follows,

5.2. Empirical Bayesian Estimates under SEL

The empirical Bayesian estimates of α̂BS, R̂BS(x) and ĥBS(x) using SEL can be pre-
sented as

α̂EMBS =
D + ĉ

k̂ + T2(k̂)
, (59)

R̂EMBS(x) =
[

1 +
ln(1 + βx)
k̂ + T2(k̂)

]−D−ĉ
(60)

and

ĥEMBS(x) =
(

β

1 + βx

)(
D + ĉ

k̂ + T2(k̂)

)
, (61)

respectively.

5.3. Empirical Bayesian Estimates under LINEX Loss

The empirical Bayesian estimates of α̂BL, R̂BL(x) and ĥBL(x) under LINEX loss can be
addressed as

α̂EMBL =
D + ĉ

b
ln
(

1 +
b

k̂ + T2(k̂)

)
, (62)

R̂EMBL(x) =
−1
b

ln

[
∞

∑
j=0

(−b)j

Γ(j + 1)

(
1 +

j ln(1 + βx)
k̂ + T2(k̂)

)−(D+ĉ)
]

(63)

and

ĥEMBL(x) =
D + ĉ

b
ln

[
1 +

bβ

(k̂ + T2(k̂))(1 + βx)

]
, (64)

respectively.

5.4. Empirical Bayesian Estimates under GE Loss

The empirical Bayesian estimates of α̂BG, R̂BG(x) and ĥBG(x) under GE Loss are
presented as

α̂EMBG =
1

k̂ + T2(k̂)

[
Γ(D + ĉ)

Γ(D + ĉ− p)

]1/p
, (65)
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R̂EMBG(x) =
[

1− p ln(1 + βx)
k̂ + T2(k̂)

] D+ĉ
p

(66)

and

ĥEMBG(x) =

 β(
k̂ + T2(k̂)

)
(1 + βx)


(

Γ(D + ĉ)
Γ(D + ĉ− p)

)1/p
, (67)

respectively.

6. Properties of E-Bayesian Estimates

In order to derive the properties for E-Bayesian estimates of η(α), more conditions or
structures on η(α) are needed. However, the general conditions are not available. Therefore,
the aforementioned functions will be focused. Some relationships among all E-Bayesian
estimates mentioned above will be established in this section.

6.1. Properties of E-Bayesian Estimates under SEL

Some relationships among α̂EBSj, R̂EBSj(x) and ĥEBSj(x) (j = 1, 2, 3) are given by
Propositions 1–3.

Relationships among α̂EBSj (j = 1, 2, 3)

Proposition 1. Let r > 0, s > 0, 0 < ω < T1 and α̂EBSj (j = 1, 2, 3) be presented by (29), (30)
and (31). Then

(i) α̂EBS3 < α̂EBS1 < α̂EBS2.
(ii) limT1→∞ α̂EBS1 = limT1→∞ α̂EBS2 = limT1→∞ α̂EBS3.

Proof. (i) From (29)–(31),

α̂EBS2 − α̂EBS1 = α̂EBS1 − α̂EBS3

= 1
ω

(
D + r

r+s
)[ω+2T1

ω ln
(

T1+ω
T1

)
− 2
]
.

(68)

When −1 < t < 1, ln(1 + t) = t− t2

2 + t3

3 −
t4

4 + . . . = −∑∞
i=1(−1)i ti

i .
Let t = ω

T1
. Since 0 < ω < T1 and 0 < ω

T1
< 1,

[
ω+2T1

ω ln
(

1 + ω
T1

)
− 2
]

= ω+2T1
ω

[(
ω
T1

)
− 1

2

(
ω
T1

)2
+ 1

3

(
ω
T1

)3
− 1

4

(
ω
T1

)4

+ 1
5

(
ω
T1

)5
− . . .

]
− 2

=

[(
ω
T1

)
− 1

2

(
ω
T1

)2
+ 1

3

(
ω
T1

)3
− 1

4

(
ω
T1

)4

+ 1
5

(
ω
T1

)5
− . . .

]
− 2 +

(
2−

(
ω
T1

)
+ 2

3

(
ω
T1

)2

− 2
4

(
ω
T1

)3
+ 2

5

(
ω
T1

)4
− . . .

)
=

(
ω2

6T2
1
− ω3

6T3
1

)
+

(
3ω4

20T4
1
− 2ω5

15T5
1

)
+ . . .

= ω2

6T2
1

(
1− ω

T1

)
+ ω4

300T4
1

(
45− 40ω

T1

)
+ . . .

> 0.

(69)

According to (68) and (69), we have

α̂EBS2 − α̂EBS1 = α̂EBS1 − α̂EBS3 > 0,
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that is
α̂EBS3 < α̂EBS1 < α̂EBS2.

(ii) From (68) and (69), we get

lim
T1→∞

(α̂EBS2 − α̂EBS1) = lim
T1→∞

(α̂EBS1 − α̂EBS3)

=
1
ω

lim
T1→∞

(
D +

r
r + s

){
ω2

6T2
1

(
1− ω

T1

)
+

ω4

300T4
1

(
45− 40ω

T1

)
+ . . .

}
= 0.

That is limT1→∞ α̂EBS1 = limT1→∞ α̂EBS2 = limT1→∞ α̂EBS3. Thus, the proof is com-
pleted.

Relationships among R̂EBSj(x) (j = 1, 2, 3)

Proposition 2. Let r > 0, s > 0, 0 < ω < T1 and R̂EBSj(x) (j = 1, 2, 3) be addressed
by (32)–(34). Then

(i) R̂EBS2(x) ≤ R̂EBS1(x) ≤ R̂EBS3(x).
(ii) limT1→∞ R̂EBS1(x) = limT1→∞ R̂EBS2(x) = limT1→∞ R̂EBS3(x).

Proof. From (32)–(34), we have(
R̂EBS3(x)− R̂EBS1(x)

)
=

(
R̂EBS1(x)− R̂EBS2(x)

)
= 1

ωB(r,s)

∫ ω
0

(
2k
ω − 1

)(
1 + ln(1+βx)

k+T1

)−D

×F1:1

(
r, r + s; ln

(
k+T1

k+T1+ln(1+βx)

))
dk

= 2
ω2B(r,s)

∫ ω
2

0
(
k− ω

2
)(

1 + ln(1+βx)
k+T1

)−D

×F1:1

(
r, r + s; ln

(
k+T1

k+T1+ln(1+βx)

))
dk

+ 2
ω2B(r,s)

∫ ω
ω
2

(
k− ω

2
)(

1 + ln(1+βx)
k+T1

)−D

×F1:1

(
r, r + s; ln

(
k+T1

k+T1+ln(1+βx)

))
dk

= −2
ω2B(r,s)

∫ ω
2

0 u
(

1 + ln(1+βx)
T1+

ω
2 −u

)−D

×F1:1

(
r, r + s; ln

(
T1+

ω
2 −u

T1+
ω
2 −u+ln(1+βx)

))
du

+ 2
ω2B(r,s)

∫ ω
2

0 u
(

1 + ln(1+βx)
T1+

ω
2 +u

)−D

×F1:1

(
r, r + s; ln

([
1 + ln(1+βx)

T1+
ω
2 +u

]−1
))

du.

(70)

(i) It can be shown that for β > 0 and 0 ≤ u ≤ ω
2 ,

0 <

[
1 +

ln(1 + βx)
T1 + ω/2− u

]−D
≤
[

1 +
ln(1 + βx)

T1 + ω/2 + u

]−D
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and

0 < e
−c ln

(
1+ ln(1+βx)

T1+
ω
2 −u

)
≤ e
−c ln

(
1+ ln(1+βx)

T1+
ω
2 +u

)
.

Therefore,

∫ ω
2

0
u
(

1 +
ln(1 + βx)
T1 +

ω
2 − u

)−D
× F1:1

(
r, r + s; ln

(
T1 +

ω
2 − u

T1 +
ω
2 − u + ln(1 + βx)

))
du

≤

∫ ω
2

0
u
(

1 +
ln(1 + βx)
T1 +

ω
2 + u

)−D
× F1:1

(
r, r + s; ln

([
1 +

ln(1 + βx)
T1 +

ω
2 + u

]−1
))

dk.

Hence,
(

R̂EBS3(x)− R̂EBS1(x)
)
=
(

R̂EBS1(x)− R̂EBS2(x)
)
≥ 0 and [i] is proven.

(ii) Given β > 0, x > 0, D > 0, r > 0 and s > 0,

v1(k, T1, x) = (2k/ω− 1)
(

1 +
ln(1 + βx)

k + T1

)−D
× F1:1

(
r, r + s; ln

(
k + T1

k + T1 + ln(1 + βx)

))
is a continuous and bounded function over 0 ≤ k ≤ ω and T1 > 0. It can be seen that∣∣∣∣F1:1

(
r, r + s; ln

(
k + T1

k + T1 + ln(1 + βx)

))∣∣∣∣ ≤ 1.

Therefore,

|v1(k, T1, x)| ≤ (2k/ω− 1)
(

1 +
ln(1 + βx)

T1

)−D
, 0 ≤ k ≤ ω

is uniformly integrable over [0, ω]. Moreover,

lim
T1→∞

v1(k, T1) = (2k/ω− 1)F1:1(r, r + s; 0).

Following the same proof procedure of Vitali Convergence Theorem for Integral, we
have

lim
T1→∞

∫ ω

0
(2k/ω− 1)

(
1 +

ln(1 + βx)
k + T1

)−D
× F1:1

(
r, r + s; ln

(
k + T1

k + T1 + ln(1 + βx)

))
dk

=
∫ ω

0
(2k/ω− 1) lim

T1→∞

(
1 +

ln(1 + βx)
k + T1

)−D
× F1:1

(
r, r + s; ln

(
k + T1

k + T1 + ln(1 + βx)

))
dk

= F1:1(r, r + s; 0)
∫ ω

0
(2k/ω− 1)dk = 0.

That is limT1→∞ R̂EBS1(x) = limT1→∞ R̂EBS2(x) = limT1→∞ R̂EBS3(x). Thus, the proof
is completed.

