Approximate Mei Symmetries and Invariants of the Hamiltonian
Abstract
:1. Introduction
2. Mei Symmetries of Approximate/Perturbed Hamiltonian
3. Mei Symmetries of the Approximate Hamiltonian of DHO
Mei Invariants
4. Conclusions and Discussions
- The number of approximate Mei symmetries is more than the number of approximate Noether symmetries;
- The Mei symmetry is also contained in the set of Noether symmetries;
- The other Mei symmetries, , , , , and are different from the Noether symmetries; therefore, there are new corresponding conserved quantities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ODEs | Ordinary differential equations |
PDEs | Partial differential equations |
DHO | Damped harmonic oscillator |
References
- Baĭkov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Approximate symmetries. Math. USSR-Sb. 1989, 64, 427–441. [Google Scholar] [CrossRef]
- Gazizov, R.K. Lie algebras of approximate symmetries. J. Nonlinear Math. Phys. 1996, 3, 96–101. [Google Scholar] [CrossRef]
- Feroze, T.; Kara, A.H. Group theoretic methods for approximate invariants and Lagrangians for some classes of y″ + ϵF(t)y′ + y = f(y,y′). Int. J. Non-Linear Mech. 2002, 37, 275–280. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H. Variational formulation of approximate symmetries and conservation laws. Int. J. Theor. Phys. 2001, 40, 1501–1509. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M.; Qadir, A. Approximate symmetries and conservation laws of the geodesic equations for the Schwarzschild metric. Nonlinear Dyn. 2008, 51, 183–188. [Google Scholar] [CrossRef]
- Bai, Y.S.; Zhang, Q. Approximate symmetry analysis and approximate conservation laws of perturbed KdV equation. Adv. Math. Phys. 2018, 2018, 4743567. [Google Scholar] [CrossRef]
- Camci, U. Approximate Noether gauge symmetries of the Bardeen model. Eur. Phys. J. 2014, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mei, F.-X. Form invariance of Lagrange system. J. Beijing Inst. Technol. 2000, 9, 120–124. [Google Scholar]
- Mei, F.-X. Form invariance of Appell equations. Chin. Phys. 2001, 10, 177. [Google Scholar]
- Wang, S.-Y.; Mei, F.-X. Form invariance and Lie symmetry of equations of non-holonomic systems. Chin. Phys. 2002, 11, 5. [Google Scholar]
- Fang, J.-H. Mei symmetry and Lie symmetry of the rotational relativistic variable mass system. Commun. Theor. Phys. 2003, 40, 269. [Google Scholar]
- Zhai, X.H.; Zhang, Y. Mei symmetry and new conserved quantities of time-Scale Birkhoff’s equations. Complexity 2020, 2020. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Phys. Pol. A 2019, 136, 439–443. [Google Scholar] [CrossRef]
- Jia, L.; Wang, X.; Zhang, M.; Han, Y. Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 2012, 69, 1807–1812. [Google Scholar] [CrossRef]
- Han, Y.; Wang, X.; Zhang, M.; Jia, L. Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 2013, 71, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Denman, H.H. Approximate invariants and Lagrangians for autonomous, weakly non-linear systems. Int. J. Non-Linear Mech. 1994, 29, 409–419. [Google Scholar] [CrossRef]
- Fang, J.-H.; Yan, X.-H.; Li, H.; Chen, P.-S. Mei symmetry and Lie symmetry of relativistic Hamiltonian system. Commun. Theor. Phys. 2004, 42, 19. [Google Scholar]
Approximate Noether Symmetries | Approximate Mei Symmetries |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, U.; Feroze, T. Approximate Mei Symmetries and Invariants of the Hamiltonian. Mathematics 2021, 9, 2910. https://doi.org/10.3390/math9222910
Kausar U, Feroze T. Approximate Mei Symmetries and Invariants of the Hamiltonian. Mathematics. 2021; 9(22):2910. https://doi.org/10.3390/math9222910
Chicago/Turabian StyleKausar, Umara, and Tooba Feroze. 2021. "Approximate Mei Symmetries and Invariants of the Hamiltonian" Mathematics 9, no. 22: 2910. https://doi.org/10.3390/math9222910
APA StyleKausar, U., & Feroze, T. (2021). Approximate Mei Symmetries and Invariants of the Hamiltonian. Mathematics, 9(22), 2910. https://doi.org/10.3390/math9222910