Relationships among ĥEBSj(x) (j = 1, 2, 3)

Proposition 3. Let r > 0, s > 0, 0 < ω < T1, and ĥEBSj(x) (j = 1, 2, 3) be addressed
by (35)–(37). Then

(i) ĥEBS3(x) < ĥEBS1(x) < ĥEBS2(x).
(ii) limT1→∞ ĥEBS1(x) = limT1→∞ ĥEBS2(x) = limT1→∞ ĥEBS3(x).
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Proof. (i) From (35)–(37),

ĥEBS2(x)− ĥEBS1(x) = ĥEBS1(x)− ĥEBS3(x)

=
β

ω(1+βx)

(
D + r

r+s
)((

1 + 2T1
ω

)
ln
(

1 + ω
T1

)
− 2
)

.
(71)

According to (69) and (71), we obtain

ĥEBS1(x)− ĥEBS2(x) = ĥEBS3(x)− ĥEBS1(x) < 0.

Therefore,
ĥEBS3(x) < ĥEBS1(x) < ĥEBS2(x).

(ii) By using (70) and (71),

lim
T1→∞

(
ĥEBS2(x)− ĥEBS1(x)

)
= lim

T1→∞

(
ĥEBS1(x)− ĥEBS3(x)

)
=

β

ω(1 + βx)

(
D +

r
r + s

)
lim

T1→∞

{
ω2

6T2
1

(
1− ω

T1

)
+

ω4

300T4
1

×
(

45− 40ω

T1

)
+ . . .

}
= 0.

That is limT1→∞ ĥEBS1(x) = limT1→∞ ĥEBS2(x) = limT1→∞ ĥEBS3(x) and the proof
is completed.

Remark 1. Section 6.1 provides the comparison among E-Bayesian estimations α̂EBSj, R̂EBSj(x) and
ĥEBSj(x) for j = 1, 2, 3, respectively. T1 presents the data information that includes the number of
observed failure times and time schedule τ. Actually, T1 → ∞ is equivalent to D → ∞ under a
given time schedule τ > 0. Therefore, α̂EBSj for j = 1, 2, 3 are asymptotically equivalent if D → ∞
within a finite time schedule τ > 0. The asymptotic equivalence property is also true for R̂EBSj(x)
as well as ĥEBSj(x), for j = 1, 2, 3.

6.2. Properties of E-Bayesian Estimates under LINEX Loss

Some relationships among α̂EBLj, R̂EBLj(x) and ĥEBLj(x) (j = 1, 2, 3) will be addressed
by Propositions 4–6.
Relationships among α̂EBLj (j = 1, 2, 3)

Proposition 4. Let |b|T1
< 1 and ω

|b+T1|
< 1, r > 0, s > 0, b 6= 0 and α̂EBLi (i = 1, 2, 3) be given

by (38)–(40). Then

(i) α̂EBL3 ≤ α̂EBL1 ≤ α̂EBL2.
(ii) limT1→∞ α̂EBL1 = limT1→∞ α̂EBL2 = limT1→∞ α̂EBL3

Proof. From (38)–(40),

α̂EBL1 − α̂EBL2 = α̂EBL3 − α̂EBL1

= 1
ωB(r,s)

∫ ω
0

∫ 1
0 (2k/ω− 1) 1

b ln
(

1 + b
k+T1

)
(D + c)

×cr−1(1− c)s−1dcdk
= 1

bω

(
D + r

r+s
)(

T1(T1 + ω) ln
(

1 + b
T1

)
+ b(b + 2T1 + ω)

× ln(b + T1) + b(ω− (b + 2T1 + ω) ln(b + T1 + ω))

−T1(T1 + ω) ln
(

1 + b
T1+ω

))
= 1

bω

(
D + r

r+s
)(

T1(T1 + ω) ln
(

1 + b
T1

)
− b(b + 2T1 + ω)

× ln
(

1 + ω
b+T1

)
− T1(T1 + ω) ln

(
1 + b

T1+ω

)
+ bω

)
.

(72)
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(i) Let v0(r, s) = 1
B(r,s)

∫ 1
0 (D + c)cr−1(1− c)s−1dc

α̂EBL1 − α̂EBL2 = α̂EBL3 − α̂EBL1

= 2v0(r,s)
ω2

∫ ω
0 (k−ω/2) 1

b ln
(

1 + b
k+T1

)
dk

= 2v0(r,s)
ω2

(∫ ω/2
0 (k−ω/2) 1

b ln
(

1 + b
k+T1

)
dk +

∫ ω
ω/2(k−ω/2) 1

b

× ln
(

1 + b
k+T1

)
dk
)

= 2v0(r,s)
ω2

(∫ ω/2
0 (−u) 1

b ln
(

1 + b
T1+ω/2−u

)
du +

∫ ω/2
0 u 1

b

× ln
(

1 + b
T1+ω/2+u

)
du
)

.

(73)

It can be shown that for b 6= 0∫ ω/2

0
u

1
b

(
ln
(

1 +
b

T1 + ω/2 + u

)
− ln

(
1 +

b
T1 + ω/2− u

))
du ≤ 0.

Therefore, α̂EBL3 ≤ α̂EBL1 ≤ α̂EBL2.

(ii) It is noted that 0 < |b|
|T1|

< 1, 0 < ω
|b+T1|

< 1 and 0 < |b|
|T1+ω| < 1. By using the series

expansion, ln(1 + t) = −∑∞
i=1(−1)i ti

i for |t| < 1 to represent ln(1 + b
T1
), ln( b

T1+ω + 1) and
ln( ω

b+T1
+ 1) in their respective series. Then it can be shown the following result,

α̂EBL1 − α̂EBL2 = α̂EBL3 − α̂EBL1 =
1
ω

(
D +

r
r + s

)
v1(T1, b, ω), (74)

where

v1(T1, b, ω) =
T1(T1 + ω)

b
ln
(

1 +
b
T1

)
− (b + 2T1 + ω) ln

(
1 +

ω

b + T1

)
− T1(T1 + ω)

b

× ln
(

1 +
b

T1 + ω

)
+ ω

=
−T1(T1 + ω)

b

(
∞

∑
i=2

(
b
T1

)i
(−1)i 1

i

)
+ 2(b + T1)

(
∞

∑
i=2

(
ω

T1 + b

)i
(−1)i 1

i

)

+(ω− b)
(

∑∞
i=1

(
ω

T1+b

)i
(−1)i 1

i

)
+ T1(T1+ω)

b ∑∞
i=2

(
b

T1+ω

)i
(−1)i 1

i

= − (T1+ω)b
2T1

− T1(T1+ω)
b

(
∑∞

i=3

(
b

T1

)i
(−1)i 1

i

)
+2(b + T1)

(
∑∞

i=2

(
ω

T1+b

)i
(−1)i 1

i

)
+ (ω− b)

(
∑∞

i=1

(
ω

T1+b

)i
(−1)i 1

i

)
+ T1b

2(T1+ω)
+ T1(T1+ω)

b ∑∞
i=3

(
b

T1+ω

)i
(−1)i 1

i .

(75)

Based on the result above, it is difficult to compare the values among α̂EBL1, α̂EBL2 and
α̂EBL3. However, it can be shown that for any given |b| < T1, 0 < ω < |b + T1|, we have

lim
T1→∞

v1(T1, b, ω) = 0.

That is limT1→∞ α̂EBL1 = limT1→∞ α̂EBL2 = limT1→∞ α̂EBL3. Thus, the proof is com-
pleted.

Relationships among R̂EBLj(x) (j = 1, 2, 3)

Proposition 5. Let r > 0, s > 0, 0 < ω < T1, b 6= 0, and R̂EBLj(x) of (41) for j = 1, 2, 3. Then
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(i) R̂EBL2(x) ≤ R̂EBL1(x) ≤ R̂EBL3(x).
(ii) limT1→∞ R̂EBL1(x) = limT1→∞ R̂EBL2(x) = limT1→∞ R̂EBL3(x)

Proof. From (41),

R̂EBL2(x)− R̂EBL1(x) = R̂EBL1(x)− R̂EBL3(x)

=
∫ ω

0

∫ 1
0 R̂BL(x) cr−1(1−c)s−1

ωB(r,s)

(
1− 2k

ω

)
dcdk,

(76)

where R̂BL(x) was given by (22).

(i) ∫ ω
0

∫ 1
0 R̂BL(x) cr−1(1−c)s−1

ωB(r,s)

(
1− 2k

ω

)
dcdk = 2

ω2B(r,s)

∫ 1
0 cr−1(1− c)s−1

×
(∫ ω/2

0 R̂BL(x)(ω/2− k)dk +
∫ ω

ω/2 R̂BL(x)(ω/2− k)dk
)

dc.
(77)

Moreover,∫ ω/2

0
R̂BL(x)(ω/2− k)dk =

−1
b

∫ ω/2

0
ln
(

B
(ln(1 + βx))D+c

∫ 1

0
e−bvv

k+T1
ln(1+βx)−1

× (− ln(v))(D+c−1)dv
)
(ω/2− k)dk

=
−1
b

∫ ω/2

0
ln
(

(T1 + ω/2− u)D+c

(ln(1 + βx))D+cΓ(D + c)

∫ 1

0
e−bvv

T1+ω/2−u
ln(1+βx) −1

(− ln(v))(D+c−1)dv
)

udu

and ∫ ω

ω/2
R̂BL(x)(ω/2− k)dk =

−1
b

∫ ω

ω/2
ln
(

B
(ln(1 + βx))D+c

∫ 1

0
e−bvv

k+T1
ln(1+βx)−1

× (− ln(v))(D+c−1)dv
)
(ω/2− k)dk

=
−1
b

∫ ω/2

0
ln
( (T1 + ω/2 + u)D+c

(ln(1 + βx))D+cΓ(D + c)

∫ 1

0
e−bvv

T1+ω/2+u
ln(1+βx) −1

×(− ln(v))(D+c−1)dv
)
(−u)du.

Therefore, we have∫ ω

0

∫ 1

0
R̂BL(x)

cr−1(1− c)s−1

ωB(r, s)

(
1− 2k

ω

)
dcdk =

−2
bω2B(r, s)

∫ 1

0
cr−1(1− c)s−1

×
(∫ ω/2

0
ln
(∫ 1

0
e−bv fR1(v)dv

)
− ln

(∫ 1

0
e−bv fR2(v)dv

)
(u)du

)
dc,

where

fR1(v) =
(T1 + ω/2− u)D+c

(ln(1 + βx))D+cΓ(D + c)
v

T1+ω/2−u
ln(1+βx) −1

(− ln(v))(D+c−1), 0 ≤ v ≤ 1

and

fR2(v) =
(T1 + ω/2 + u)D+c

(ln(1 + βx))D+cΓ(D + c)
v

T1+ω/2+u
ln(1+βx) −1

(− ln(v))(D+c−1), 0 ≤ v ≤ 1.
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fR1(v) and fR2(v) are density functions of random variables R1 and R2, respectively, and
the likelihood ratio is given as follows,

fR2(v)
fR1(v)

=
(T1 + ω/2 + u)D+c

(T1 + ω/2− u)D+c v
2u

ln(1+βx) , 0 ≤ v ≤ 1, 0 ≤ u ≤ ω/2,

which is an increasing function over 0 ≤ v ≤ 1 for any given 0 ≤ u ≤ ω/2. The increasing
likelihood ratio implies R1 <St R2. That means R2 is stochastically larger than R1. When
b > 0, e−bv is a decreasing function over 0 ≤ v ≤ 1. Hence,

∫ ω/2

0
ln
(∫ 1

0
e−bv fR1(v)dv

)
− ln

(∫ 1

0
e−bv fR2(v)dv

)
(u)du ≥ 0. (78)

When b < 0, e−bv is an increasing function over 0 ≤ v ≤ 1. Hence,

∫ ω/2

0
ln
(∫ 1

0
e−bv fR1(v)dv

)
− ln

(∫ 1

0
e−bv fR2(v)dv

)
(u)du ≤ 0. (79)

Using (78) and (79), we have

∫ ω

0

∫ 1

0
R̂BL(x)

cr−1(1− c)s−1

ωB(r, s)

(
1− 2k

ω

)
dcdk ≤ 0, 0 ≤ c ≤ 1.

Therefore, R̂EBL2(x)− R̂EBL1(x) = R̂EBL1(x)− R̂EBL3(x) ≤ 0 and
R̂EBL2(x) ≤ R̂EBL1(x) ≤ R̂EBL3(x).

(ii)

lim
T1→∞

(
∞

∑
j=0

(−b)j

Γ(j + 1)

(
1 +

j ln(1 + βx)
k + T1

)−(D+c)
)

= e−b

and
lim

T1→∞
R̂BL(x) =

−1
b

ln(e−b) = 1.

Since R̂BL(x) is a continuous and bounded function with respect to c and k over

0 ≤ c ≤ 1 and 0 ≤ k ≤ ω, R̂BL(x) cr−1(1−c)s−1

ωB(r,s)

(
1− 2k

ω

)
is uniformly integrable.

Following the similar proof procedure of Bounded Convergence Theorem for Integral,
we have

lim
T1→∞

∫ ω

0

∫ 1

0
R̂BL(x)

cr−1(1− c)s−1

ωB(r, s)

(
1− 2k

ω

)
dcdk

=
∫ ω

0

∫ 1

0
lim

T1→∞
R̂BL(x)

cr−1(1− c)s−1

ωB(r, s)

(
1− 2k

ω

)
dcdk

=
∫ ω

0

∫ 1

0

cr−1(1− c)s−1

ωB(r, s)

(
1− 2k

ω

)
dcdk = 0

That is limT1→∞ R̂EBL1(x) = limT1→∞ R̂EBL2(x) = limT1→∞ R̂EBL3(x). Thus, the proof
is completed.



Mathematics 2021, 9, 2903 20 of 38

Relationships among ĥEBLj(x) (j = 1, 2, 3)

Proposition 6. Let r > 0, s > 0, b 6= 0, 0 < ω < T1, and ĥEBLj(x) (j = 1, 2, 3) be (42)–(44).
Then

(i) ĥEBL3(x) ≤ ĥEBL1(x) ≤ ĥEBL2(x).
(ii) limT1→∞ ĥEBL1(x) = limT1→∞ ĥEBL2(x) = limT1→∞ ĥEBL3(x).

Proof. From (42)–(44), we have

ĥEBL1(x)− ĥEBL2(x) = ĥEBL3(x)− ĥEBL1(x)
= 1

ωB(r,s)

∫ 1
0

∫ ω
0 (2k/ω− 1)

(
D+c

b

)
ln
[
1 + bβ

(k+T1)(1+βx)

]
cr−1(1− c)s−1dkdc

= 2v0
ω2

∫ ω
0 (k−ω/2)

(
1
b

)
ln
[
1 + bβ

(k+T1)(1+βx)

]
dk

= 2v0
ω2

∫ ω/2
0 u

(
1
b

)(
ln
[
1 + bβ

(T1+ω/2+u)(1+βx)

]
− ln

[
1 + bβ

(T1+ω/2−u)(1+βx)

])
dk

= 1
bω2

(
D + r

r+s
)(

T1(T1 + ω) ln
(

1 + z(x,b,β)
T1

)
− T1(T1 + ω) ln

(
1 + z(x,b,β)

T1+ω

)
−z(x, b, β)(2T1 + z(x, b, β) + ω) ln

(
1 + ω

T1+z(x,b,β)

)
+ z(x, b, β)ω

)
(80)

=
1

bω2

(
D +

r
r + s

)(
T1(T1 + ω) ln

(
1 +

z(x, b, β)ω

T1(T1 + ω + z(x, b, β))

)
+ z(x, b, β)ω

−z(x, b, β)(2T1 + z(x, b, β) + ω) ln
(

1 +
ω

T1 + z(x, b, β)

))
(81)

=
1

bω2

(
D +

r
r + s

)
v2(T1, ω, z(x, b, β))

(i) Following the same argument of the proof for (i) of Proposition 4, we can prove∫ ω/2

0
u
(

1
b

)(
ln
[

1 +
bβ

(T1 + ω/2 + u)(1 + βx)

]
− ln

[
1 +

bβ

(T1 + ω/2− u)(1 + βx)

])
dk ≤ 0.

Hence, ĥEBL3(x) ≤ ĥEBL1(x) ≤ ĥEBL2(x) is proved.
(ii) Because |z(x,b,β)ω|

|T1(T1+ω+z(x,b,β))| < 1 and |ω|
|T1+z(x,b,β)| < 1, by using series expansion we have

v2(T1, ω, z(x, b, β)) = (T1(T1 + ω))

(
∑∞

k=2

(
z(x,b,β)ω

T1(T1+ω+z(x,b,β))

)k (−1)k+1

k

)
− z(x,b,β)2ω

T1+ω+z(x,b,β) − 2z(x, b, β)(T1 + z(x, b, β))

×
(

∑∞
k=2

(
ω

T1+z(x,b,β)

)k (−1)k+1

k

)
− z(x, b, β)(ω− z(x, b, β))

×
(

∑∞
k=1

(
ω

T1+z(x,b,β)

)k (−1)k+1

k

)
.

(82)

Following the same argument of the proof for (ii) of Proposition 4, it can be shown
that 0 < ω < T1, r > 0, s > 0 and b 6= 0 imply

lim
T1→∞

v2(T1, b, ω) = 0.

That is, limT1→∞ ĥEBL1(x) = limT1→∞ ĥEBL2(x) = limT1→∞ ĥEBL3(x). Thus, the proof
is completed.
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Remark 2. Section 6.2 provides the comparison among E-Bayesian estimates α̂EBLj, R̂EBLj(x) and
ĥEBLj(x) for j = 1, 2, 3 under LINEX loss function, respectively. Section 6.2 also shows that α̂EBLj

for j = 1, 2, 3, R̂EBLj(x) for j = 1, 2, 3 and ĥEBLj, j = 1, 2, 3 are asymptotically equivalent as D is
getting to infinity for a given finite time schedule, τ.

6.3. Properties of E-Bayesian Estimates under GE Loss

Some relationships among α̂EBGEj, R̂EBGEj(x) and ĥEBGEj(x) (j = 1, 2, 3) will be ad-
dressed as follows.
Relationships among α̂EBGEj (j = 1, 2, 3)

Proposition 7. Let 0 < ω < T1, r > 0, s > 0, p 6= 0, D− p > 0 and α̂EBGEj (j = 1, 2, 3) be
given by (45)–(47). Then

(i) α̂EBGE3 < α̂EBGE1 < α̂EBGE2.
(ii) limT1→∞ α̂EBGE1 = limT1→∞ α̂EBGE2 = limT1→∞ α̂EBGE3.

Proof. (i) From (45)–(47),

α̂EBGE2 − α̂EBGE1 = α̂EBGE1 − α̂EBGE3

=
I1(D, p)
ωB(r, s)

[(
2T1

ω
+ 1
)

ln
(

1 +
ω

T1

)
− 2
]

, (83)

where

I1(D, p) =
∫ 1

0

[
D + c

D + c− p

]1/p
cr−1(1− c)s−1dc.

Following the same procedure shown in (69) and I1(D, p) > 0, we have

α̂EBGE2 − α̂EBGE1 = α̂EBGE1 − α̂EBGE3 > 0,

that is
α̂EBGE3 < α̂EBGE1 < α̂EBGE2.

(ii) From (69) and (83), we get

lim
T1→∞

(α̂EBGE2 − α̂EBGE1) = lim
T1→∞

(α̂EBGE1 − α̂EBGE3)

=
I1(D, p)
ωB(r, s)

lim
T1→∞

{
ω2

6T2
1

(
1− ω

T1

)
+

ω4

300T4
1

(
45− 40ω

T1

)
+ . . .

}
= 0.

That is limT1→∞ α̂EBGE1 = limT1→∞ α̂EBGE2 = limT1→∞ α̂EBGE3. Thus, the proof is com-
pleted.

Relationships among R̂EBGEj(x) (j = 1, 2, 3)

Proposition 8. Let r > 0, s > 0, 0 < ω < T1, and R̂EBGEj (j = 1, 2, 3) be described by (49)–(51).
Then

(i) R̂EBGE2(x) ≤ R̂EBGE1(x) ≤ R̂EBGE3(x).
(ii) limT1→∞ R̂EBGE1(x) = limT1→∞ R̂EBGE2(x) = limT1→∞ R̂EBGE3(x).
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Proof. From (49)–(51), we have(
R̂EBGE3(x)− R̂EBGE1(x)

)
=

(
R̂EBGE1(x)− R̂EBGE2(x)

)
=

Γ(r + s)
ω

∫ ω

0
(2k/ω− 1)

[
1− p ln(1 + βx)

k + T1

] D
p

×F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
k + T1

))
dk.

=
2Γ(r + s)

ω2

∫ ω/2

0
(k−ω/2)

[
1− p ln(1 + βx)

k + T1

] D
p

×F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
k + T1

))
dk.

+
2Γ(r + s)

ω2

∫ ω

ω/2
(k−ω/2)

[
1− p ln(1 + βx)

k + T1

] D
p

×F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
k + T1

))
dk. (84)

=
−2Γ(r + s)

ω2

∫ ω/2

0
u
[

1− p ln(1 + βx)
T1 + ω/2− u

] D
p

×F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
T1 + ω/2− u

))
du.

+
2Γ(r + s)

ω2

∫ ω/2

0
u
[

1− p ln(1 + βx)
T1 + ω/2 + u

] D
p

×F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
T1 + ω/2 + u

))
du.

(i) Similar to the proof of Proposition 2, we can prove

∫ ω/2

0
u
[

1− p ln(1 + βx)
T1 + ω/2− u

] D
p
× F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
T1 + ω/2− u

))
du

≤
∫ ω/2

0
u
[

1− p ln(1 + βx)
T1 + ω/2 + u

] D
p
× F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
T1 + ω/2 + u

))
du.

Hence, R̂EBGE2(x) ≤ R̂EBGE1(x) ≤ R̂EBGE3(x).

(ii) Given β > 0, t > 0, p 6= 0, D > 0, r > 0, s > 0,

v2(k, T1) = (2k/ω− 1)
[

1− p ln(1 + βx)
k + T1

] D
p
× F1:1

(
r, r + s;

1
p

ln
(

1− p ln(1 + βx)
k + T1

))
is a continuous and bounded function over 0 ≤ k ≤ ω and T1 > 0. Moreover,

lim
T1→∞

v2(k, T1) = (2k/ω− 1)F1:1(r, r + s; 0).

By Bounded Convergence Theorem for Integral, we have

limT1→∞
(

R̂EBGE3(x)− R̂EBGE1(x)
)

= limT1→∞
(

R̂EBGE1(x)− R̂EBGE2(x)
)

= limT1→∞
Γ(r+s)

ω

∫ ω
0 v2(k, T1)dk

= Γ(r+s)
ω

∫ ω
0 limT1→∞ v2(k, T1)dk

= Γ(r+s)
ω

∫ ω
0 (2k/ω− 1)F1:1(r, r + s; 0)dk = 0.

(85)
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That is
lim

T1→∞
R̂EBGE1(x) = lim

T1→∞
R̂EBGE2(x) = lim

T1→∞
R̂EBGE3(x).

Thus, the proof is completed.

Relationships among ĥEBGEj(x) (j = 1, 2, 3)

Proposition 9. Let r > 0, s > 0, 0 < ω < T1, and ĥEBGEj(x) (j = 1, 2, 3) be defined by
(52)–(54). Then

(i) ĥEBGE3(x) < ĥEBGE1(x) < ĥEBGE2(x).
(ii) limT1→∞ ĥEBGE1(x) = limT1→∞ ĥEBGE2(x) = limT1→∞ ĥEBGE3(x).

Proof. (i) From (52)–(54),

ĥEBGE2(x)− ĥEBGE1(x) = ĥEBGE1(x)− ĥEBGE3(x)
= I1(D,p)β

ωB(r,s)(1+βx)

[(
1 + 2T1

ω

)
ln
(

1 + ω
T1

)
− 2
]
.

(86)

According to (69) and (86), we obtain

ĥEBGE2(x)− ĥEBGE1(x) = ĥEBGE1(x)− ĥEBGE3(x) > 0,

that is
ĥEBGE3(x) < ĥEBGE1(x) < ĥEBGE2(x).

(ii) From (69) and (86), we get

lim
T1→∞

(
ĥEBGE2(x)− ĥEBGE1(x)

)
= lim

T1→∞

(
ĥEBGE1(x)− ĥEBGE3(x)

)
=

I1(D, p)β

ωB(r, s)(1 + βx)
lim

T1→∞

{
ω2

6T2
1

(
1− ω

T1

)
+

ω4

100T4
1

×
(

45− 40ω

T1

)
+ . . .

}
= 0.

That is limT1→∞ ĥEBGE1(x) = limT1→∞ ĥEBGE2(x) = limT1→∞ ĥEBGE3(x) and the proof
is completed.

Remark 3. Section 6.3 provides the comparison among E-Bayesian estimations α̂EBGEj(x),
R̂EBGEj(x) and ĥEBGEj(x) for j = 1, 2, 3, respectively. Section 6.3 also provides the asymp-
totically equivalent properties among α̂EBGEj, R̂EBGEj(x) and ĥEBGEj for j = 1, 2, 3, respectively, if
D approaches to infinity and τ is given a finite.

7. Simulation Study and Comparisons

The estimation accuracy of any estimate is usually measured by mean square error
(MSE) and bias. Because the explicit forms of MSE and bias for all Bayesian estimates are
not available, an extensive Monte Carlo simulation is performed to evaluate the MSEs of all
estimates for α, R(x), h(x), respectively, for comparisons under three different progressive
type-II censoring schemes (Sch I, Sch II and Sch III), which are given as follows,

• Sch I: R1 = · · · = Rm−1 = 0 and Rm = n−m,
• Sch II: R1 = · · · = Rm−1 = 1 and Rm = n− 2m + 1,
• Sch III: R1 = R2 = · · · = Rm = (n−m)/m.

The simulation parameter inputs include the Lomax(α, β) parameters, (α, β) = (3.0, 1.5),
the number of test items, n = 25, 30, 45, life test time schedule τ = 0.5, the LINEX loss
function parameter, b = 0.5, 1.5, the GE loss function parameter, p = −1.5, 1.5, (c, k) =
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(1.5, 0.7) for Bayesian estimation method, and ω = 1.5, (r, s) = (2.0, 3.0) for E-Bayesian
estimation method.

Given one of aforementioned progressive type-II censoring schemes with a combina-
tion of parameters addressed above, the simulation study was conducted according to the
following steps:

1. Generate a conventional progressively type-II censored sample from Lomax(α, β) via

the transformation, xi:n = (1−ui:n)
−1
α −1

β , i = 1, 2, · · · , m, where u1:n, u2:n, · · · , um:n are a
conventional progressively type-II censored sample from uniform over (0, 1) interval
by using the technique of Balakrishnan and Sandhu [32].

2. Generate an additional random sample of size (n−m−∑m−1
i=1 Ri) from the left trun-

cated Lomax(α, β) at xm:n by using the transformation x = (1−u)
−1
α (1+βxm:n)−1

β , where
u is the uniform over (0, 1) random variable.

3. Determine the values of D and R∗D, where D is the number of failures just right before
time τ.

4. MLEs, ĉ and k̂ are computed simultaneously through Equations (57) and (58) for the
empirical Bayesian estimations.

5. MLEs, α̂ML, R̂ML and ĥML, are computed through Equation (8) and plug-in method,
respectively.

6. Under the SEL function, the Bayesian estimates, E-Bayesian estimates and empirical
Bayesian estimates are computed by using Equations developed from Sections 3–5.

7. Under the LINEX loss function, the Bayesian estimates, E-Bayesian estimates and
empirical Bayesian estimates are computed by using Equations developed from
Sections 3–5.

8. Under the GE loss function, the Bayesian estimates, E-Bayesian estimates and empirical
Bayesian estimates are computed by using Equations developed from Sections 3–5.

9. Repeat Steps 1–8 10,000 times to obtain 10,000 MLEs as well as Bayesian, empirical
Bayesian and E-Bayesian estimates. Then MSEs and biases are respectively calculated
based on these 10,000 values for all estimates, respectively.

The entire simulation procedure has been shown in Figure 1.
All computations were performed using Mathcad program and the computational

results are displayed in Tables 1 and 2 that display the following:

(1) The bias and MSE of each estimate decrease as n increases.
(2) The bias and MSE of each estimate in case of LINEX (Bayesian, empirical Bayesian

and E-Bayesian) except for MSEs of the α and failure rate, h, functions decrease as
b increases.

(3) The bias and MSE of each estimate in case of GE loss function (Bayesian, empirical
Bayesian and E-Bayesian) except for MSEs of the α and failure rate, h, functions
decrease as P decrease.

(4) The Bayesian estimates of α, R and h have the smallest MSE comparing among MLE,
Bayesian and Emirical Bayesian estimtes.

(5) The E-Bayesian estimates of α and failure rate, h, perform better than MLE in terms
of MSE.

(6) The E-Bayesian estimates of α and h under LINEX loss (with b = 0.5) perform better
than the E-Bayesian estimates of α and h under LINEX loss with (b = 1.5).

(7) The E-Bayesian estimates for α and h are always underestimated (with negetive bias).
The E-Bayesian estimates for R are always overestimated (with positive bias). And
simulation study results are consistent with mathematical propositions for compar-
isons.

(8) The E-Bayesian estimates of the square error in case first prior except for MSEs of the
α and failure rate, h, functions perform better than the E-Bayesian estimates of the
another square error (in case two and third priors).
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(9) The E-Bayesian estimates of GE Loss Function (p decrease) in case first prior except
for MSEs of the α and failure rate, h, functions perform better than the E-Bayesian
estimates of the another GE Loss Function (in case two and third priors).

(10) The E-Bayesian estimates of α and h under GE Loss have the smallest bias comparing
with all other estimates.

Overall, the Bayesian and E-Bayesian procedures with SEL, LINEX loss or GE loss can
provide reliable estimates of the parameter α, R and h using the adaptive type-I progres-
sively hybrid censored sample from Lomax(α, β). Therefore, it is suggested to use Bayesian
or E-Bayesian estimates for Lomax(α, β) under AT-IP HCS. We do not suggest use MLE and
empirical Bayesian because the results from MLE have higher MLE generally. Additionally,
MLE and empirical Bayesian estimation methods are sensitive to the censoring rate and
cannot always produce stable results because they are dependent upon the iterative process
using quasi-Newton methods with box constraints to find MLE.
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Figure 1. The flowchart for using the proposed E-Bayesian estimation methods in Section 7.
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Table 1. Simulated biases (first row) and MSEs (second row) under different settings with α = 3.0, β = 1.5, τ = 0.5 and ω = 1.5.

Bayesian Empirical Bayesian

(n, m) Sch Par MLE LINEX Square General LINEX Square General

b = 0.5 b = 1.5 p = 1.5 p = −1.5 b = 0.5 b = 1.5 p = 1.5 p = −1.5

(20,5) I α 0.1206 −0.1348 −0.3424 −0.0132 −0.2220 0.0279 1.5769 1.4997 1.6197 1.6464 1.4836
0.6685 0.4404 0.4485 0.4851 0.4929 0.4941 2.1129 2.3284 1.999 1.9266 2.3895

R 0.0022 0.0252 0.0219 0.0268 −0.0062 0.0330 0.4786 0.4747 0.4806 0.4848 0.458
0.0072 0.0066 0.0063 0.0067 0.0063 0.0070 0.0202 0.0192 0.0207 0.0217 0.0157

h 0.1131 −0.1196 −0.3043 −0.0124 −0.2081 0.0262 1.4808 1.4124 1.5184 1.5435 1.3909
0.5876 0.3885 0.3900 0.4263 0.4332 0.4343 0.0975 0.1131 0.0932 0.0892 0.1328

II α 0.1362 −0.1707 −0.4117 −0.0254 −0.2780 0.0243 1.7875 1.6843 1.8457 1.8778 1.6825
0.8544 0.4872 0.5135 0.5421 0.5617 0.5538 1.7875 1.6843 1.8457 1.8778 1.6825

R 0.0043 0.0304 0.0264 0.0324 −0.0076 0.0397 0.4357 0.4313 0.4379 0.443 0.4102
0.0088 0.0077 0.0074 0.0079 0.0073 0.0084 0.022 0.0209 0.0226 0.0239 0.0166

h 0.1276 −0.1521 −0.3669 −0.0238 −0.2606 0.0228 1.679 1.5875 1.7304 1.7604 1.5773
0.7510 0.4297 0.4446 0.4764 0.4937 0.4867 0.1509 0.1705 0.148 0.1442 0.196

III α 0.3609 −0.2811 −0.6381 −0.0380 −0.4737 0.0466 1.5551 1.4441 1.6198 1.6601 1.4121
2.1538 0.6732 0.7783 0.8070 0.8641 0.8427 2.4484 2.7271 2.3 2.1934 2.903

R −0.0002 0.0469 0.0404 0.0503 −0.0178 0.0622 0.4965 0.4908 0.4993 0.5053 0.4663
0.0150 0.0118 0.0109 0.0122 0.0113 0.0133 0.029 0.0277 0.0297 0.0308 0.0248

h 0.3383 −0.2508 −0.5718 −0.0356 −0.4441 0.0437 1.4615 1.3628 1.5185 1.5564 1.3239
1.8930 0.5942 0.6659 0.7093 0.7595 0.7407 0.319 0.2859 0.349 0.3564 0.3585

(30,10) I α 0.0730 −0.0890 −0.2406 −0.0043 −0.1481 0.0242 1.3581 1.3112 1.3833 1.4017 1.2902
0.4107 0.3086 0.3107 0.3306 0.3330 0.3352 2.7469 2.8993 2.667 2.6081 2.9758

R 0.0020 0.0169 0.0147 0.0181 −0.0048 0.0224 0.5293 0.5264 0.5308 0.5336 0.516
0.0048 0.0044 0.0043 0.0045 0.0043 0.0046 0.0187 0.018 0.0191 0.0198 0.0157

h 0.0684 −0.0786 −0.2130 −0.0040 −0.1389 0.0227 1.2747 1.2332 1.2969 1.3141 1.2095
0.3610 0.2720 0.2711 0.2906 0.2927 0.2946 0.0636 0.0732 0.0598 0.0564 0.0863
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Table 1. Cont.

Bayesian Empirical Bayesian

(n, m) Sch Par MLE LINEX Square General LINEX Square General

b = 0.5 b = 1.5 p = 1.5 p = −1.5 b = 0.5 b = 1.5 p = 1.5 p = −1.5

II α 0.1073 −0.1154 −0.3136 −0.0004 −0.1966 0.0383 1.3633 1.3019 1.397 1.4213 1.2733
0.6034 0.4052 0.4083 0.4474 0.4479 0.4567 2.7746 2.9692 2.6713 2.5947 3.0798

R 0.0024 0.0221 0.0191 0.0237 −0.0073 0.0295 0.5299 0.526 0.5318 0.5354 0.5122
0.0066 0.0060 0.0058 0.0061 0.0059 0.0064 0.021 0.0201 0.0215 0.0224 0.0172

h 0.1006 −0.1018 −0.2780 −0.0004 −0.1843 0.0359 1.28 1.2257 1.3097 1.3325 1.1937
0.5303 0.3575 0.3554 0.3932 0.3937 0.4014 0.1021 0.111 0.0999 0.0964 0.1341

III α 0.2616 −0.1574 −0.4404 0.0202 −0.2836 0.0797 1.4034 1.3194 1.4511 1.4844 1.2807
1.2586 0.5275 0.5387 0.6320 0.6114 0.6589 2.5815 2.8505 2.4355 2.3349 2.9857

R −0.0035 0.0291 0.0246 0.0315 −0.0159 0.0400 0.5157 0.5105 0.5182 0.5233 0.4903
0.0100 0.0079 0.0075 0.0081 0.0082 0.0086 0.0165 0.0153 0.0172 0.0184 0.0114

h 0.2452 −0.1380 −0.3910 0.0189 −0.2658 0.0747 1.3183 1.2437 1.3604 1.3604 1.2007
1.1062 0.4668 0.4657 0.5555 0.5374 0.5791 0.0459 0.0657 0.0401 0.0367 0.0884

(45,15) I α 0.0477 −0.0541 −0.1621 0.0042 −0.0939 0.0237 1.3219 1.2903 1.3386 1.3511 1.2755
0.2678 0.2234 0.2217 0.2351 0.2344 0.2375 2.8553 2.9605 2.8009 2.7597 3.0139

R 0.0014 0.0111 0.0096 0.0119 −0.0038 0.0149 0.5383 0.5363 0.5393 0.5412 0.5294
0.0032 0.0031 0.0030 0.0031 0.0031 0.0032 0.0185 0.018 0.0188 0.0193 0.0165

h 0.0447 −0.0474 −0.1429 0.0039 −0.0881 0.0222 1.2403 1.2123 1.2549 1.2666 1.1958
0.2354 0.1968 0.1940 0.2066 0.2061 0.2088 0.0554 0.0625 0.0523 0.0496 0.0707

II α 0.0812 −0.0765 −0.2218 0.0043 −0.1322 0.0313 1.2863 1.2453 1.3082 1.3251 1.223
0.4016 0.2947 0.2929 0.3170 0.3154 0.3218 2.9978 3.1355 2.9258 2.8694 3.22

R 0.0007 0.0152 0.0130 0.0162 −0.0055 0.0204 0.5482 0.5454 0.5495 0.5521 0.5363
0.0046 0.0041 0.0040 0.0042 0.0041 0.0043 0.0196 0.0189 0.0200 0.0206 0.0169

h 0.0761 −0.0671 −0.1960 0.0040 −0.1239 0.0294 1.2072 1.1710 1.2265 1.2423 1.1466
0.3530 0.2598 0.2558 0.2786 0.2772 0.2828 0.0735 0.0812 0.0706 0.0673 0.0949
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Table 1. Cont.

Bayesian Empirical Bayesian

(n, m) Sch Par MLE LINEX Square General LINEX Square General

b = 0.5 b = 1.5 p = 1.5 p = −1.5 b = 0.5 b = 1.5 p = 1.5 p = −1.5

III α 0.1627 −0.1006 −0.3209 0.0298 −0.1895 0.0730 1.4001 1.3395 1.4333 1.4566 1.3148
0.7386 0.4198 0.4084 0.4860 0.4623 0.5025 2.5881 2.7816 2.4855 2.4137 2.867

R −0.0017 0.0203 0.0171 0.0220 −0.0123 0.0284 0.5172 0.5135 0.519 0.5226 0.4998
0.0070 0.0059 0.0056 0.0060 0.0061 0.0062 0.0177 0.0168 0.0182 0.0191 0.0138

h 0.1526 −0.0871 −0.2833 0.0279 −0.1777 0.0684 1.3145 1.2608 1.3438 1.3656 1.2327
0.6491 0.3713 0.3556 0.4271 0.4063 0.4416 0.0487 0.0645 0.0426 0.0384 0.0792

Table 2. Simulated biases (first row) and MSEs (second row) under different settings with α = 3.0, β = 1.5, τ = 0.5 and ω = 1.5.

E-Bayesian

(n, m) Sch Par LINEX Square General

b = 0.5 b = 1.5 p = −1.5 p = 1.5

EBL1 EBL2 EBL3 EBL1 EBL2 EBL3 EBS1 EBS2 EBS3 EBG1 EBG2 EBG3 EBG1 EBG2 EBG3

(20,5) I α −0.3241 −0.2143 −0.4339 −0.5180 −0.4235 −0.6126 −0.2105 −0.0910 −0.3300 −0.1557 −0.0337 −0.2778 −0.4053 −0.2938 −0.5167
0.4761 0.4685 0.5113 0.5604 0.5083 0.6326 0.4696 0.4960 0.4762 0.4621 0.5034 0.4551 0.5565 0.5354 0.6065

R 0.0500 0.0362 0.0637 0.0464 0.0327 0.0601 0.0518 0.0380 0.0656 0.0564 0.0428 0.0700 0.0165 0.0018 0.0312
0.0088 0.0077 0.0102 0.0083 0.0074 0.0096 0.0090 0.0079 0.0105 0.0095 0.0083 0.0110 0.0069 0.0068 0.0075

h −0.2975 −0.1941 −0.4009 −0.4701 −0.3802 −0.5599 −0.1973 −0.0853 −0.3093 −0.1460 −0.0316 −0.2604 −0.3800 −0.2755 −0.4844
0.4173 0.4122 0.4469 0.4830 0.4401 0.5442 0.4128 0.4360 0.4186 0.4061 0.4424 0.4000 0.4891 0.4705 0.5331

II α −0.3750 −0.2444 −0.5056 −0.6003 −0.4909 −0.7096 −0.2376 −0.0929 −0.3824 −0.1828 −0.0350 −0.3305 −0.4857 −0.3537 −0.6178
0.5652 0.5575 0.6130 0.6784 0.6082 0.7762 0.5594 0.6048 0.5641 0.5513 0.6151 0.5397 0.6864 0.6573 0.7575

R 0.0586 0.0421 0.0751 0.0543 0.0378 0.0707 0.0607 0.0441 0.0772 0.0676 0.0512 0.0839 0.0194 0.0015 0.0372
0.0108 0.0094 0.0128 0.0102 0.0089 0.0120 0.0111 0.0096 0.0131 0.0120 0.0103 0.0142 0.0084 0.0082 0.0092

h −0.3440 −0.2208 −0.4672 −0.5450 −0.4409 −0.6491 −0.2228 −0.0871 −0.3585 −0.1713 −0.0328 −0.3099 −0.4554 −0.3315 −0.5792
0.4953 0.4909 0.5354 0.5836 0.5259 0.6666 0.4917 0.5315 0.4958 0.4846 0.5407 0.4743 0.6033 0.5777 0.6658
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Table 2. Cont.

E-Bayesian

(n, m) Sch Par LINEX Square General

b = 0.5 b = 1.5 p = −1.5 p = 1.5

EBL1 EBL2 EBL3 EBL1 EBL2 EBL3 EBS1 EBS2 EBS3 EBG1 EBG2 EBG3 EBG1 EBG2 EBG3

III α −0.6083 −0.4046 −0.8120 −0.9301 −0.7767 −1.0835 −0.3744 −0.1267 −0.6220 −0.2777 −0.0212 −0.5343 −0.8073 −0.6000 −1.0147
0.8861 0.8464 1.0333 1.1836 1.0079 1.4171 0.8883 1.0437 0.9021 0.8438 1.0550 0.8125 1.2170 1.1300 1.4234

R 0.0973 0.0698 0.1249 0.0897 0.0623 0.1170 0.1007 0.0731 0.1283 0.1108 0.0838 0.1378 0.1530 0.1622 0.1576
0.0201 0.0164 0.0254 0.0184 0.0150 0.0233 0.0211 0.0172 0.0265 0.0226 0.0183 0.0285 0.0315 0.0377 0.0628

h −0.5586 −0.3656 −0.7516 −0.8483 −0.7011 −0.9954 −0.3510 −0.1188 −0.5832 −0.2604 −0.0198 −0.5009 −0.7569 −0.5625 −0.9513
0.7740 0.7458 0.8989 1.0106 0.8624 1.2123 0.7807 0.9173 0.7928 0.7417 0.9272 0.7141 1.0696 0.9932 1.2510

(30,10) I α −0.2176 −0.1384 −0.2968 −0.3626 −0.2914 −0.4338 −0.1380 −0.0543 −0.2218 −0.1056 −0.0208 −0.1904 −0.2776 −0.1978 −0.3574
0.3357 0.3350 0.3502 0.3743 0.3494 0.4102 0.3253 0.3395 0.3267 0.3229 0.3430 0.3186 0.3663 0.3567 0.3900

R 0.0335 0.0239 0.0431 0.0311 0.0215 0.0406 0.0345 0.0249 0.0442 0.0386 0.0290 0.0481 0.0109 0.0009 0.0210
0.0056 0.0051 0.0063 0.0054 0.0049 0.0060 0.0055 0.0050 0.0062 0.0058 0.0053 0.0066 0.0047 0.0046 0.0049

h −0.1994 −0.1249 −0.2739 −0.3280 −0.2606 −0.3954 −0.1294 −0.0509 −0.2079 −0.0990 −0.0195 −0.1785 −0.2603 −0.1854 −0.3351
0.2946 0.2948 0.3067 0.3243 0.3041 0.3544 0.2859 0.2984 0.2871 0.2838 0.3015 0.2800 0.3220 0.3135 0.3428

II α −0.2862 −0.1812 −0.3912 −0.4728 −0.3817 −0.5639 −0.1851 −0.0719 −0.2983 −0.1441 −0.0291 −0.2592 −0.3781 −0.2724 −0.4838
0.4415 0.4408 0.4674 0.5082 0.4655 0.5697 0.4247 0.4507 0.4280 0.4395 0.4800 0.4298 0.5175 0.5020 0.5591

R 0.0445 0.0315 0.0574 0.0412 0.0283 0.0540 0.0466 0.0336 0.0595 0.0526 0.0398 0.0654 0.0152 0.0015 0.0289
0.0078 0.0070 0.0090 0.0075 0.0067 0.0085 0.0078 0.0070 0.0091 0.0085 0.0075 0.0099 0.0064 0.0063 0.0069

h −0.2622 −0.1633 −0.3611 −0.4282 −0.3417 −0.5147 −0.1735 −0.0674 −0.2796 −0.1351 −0.0273 −0.2430 −0.3545 −0.2554 −0.4536
0.3873 0.3882 0.4088 0.4387 0.4039 0.4905 0.3733 0.3961 0.3762 0.3863 0.4219 0.3778 0.4548 0.4412 0.4914

III α −0.4043 −0.2488 −0.5599 −0.6653 −0.5393 −0.7912 −0.2568 −0.0820 −0.4316 −0.1925 −0.0136 −0.3713 −0.5552 −0.3993 −0.7110
0.6077 0.6107 0.6646 0.7467 0.6581 0.8731 0.6307 0.7160 0.6236 0.5898 0.6941 0.5662 0.7513 0.7138 0.8504

R 0.0635 0.0439 0.0830 0.0584 0.0390 0.0778 0.0684 0.0489 0.0880 0.0757 0.0565 0.0950 0.0184 −0.0030 0.0398
0.0116 0.0100 0.0141 0.0109 0.0094 0.0131 0.0125 0.0107 0.0151 0.0130 0.0109 0.0158 0.0088 0.0089 0.0096

h −0.3701 −0.2232 −0.5170 −0.6035 −0.4833 −0.7237 −0.2407 −0.0769 −0.4046 −0.1804 −0.0128 0.0950 −0.5205 −0.3743 −0.6666
0.5327 0.5391 0.5798 0.6402 0.5674 0.7476 0.5543 0.6293 0.5481 0.5184 0.6100 0.4976 0.6603 0.6274 0.7474
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Table 2. Cont.

E-Bayesian

(n, m) Sch Par LINEX Square General

b = 0.5 b = 1.5 p = −1.5 p = 1.5

EBL1 EBL2 EBL3 EBL1 EBL2 EBL3 EBS1 EBS2 EBS3 EBG1 EBG2 EBG3 EBG1 EBG2 EBG3

(45,15) I α −0.1516 −0.0962 −0.2070 −0.2558 −0.2043 −0.3072 −0.0936 −0.0360 −0.1513 −0.0719 −0.0137 −0.1300 −0.1892 −0.1333 −0.2450
0.2298 0.2294 0.2368 0.2489 0.2365 0.2669 0.2590 0.2361 0.2291 0.2275 0.2372 0.2250 0.2473 0.2432 0.2582

R 0.0230 0.0164 0.0296 0.0214 0.0148 0.0279 0.0236 0.0170 0.0302 0.0264 0.0198 0.0329 0.0075 0.0007 0.0143
0.0036 0.0033 0.0039 0.0035 0.0033 0.0038 0.0036 0.0034 0.0039 0.0038 0.0035 0.0041 0.0032 0.0032 0.0033

h −0.1389 −0.0868 −0.1910 −0.2310 −0.1825 −0.2795 −0.0878 −0.0337 −0.1419 −0.0674 −0.0129 −0.1219 −0.1773 −0.1250 −0.2297
0.2018 0.2018 0.2076 0.2164 0.2064 0.2314 0.2013 0.2075 0.2013 0.2000 0.2085 0.1978 0.2174 0.2138 0.2269

II α −0.1988 −0.1230 −0.2746 −0.3381 −0.2696 −0.4066 −0.1267 −0.0469 −0.2065 −0.0934 −0.0126 −0.1743 −0.2566 −0.1802 −0.3329
0.3132 0.3143 0.3246 0.3454 0.3241 0.3770 0.3074 0.3218 0.3071 0.3075 0.3280 0.3015 0.3426 0.3360 0.3622

R 0.0306 0.0215 0.0398 0.0284 0.0193 0.0375 0.0322 0.0230 0.0413 0.0357 0.0266 0.0448 0.0095 0.00004 0.0190
0.0051 0.0047 0.0057 0.0049 0.0046 0.0055 0.0051 0.0046 0.0057 0.0053 0.0048 0.0060 0.0043 0.0043 0.0045

h −0.1820 −0.1106 −0.2532 −0.3055 −0.2407 −0.3702 −0.1188 −0.0440 −0.1936 −0.0876 −0.0118 −0.1634 −0.2405 −0.1690 −0.3121
0.270 0.2767 0.2844 0.2995 0.2823 0.3259 0.2702 0.2828 0.2699 0.2703 0.2883 0.2650 0.3011 0.2953 0.3184

III α −0.2989 −0.1816 −0.4161 −0.5043 −0.4043 −0.6044 −0.1756 −0.0471 −0.3041 −0.1354 −0.0051 −0.2657 −0.3966 −0.2781 −0.5151
0.4559 0.4630 0.4814 0.5276 0.4798 0.5987 0.4699 0.5217 0.4580 0.4637 0.5267 0.4416 0.5358 0.5245 0.5812

R 0.0463 0.0320 0.0606 0.0426 0.0284 0.0569 0.0480 0.0337 0.0624 0.0548 0.0406 0.0690 0.0133 −0.0019 0.0286
0.0079 0.0070 0.0092 0.0075 0.0067 0.0087 0.0082 0.0073 0.0095 0.0088 0.0077 0.0103 0.0067 0.0068 0.0071

h −0.2734 −0.1629 −0.3840 −0.4564 −0.3613 −0.5515 −0.1646 −0.0442 −0.2851 −0.1269 −0.0048 −0.2491 −0.3718 −0.2607 −0.4829
0.4002 0.4085 0.4210 0.4547 0.4161 0.5143 0.4130 0.4585 0.4026 0.4075 0.4629 0.3882 0.4709 0.4609 0.5108
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8. Applications

In this section, one simulated data set and two real data sets will be used for the illus-
tration of Lomax(α, β) modeling and the applications of all estimation methods developed.
For easy reference, all three complete data sets are reported in Appendix A. The first data
set, which is random sample generated from Lomax(10.73, 0.035), is displayed in Table A1.
The second data set, which was originally used by Lawless [33], consists of 60 failures is
shown in Table A3. The third one comprises the 128 remission times (in months) of bladder
cancer patients that was initially published by Lee and Wang [34] and is displayed in
Table A5. The third data set was also used by Okasha et al. [21] for Weibull distribution
modeling. However, they also mentioned that the pattern of hazard rate function revealed
from data set could not be decreasing. Hence, through the intuitive guess, this data set
may also be goodness-of-fitted with the Lomax distribution.

First, the Kolmogorov-Smirnov (K-S) test and scaled total time on test (TTT) plot
discussed in Aarset [35] are utilized to exam the three data sets for modeling investigation.
Since K-S test has been well-known and can be conducted through current existing software,
we only briefly address the scaled TTT transform in this section. The scaled TTT transform
is defined by T(x) = H−1(x)/H−1(1) with H−1(x) =

∫ x
0 R(w)dw and 0 ≤ x ≤ 1. Given

the order statistic,
{

X(1) < X(2) < . . . < X(n)

}
, of random sample, {Xi, i = 1, 2, . . . , n},

the empirical scaled TTT transform is derived via y(r/n) = H−1
n (r/n)/H−1

n (1) with
H−1

n (r/n) =
(

∑r
i=1 X(i) + (n− r)X(r)

)
and H−1

n (1) =
(

∑n
i=1 X(i)

)
. Then the empirical

scaled TTT plot is defined as {(x, y(x))|0 ≤ x ≤ 1}. Aarset [35] declared if the hazard
increases (decreases) then the scaled TTT transform is concave (convex); moreover if the
scaled TTT transform has both convex and concave joint together then the shape of hazard
function is either bathtub or unimodal. The simulated data set used for Example 1 and
all adaptive type-I progressively hybrid censored samples used for all examples were
generated by using R that is available from author on request.

8.1. Example 1

The complete data set from Table A1 is used to fit with Lomax(α, β) and the MLE of
the unknown α and β are obtained as α̂ = 10.69 and β̂ = 0.0347 based on the complete data
set. The K-S test produces test statistic value 0.077293 with p-value = 0.5887. The empirical
scaled TTT plot of the complete data from Table A1 is displayed in Figure 2 that reveals
slightly convex in the small middle region of data set, concave over the small region just to
the left side of the middle region and no significant pattern on both the left lower corner
and the right upper corner. The pattern of TTT plot seems consistent with the pattern of
hazard function that shows slightly decreasing because β is small, (for example, below 0.5).
Based on p-value, the Lomax(10.69, 0.0347) is accepted to be a goodness-of-fit model.

By utilizing progressive censoring scheme II with n = 100 and m = 10 that was
defined in Section 7, two adaptive type-I progressively hybrid censored samples with
τ = 4 and with τ = 8 are, respectively, generated from Table A1 and displayed in Table A2.
The first adaptive type-I progressively hybrid censored sample has D = 65, R∗D = 26
under Ri = 1 for i = 1, 2, · · · , 9 and Ri = 0 for i = 10, 11, 12, · · · , 65. The second adaptive
type-I progressively hybrid censored sample has D = 85, R∗D = 6 under Ri = 1 for
i = 1, 2, · · · , 9 and Ri = 0 for i = 10, 11, 12, · · · , 85. To derive the estimates of α, R(x) and
h(x), we assumed β = 0.0347. All estimation results for α, R(0.4) and h(0.4) are calculated
and displaced in Tables 3 and 4, where Bayesian estimates were evaluated by utilizing
c = 0.5, k = 0.7, since there are no other information available.
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Figure 2. The empirical scaled TTT plot of the simulated data in Table A1.

Table 3. Different estimates of the generated adaptive type-I progressively censored samples from three examples under
different settings with m = 10 and ω = 1.5.

Bayesian Empirical Bayesian

Example sample Par MLE LINEX Square General LINEX Square General

b = 0.5 b = 1.5 p = 1.5 p = −1.5 b = 0.5 b = 1.5 p = 1.5 p = −1.5

β = 0.0347, n = 100

1 1 α 9.8809 8.7036 8.1824 8.9993 8.8274 9.0335 7.9664 7.5675 8.1879 8.0475 8.2158
R 0.8727 0.8834 0.8833 0.8834 0.8832 0.8835 0.8719 0.8718 0.8933 0.8932 0.8934
h 0.3382 0.3076 0.3069 0.3080 0.3021 0.3092 0.2800 0.2794 0.2802 0.2754 0.2812

2 α 10.0970 9.1286 8.6808 9.3767 9.2395 9.4040 9.9799 9.4983 10.2461 9.2395 10.2730
R 0.8701 0.8788 0.8787 0.8788 0.8786 0.8789 0.8692 0.8691 0.8684 0.8786 0.8684
h 0.3456 0.3206 0.3200 0.3209 0.3162 0.3219 0.3504 0.3497 0.3507 0.3162 0.3516

β = 0.0418, n = 60

2 1 α 11.9233 9.6404 8.7702 10.1696 9.8899 10.2252 11.1329 10.1883 11.7000 11.4409 11.7516
R 0.8206 0.8450 0.8448 0.8451 0.8444 0.8452 0.8188 0.8186 0.8239 0.8232 0.8241
h 0.4902 0.4171 0.4145 0.4181 0.4066 0.4204 0.4800 0.4780 0.4810 0.4704 0.4831

2 α 10.4450 7.9283 7.0545 8.4857 8.1256 8.5571 7.3427 6.7042 7.7280 7.4608 7.7811
R 0.8410 0.8689 0.8687 0.8690 0.8683 0.8692 0.8397 0.8394 0.8799 0.8794 0.8800
h 0.4294 0.3478 0.3458 0.3489 0.3341 0.3518 0.3170 0.3156 0.3177 0.3067 0.3199

β = 0.00826, n = 128

3 1 α 14.0662 12.5540 11.8797 12.9314 12.7795 12.9617 10.9156 10.4563 11.1661 11.1892 11.0504
R 0.9547 0.9582 0.9582 0.9583 0.9582 0.9583 0.9749 0.9671 0.9638 0.9638 0.9638
h 0.1158 0.1064 0.1064 0.1065 0.1052 0.1067 0.0807 0.0919 0.0919 0.0921 0.0910

2 α 13.7847 11.9641 11.1891 12.4085 12.2204 12.4461 10.5891 10.0549 10.8859 10.91409 10.74438
R 0.9555 0.9599 0.9599 0.9599 0.9599 0.9599 0.9795 0.9697 0.9647 0.9647 0.96472
h 0.1135 0.1021 0.1021 0.1022 0.1006 0.1025 0.0764 0.0896 0.0896 0.08985 0.08846



Mathematics 2021, 9, 2903 33 of 38

Table 4. Cont. Table 3.

E-Bayesian

Example Sample Par LINEX Square General

b = 0.5 b = 1.5 p = −1.5 p = 1.5

EBL1 EBL2 EBL3 EBL1 EBL2 EBL3 EBS1 EBS2 EBS3 EBG1 EBG2 EBG3 EBG1 EBG2 EBG3

β = 0.0347, n = 100

1 1 α 8.6614 8.9480 8.3747 8.1429 8.3969 7.8888 8.9556 9.2619 8.6492 8.7844 9.0849 8.4839 8.9898 9.2973 8.68226
R 0.88396 0.88023 0.88769 0.88387 0.88014 0.88761 0.88401 0.88028 0.8877 0.8838 0.8801 0.88749 0.88406 0.8803 0.88778
h 0.3062 0.3166 0.2957 0.3054 0.3158 0.2950 0.3065 0.3170 0.2960 0.3007 0.3109 0.2904 0.3077 0.3182 0.2972

2 α 9.0888 9.3306 8.8470 8.6434 8.8625 8.4244 9.3355 9.5905 9.0805 9.1990 9.4502 8.9476 9.3629 9.6186 9.1071
R 0.8793 0.8762 0.8824 0.87925 0.87616 0.8823 0.8794 0.8763 0.8825 0.8792 0.8761 0.8823 0.8794 0.8763 0.8825
h 0.3192 0.3279 0.3105 0.3186 0.3273 0.3099 0.3195 0.3282 0.31078 0.31483 0.32343 0.3062 0.3204 0.3292 0.31170

β = 0.0418, n = 60

2 1 α 9.5982 10.1051 9.0912 8.7280 9.1499 8.3062 10.1286 10.6924 9.5647 9.8496 10.3979 9.3012 10.1842 10.7512 9.6173
R 0.8457 0.8378 0.8536 0.8455 0.8376 0.8534 0.8458 0.8379 0.8537 0.8451 0.8372 0.8531 0.8459 0.8381 0.8538
h 0.4155 0.4385 0.3924 0.4136 0.4364 0.3907 0.4164 0.4396 0.3932 0.4050 0.4275 0.3824 0.41870 0.4420 0.3954

2 α 7.9023 8.4327 7.3719 7.0233 7.4464 6.6002 8.4662 9.0738 7.8586 8.1058 8.6876 7.5241 8.5378 9.150539 7.9251
R 0.8693 0.8606 0.8781 0.8691 0.8603 0.8778 0.8695 0.8608 0.8782 0.8687 0.8599 0.8775 0.8696 0.8609 0.8783
h 0.3470 0.3719 0.3222 0.3450 0.3695 0.3204 0.3481 0.3731 0.3231 0.3333 0.3572 0.3093 0.3510 0.3762 0.3258

β = 0.00826, n = 128

3 1 α 12.501 12.8681 12.1339 11.8301 12.1595 11.5006 12.8765 13.2659 12.4871 12.7253 13.1101 12.3405 12.9069 13.2971 12.5166
R 0.9584 0.9572 0.9596 0.9584 0.9572 0.9596 0.9584 0.9572 0.9597 0.9584 0.9572 0.9597 0.9584 0.9572 0.9597
h 0.1060 0.1092 0.1028 0.1059 0.1091 0.1027 0.1060 6 0.1092 0.1028 0.1048 0.1079 0.1016 0.1063 0.1095 0.1031

2 α 11.9100 12.3403 11.4798 11.1384 11.5159 10.7610 12.3528 12.8154 11.8902 12.1655 12.621 11.7099 12.3903 12.8543 11.9264
R 0.9601 0.9586 0.9616 0.9601 0.9586 0.9616 0.9601 0.9586 0.9616 0.9601 0.9586 0.9615 0.9601 0.9586 0.9616
h 0.1017 0.1055 0.09786 0.1016 0.1054 0.0978 0.1017 0.1055 0.0979 0.1002 0.1039 0.0964 0.1020 0.1058 0.09819
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8.2. Example 2

The complete data set from Table A3 is used to fit with Lomax(α, β) and the MLE of
the unknown α and β are obtained as α̂ = 11.61 and β̂ = 0.0418 based on the complete data
set. The K-S test generates the test statistic 0.087169 with p-value = 0.719. The empirical
scaled TTT plot by using the complete data from Table A3 is shown in Figure 3, which
reveals slightly convex in the most left lower small corner and slightly concave with no
significant pattern climbing up to the most right upper corner. The pattern of TTT plot
seems consistent with the pattern of hazard function that shows slightly decreasing because
β is small (for example, below 0.5). Based on p-value, the Lomax(11.61, 0.0418) is accepted
to be a goodness-of-fit model.

From Table A3, two adaptive type-I progressively hybrid censored samples with
τ = 4.5 and with τ = 2.0 were, respectively, generated through progressive censoring
scheme II with n = 60 and m = 10 that was defined in Section 7 and displayed in Table A4.
The first adaptive type-I progressively hybrid censored sample has D = 45, R∗D = 6 under
Ri = 1 for i = 1, 2, · · · , 9 and Ri = 0 for i = 10, 11, 12, · · · , 45. The second adaptive type-I
progressively hybrid censored sample has D = 29, R∗D = 22 under Ri = 1 for i = 1, 2, · · · , 9
and Ri = 0 for i = 10, 11, 12, · · · , 29. The estimates of α, R(0.4) and h(0.4) are derived
assuming the true rate parameter β = 0.0418. All estimation results for α, R(0.4) and h(0.4)
are calculated and displaced in Tables 3 and 4, where Bayesian estimates were evaluated
by using c = 0.5, k = 0.7, since there are no other information available.
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Figure 3. The empirical scaled TTT plot of the failure times in Table A3.

8.3. Example 3

The complete data set from Table A5 is used to fit with Lomax(α, β) and the MLE of
unknown α and β are obtained as α̂ = 13.9384 and β̂ = 0.00826 based on the complete data
set. The K-S test has test statistic value 0.096605 with p-value = 0.1833. The TTT plot of this
data set had been discussed by Okasha et al. [21]. Based on p-value, there is no significant
different from Lomax (13.9384, 0.00826) model fitting.



Mathematics 2021, 9, 2903 35 of 38

In this example, two adaptive type-I progressively hybrid censored samples with
τ = 20 and with τ = 10 were respectively generated via progressive censoring scheme II
with n = 128 and m = 10 that was defined in Section 7 and displayed in Table A6. The
first adaptive type-I progressively hybrid censored sample has D = 106, R∗D = 13 under
Ri = 1 for i = 1, 2, · · · , 9 and Ri = 0 for i = 10, 11, 12, · · · , 106. The second adaptive type-I
progressively hybrid censored sample has D = 82, R∗D = 37 under Ri = 1 for i = 1, 2, · · · , 9
and Ri = 0 for i = 10, 11, 12, · · · , 82. The estimates of α, R(0.4) and h(0.4) are derived by
utilizing β = 0.00826. All estimation results for α, R(0.4) and h(0.4) are calculated and
displaced in Tables 3 and 4, where Bayesian estimates were computed with c = 0.5, k = 0.7,
since there are no other information available.

9. Concluding Remarks

Based on adaptive type-I progressively hybrid censored sample, Bayesian estimations
for any function of Lomax distribution shape parameter have been established. The se-
lection of hyper-parameters in the prior and a loss function is required. For comparison
purposes, the E-Bayesian and empirical Bayesian methods for any function of Lomax(α, β)
shape have been developed by utilizing the SEL, GE loss and LINEX loss functions. Three
different flexible priors have also been proposed to investigate the influence of hyper-
parameters on the E-Bayesian estimates of three special functions. The developed theo-
retical propositions for comparisons among three E-Bayesian estimates of each particular
function under each loss function have also been verified by using calculated bias from the
simulation study. The novel concepts and procedures provided are very useful knowledge
for the future study in reliability characteristics. We have provided suggestions of the
usages of all methods based on the performance comparison via an intensive simulation
study and three data sets to demonstrate modeling and application illustrations. The
simulation results show Bayesian estimation methods provide reliable results. However,
the MLE and empirical methods are more sensitive to censoring rate.

The E-Bayesian estimates utilizing the GE and LINEX loss functions for the reliability
characteristics of other lifetime distributions under the AT-IP HCS are interesting and
difficult future work that are currently studied by authors.
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Appendix A. Data Sets for Applications

Table A1. Complete data set generated from Lomax(10.73, 0.035).

1.644 5.830 5.678 1.115 0.504 0.524 0.434 0.851 6.095 9.409
1.332 3.260 1.633 1.773 0.391 0.559 5.017 1.446 2.269 1.144
5.745 1.399 12.503 1.846 3.553 3.048 1.237 0.465 0.967 4.836
1.329 4.429 0.078 0.297 2.647 1.232 0.209 0.457 11.857 3.617
0.087 3.546 0.995 0.839 3.311 8.898 3.902 4.119 4.944 2.713
1.548 1.127 0.264 2.913 7.862 0.261 5.094 7.945 2.021 0.541
5.449 1.358 1.467 1.103 0.734 1.032 2.512 4.393 2.478 3.618
2.043 1.044 5.594 0.052 17.119 1.728 0.271 6.065 1.286 1.042
1.236 1.135 1.390 11.301 2.040 4.538 7.303 1.658 5.239 1.563
2.494 4.594 0.163 2.959 2.071 0.008 0.972 0.172 6.312 1.815

Table A2. The generated censored samples using data from Table A1.

Sample I: τ = 4

0.008 0.052 0.078 0.087 0.163 0.172 0.209 0.261 0.264 0.271 0.297 0.434
0.457 0.465 0.524 0.541 0.559 0.734 0.839 0.851 0.967 0.972 0.995 1.032
1.042 1.103 1.115 1.127 1.135 1.144 1.232 1.236 1.286 1.329 1.332 1.358
1.390 1.399 1.446 1.548 1.563 1.633 1.644 1.658 1.728 1.815 1.846 2.021
2.040 2.043 2.071 2.269 2.478 2.512 2.647 2.713 2.913 2.959 3.048 3.260
3.311 3.546 3.553 3.618 3.902

Sample II: τ = 8

0.008 0.052 0.078 0.087 0.163 0.172 0.209 0.261 0.264 0.271 0.297 0.391
0.434 0.465 0.504 0.524 0.559 0.734 0.851 0.967 0.972 0.995 1.032 1.044
1.115 1.127 1.135 1.144 1.232 1.236 1.329 1.332 1.358 1.390 1.399 1.446
1.467 1.548 1.563 1.633 1.644 1.658 1.728 1.773 1.815 1.846 2.021 2.040
2.071 2.269 2.478 2.494 2.647 2.713 2.913 2.959 3.048 3.260 3.311 3.546
3.553 3.617 3.618 3.902 4.119 4.393 4.429 4.538 4.594 4.836 4.944 5.017
5.094 5.239 5.449 5.594 5.678 5.745 5.830 6.065 6.095 6.312 7.303 7.862
7.945

Table A3. Complete data set of the number of 1000s of cycles to failure for electrical appliances.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210
0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.064
1.088 1.091 1.174 1.270 1.275 1.355 1.397 1.477 1.578 1.649
1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857 3.912 4.100
4.106 4.116 4.315 4.510 4.580 5.267 5.299 5.583 6.065 9.701

Table A4. The generated censored samples using data from Table A3.

Sample I: τ = 4.5

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210 0.381 0.464
0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.088 1.174 1.270 1.275 1.355
1.397 1.477 1.578 1.649 1.702 1.893 2.001 2.161 2.292 2.326 2.337 2.628
2.811 2.886 2.993 3.122 3.715 3.790 3.857 4.100 4.116

Sample II: τ = 2.0

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.210 0.464 0.479 0.556
0.574 0.839 0.917 0.969 0.991 1.064 1.088 1.091 1.270 1.275 1.397 1.477
1.578 1.649 1.702 1.893 1.932
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Table A5. The remission times (in months) from 128 bladder cancer patients.

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26
1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26
2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02
3.70 3.82 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64
4.51 4.87 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50
5.41 5.49 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41
6.97 7.09 5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94
7.87 7.93 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66
9.74 10.06 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47
12.03 12.07 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02
12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62
17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05

Table A6. The generated censored samples using data from Table A5.

Sample I: τ = 20

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40
1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64
2.69 2.69 2.75 2.83 3.02 3.25 3.31 3.36 3.48 3.52 3.57 3.64
3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87
4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.49 5.62 5.71 6.25
6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.63
7.66 7.87 7.93 8.26 8.37 8.53 8.66 9.02 9.22 9.47 9.74 10.06

10.34 10.66 10.75 11.79 11.98 12.03 12.07 12.63 13.11 13.29 13.80 14.24
14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13

Sample II: τ = 10

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40
1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.69
2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57
3.64 3.70 3.82 4.18 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98
5.06 5.09 5.17 5.32 5.34 5.41 5.49 5.62 5.71 5.85 6.25 6.54
6.76 6.93 6.94 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.66 7.87
7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74
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